JPS58127318A - Forming method for single-crystal film on insulating layer - Google Patents
Forming method for single-crystal film on insulating layerInfo
- Publication number
- JPS58127318A JPS58127318A JP57009738A JP973882A JPS58127318A JP S58127318 A JPS58127318 A JP S58127318A JP 57009738 A JP57009738 A JP 57009738A JP 973882 A JP973882 A JP 973882A JP S58127318 A JPS58127318 A JP S58127318A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- substrate
- single crystal
- polycrystalline
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02678—Beam shaping, e.g. using a mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02683—Continuous wave laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02691—Scanning of a beam
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
発明の技術分野:
本発明は絶縁層上に付着させた多結晶層又はアモルファ
ス層を高能率にかつ良質な単結晶層にアニールする方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention: The present invention relates to a method of annealing a polycrystalline or amorphous layer deposited on an insulating layer to a highly efficient and good quality single crystal layer.
技術の背量:
従来のこの種の方法は第1図に示すようにレーザビーム
走査法か、第2図に示す外部ストリップヒータの移動加
熱法によっていた。第1図において、1は単結晶基板、
2は諌単結晶基板1上に形成した絶縁体層からなる絶縁
膜、5は該絶縁膜25の各所に設けられた分離帯又はス
ルーホール、4拡誼絶縁膜2上に付着させた多結晶層又
はアモルファス層、401は単結晶化し九層、5はアニ
ール加熱用レーザビーム、501は集光レンズである。Technical limitations: Conventional methods of this type have been based on a laser beam scanning method as shown in FIG. 1 or a moving heating method using an external strip heater as shown in FIG. In FIG. 1, 1 is a single crystal substrate;
2 is an insulating film made of an insulating layer formed on the single crystal substrate 1; 5 is a separation band or through hole provided at various places in the insulating film 25; 4 is a polycrystalline film deposited on the expanded insulating film 2; A layer or amorphous layer 401 is a nine-layer single-crystal layer, 5 is a laser beam for annealing heating, and 501 is a condenser lens.
この方法で紘し−ザビーム径500p+s前後、レーザ
パワ10F前後の装置が使われている。In this method, a device with a beam diameter of about 500 p+s and a laser power of about 10 F is used.
一方、第2図において、1紘単結晶基板、2は絶縁体層
からなる絶縁膜、4は諌絶縁膜2上に付着させた多結晶
層又はアモルファス層、6は棒状移動ヒータ、7は下部
加熱板、11は表面保護膜でおる。単結晶基板1の端部
401において、該絶縁膜2なしに該多結晶層又はアモ
ルファス層4が直接付着されてお夛、まず、この領域に
おいて誼多結晶層又はアモルファス層4が該棒状移動ヒ
ータ6によって溶融され、単結晶基板1の方位に応じた
結晶成長が起こシ、該移動ヒータ6を右方に移動させな
がら順次、該絶縁膜2上の多結晶層又はアモルファス層
4をすでに成長した単結晶を種として単結晶化していく
方法である。On the other hand, in FIG. 2, 1 is a monocrystalline substrate, 2 is an insulating film made of an insulating layer, 4 is a polycrystalline layer or an amorphous layer deposited on the insulating film 2, 6 is a rod-shaped moving heater, and 7 is a lower part. The heating plate 11 is covered with a surface protective film. At the edge 401 of the single crystal substrate 1, the polycrystalline layer or the amorphous layer 4 is directly attached without the insulating film 2. First, in this region, the polycrystalline layer or the amorphous layer 4 is attached to the rod-shaped moving heater. 6, crystal growth occurs according to the orientation of the single crystal substrate 1, and while the moving heater 6 is moved to the right, the polycrystalline layer or amorphous layer 4 on the insulating film 2 has already grown. This method uses a single crystal as a seed to form a single crystal.
従来技術と問題点:
上述した従来の第1図に示した方法では100編φ程度
の単結晶基板1全面にわ九ってアニールするには500
μ諷−のビームを縦・横両方向に走査する必要があシ、
長時間を要する、またビーム径500ハφに対して均熱
領域が狭く、アニール条件が部分的に異なるため該絶縁
膜2上全面に均質な単結晶膜にすることが難しいという
欠点があった。また第2図の従来の方法では第1図の方
法における縦方向走査の必要がなく能率的であるが、棒
状移動ヒータ6によるヒータ部がらの汚染を避ける丸め
、被アニール部表面に表面保護膜11を付着させる必要
があシ、また該ヒータ部の幅が広く、がっ、多結晶層又
紘アモルファス層4の表面から離して設定するので、広
い幅にわたって加熱領域が発生し、第1図の方法と同様
、アニール条件が部分的に異なるため該絶縁膜2上全面
に均質な単結晶膜にするには条件設定が難しいという欠
点があった。Conventional technology and problems: In the conventional method shown in FIG.
It is necessary to scan the microbeam both vertically and horizontally,
It takes a long time, and the soaking area is narrow for a beam diameter of 500mm, and the annealing conditions are partially different, so it is difficult to form a homogeneous single crystal film over the entire surface of the insulating film 2. . In addition, the conventional method shown in FIG. 2 is efficient because it does not require the vertical scanning in the method shown in FIG. 11, and since the width of the heater part is wide and is set away from the surface of the polycrystalline layer or the amorphous layer 4, a heating area is generated over a wide width, and as shown in FIG. Similar to the method described above, since the annealing conditions are partially different, it is difficult to set the conditions in order to form a homogeneous single crystal film over the entire surface of the insulating film 2.
発明の目的:
本発明は、これらの欠点を解決するために、棒状のレン
ズを用い、レーザを線状域に集光し、連続的に絶縁膜基
板を加熱、溶融することにょシ単結晶層を成長させて単
結晶膜の形成を行なうことを特徴とするもので、以下図
面について詳細に説明する。Purpose of the invention: In order to solve these drawbacks, the present invention uses a rod-shaped lens to focus a laser beam onto a linear region, and continuously heats and melts an insulating film substrate. The method is characterized in that a single crystal film is formed by growing a single crystal film, and will be described in detail below with reference to the drawings.
発明の実施例:
第3図は本発明の実施例であって、1は単結晶基板、2
紘絶縁体層からなる絶縁膜、3は該絶縁膜2に設けたス
ルーホール、4は該絶縁膜2上に付着させた多結晶層又
はアモルファス層、8は棒状のレンズ、9はレーザ光で
ある。多結晶層又はアモルファス層4を単結晶層にする
には、レーザ光9をレンズ8で多結晶層又はアそル7ア
ス層4上に集光させる。多結晶層又はアモルファス層4
は加熱され、単結晶基板1とスルーホール6で接触して
いる部分401から、単結晶基板1の結晶方位に対応し
た単結晶が成長する。該集光したレーザ光9を単結晶基
板10幅と直角方向にレンズ8を、又は該基板1@を該
レーザ光9に対して走査することによシ上記の成長した
単結晶を種として多結晶層又はアモルファス層4全体が
良質な単結晶層に成長する。Embodiment of the invention: FIG. 3 shows an embodiment of the invention, in which 1 is a single crystal substrate, 2
3 is a through hole provided in the insulating film 2; 4 is a polycrystalline layer or amorphous layer deposited on the insulating film 2; 8 is a rod-shaped lens; 9 is a laser beam be. In order to convert the polycrystalline layer or the amorphous layer 4 into a single crystal layer, the laser beam 9 is focused onto the polycrystalline layer or the amorphous layer 4 using a lens 8 . Polycrystalline layer or amorphous layer 4
is heated, and a single crystal corresponding to the crystal orientation of the single crystal substrate 1 grows from a portion 401 that is in contact with the single crystal substrate 1 through the through hole 6 . By scanning the focused laser beam 9 through a lens 8 or the substrate 1@ in a direction perpendicular to the width of the single crystal substrate 10 with respect to the laser beam 9, a polymorphism is generated using the grown single crystal as a seed. The entire crystalline or amorphous layer 4 grows into a high quality single crystal layer.
この場合の単結晶層上に多結晶層又はアモルファス層を
付着させ、加熱すれば該多結晶層又はアモルファス層は
単結晶層に成長することは一般的によく知られた現象で
、実験的にも確認されている。In this case, it is a generally well-known phenomenon that if a polycrystalline layer or an amorphous layer is deposited on a single-crystalline layer and heated, the polycrystalline or amorphous layer grows into a single-crystalline layer. has also been confirmed.
レーザ光9に関しては、光源が1個でも複数個でも、光
源の数に制限はないが、レンズ8で集光した時に被加熱
物体上を均一に加熱するように配置する。本発明の具体
的実施例を次に示す。Regarding the laser beam 9, there is no limit to the number of light sources, whether there is one or a plurality of light sources, but the laser beam 9 is arranged so that when the laser beam is focused by the lens 8, it uniformly heats the object to be heated. Specific examples of the present invention are shown below.
Si基板上にSiO2膜を形成し、皺Sin@膜上にS
lアモルファス層を付着させ、波長0.69μ町出力1
0”Ii’@tt/aJの出力のルビーレーザで照射し
た結果、線状の長さ約5−18e@、厚さ約0.5μ票
の単結晶化された膜が得られた。A SiO2 film is formed on the Si substrate, and S is formed on the wrinkled Sin@ film.
Depositing an amorphous layer, wavelength 0.69 μm output 1
As a result of irradiation with a ruby laser with an output of 0"Ii'@tt/aJ, a single crystalline film with a linear length of about 5-18e@ and a thickness of about 0.5 .mu.m was obtained.
発明の効果:
以上説明したように、棒状のレンズを使って、レーザ光
を集光し、これを加熱源として、絶縁膜上に形成した多
結晶又はアモルファス層を単結晶化する方法であるので
、装置が非常に簡単となシ、まえ、加熱部を縦横に走査
する必要がなく操作が簡易である。さらに、均一な加熱
を得られ、高品質な単結晶層を高能率に形成できる利点
がある。Effects of the invention: As explained above, this is a method of condensing laser light using a rod-shaped lens and using this as a heating source to single-crystallize a polycrystalline or amorphous layer formed on an insulating film. The device is very simple and the operation is simple as there is no need to scan the heating section vertically and horizontally. Furthermore, there is an advantage that uniform heating can be obtained and a high quality single crystal layer can be formed with high efficiency.
第1図および第2図はそれぞれ従来の方法を示す斜視図
、第6図は本発明の一実施例な示す斜視図である。
1・・・単結晶基板、2・・・絶縁体層からなる絶縁膜
、6・・・スルーホール、4・・・多結晶層又はアモル
ファス層、401・・・単結晶化層、5・・・レーザビ
ーム、501・・・集光レンズ、6・・・棒状移動ヒー
タ、7・・・下部加熱板、8・−棒状レンズ、9・・・
レーザビーム。
特許出願人 日本電信電話公社
代理人 弁理士玉蟲久五部 (外6名)第1図
第2図1 and 2 are perspective views showing a conventional method, respectively, and FIG. 6 is a perspective view showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Single crystal substrate, 2... Insulating film consisting of an insulator layer, 6... Through hole, 4... Polycrystalline layer or amorphous layer, 401... Single crystal layer, 5...・Laser beam, 501... Condensing lens, 6... Rod-shaped moving heater, 7... Lower heating plate, 8... Rod-shaped lens, 9...
laser beam. Patent applicant Nippon Telegraph and Telephone Public Corporation agent Patent attorney Gobe Tamamushi (6 others) Figure 1 Figure 2
Claims (1)
設け、骸絶縁膜上に多結晶層又はアモルファス層を付着
させ、該多結晶層又はアモルファス層を前記スルーホー
ル部上で液相エピタキシャル成長させてこれを種とし、
皺絶縁膜上に付着させた多結晶層又はアモルファス層全
体を単結晶層にアニールする単結晶膜形成において、前
記アニールする基板上方に諌基板幅と同等又は同等以上
の長さを有する棒状レンズを、鋏棒状レンズの長手方向
を該基板幅と同一方向に配置し、鋏棒状レンズによシレ
ーザ光を前記アニールする基板上に集光し、該棒状レン
ズによシ集光したレーザ光を、該アニールする基板上を
該アニールする基板幅とファス層全体を単結晶層に7ニ
ールすることを特徴とする絶縁層上への単結晶膜形成方
法。An insulating film partially having through holes is provided on a single crystal substrate, a polycrystalline layer or an amorphous layer is deposited on the skeleton insulating film, and the polycrystalline layer or amorphous layer is grown by liquid phase epitaxial growth on the through hole portion. Take this as a seed,
In forming a single crystal film in which the entire polycrystalline layer or amorphous layer deposited on the wrinkled insulating film is annealed into a single crystal layer, a rod-shaped lens having a length equal to or greater than the width of the insulating substrate is provided above the substrate to be annealed. , the longitudinal direction of the scissor-bar lens is arranged in the same direction as the width of the substrate, the scissor-bar lens focuses the laser beam onto the substrate to be annealed, and the laser beam focused by the scissor-bar lens is applied to the substrate. 1. A method for forming a single crystal film on an insulating layer, characterized in that the width of the substrate to be annealed and the entire fas layer on the substrate to be annealed are annealed 7 times to form a single crystal layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57009738A JPS58127318A (en) | 1982-01-25 | 1982-01-25 | Forming method for single-crystal film on insulating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57009738A JPS58127318A (en) | 1982-01-25 | 1982-01-25 | Forming method for single-crystal film on insulating layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58127318A true JPS58127318A (en) | 1983-07-29 |
Family
ID=11728646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57009738A Pending JPS58127318A (en) | 1982-01-25 | 1982-01-25 | Forming method for single-crystal film on insulating layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58127318A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62257718A (en) * | 1986-04-30 | 1987-11-10 | Sony Corp | Solid phase epitaxy of semiconductor thin film |
JPS6336515A (en) * | 1986-07-30 | 1988-02-17 | Sony Corp | Manufacture of thin single-crystal semiconductor film |
JPH0677132A (en) * | 1992-12-04 | 1994-03-18 | Semiconductor Energy Lab Co Ltd | Production of semiconductor device |
JPH07176499A (en) * | 1994-06-21 | 1995-07-14 | Semiconductor Energy Lab Co Ltd | Light emitting apparatus |
JPH09199421A (en) * | 1996-09-26 | 1997-07-31 | Semiconductor Energy Lab Co Ltd | Method for casting light |
US5968383A (en) * | 1992-06-26 | 1999-10-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus having beam expander |
US6057183A (en) * | 1994-04-22 | 2000-05-02 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of drive circuit of active matrix device |
US6096581A (en) * | 1994-03-09 | 2000-08-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for operating an active matrix display device with limited variation in threshold voltages |
US6159777A (en) * | 1993-02-04 | 2000-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a TFT semiconductor device |
EP1063049A2 (en) * | 1999-06-25 | 2000-12-27 | Mitsubishi Denki Kabushiki Kaisha | Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same |
JP2001085353A (en) * | 2000-08-10 | 2001-03-30 | Semiconductor Energy Lab Co Ltd | Laser process method |
US6496171B2 (en) | 1998-01-23 | 2002-12-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor display device |
US6538632B1 (en) | 1998-04-28 | 2003-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor circuit and a semiconductor display device using the same |
US6549184B1 (en) | 1998-03-27 | 2003-04-15 | Semiconductor Energy Laboratory Co., Ltd. | Driving circuit of a semiconductor display device and the semiconductor display device |
US6723590B1 (en) | 1994-03-09 | 2004-04-20 | Semiconductor Energy Laboratory Co., Ltd. | Method for laser-processing semiconductor device |
US6831299B2 (en) | 2000-11-09 | 2004-12-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US6872607B2 (en) | 2000-03-21 | 2005-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
US6919533B2 (en) | 1995-05-31 | 2005-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a display device including irradiating overlapping regions |
US7179726B2 (en) | 1992-11-06 | 2007-02-20 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus and laser processing process |
US7550765B2 (en) | 1994-08-19 | 2009-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and fabrication method thereof |
JP2009283480A (en) * | 2008-05-19 | 2009-12-03 | Sumitomo Heavy Ind Ltd | Method of manufacturing strained silicon film |
US7781271B2 (en) | 1992-03-26 | 2010-08-24 | Semiconductor Energy Laboratory Co., Ltd. | Process for laser processing and apparatus for use in the same |
-
1982
- 1982-01-25 JP JP57009738A patent/JPS58127318A/en active Pending
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62257718A (en) * | 1986-04-30 | 1987-11-10 | Sony Corp | Solid phase epitaxy of semiconductor thin film |
JPS6336515A (en) * | 1986-07-30 | 1988-02-17 | Sony Corp | Manufacture of thin single-crystal semiconductor film |
US7781271B2 (en) | 1992-03-26 | 2010-08-24 | Semiconductor Energy Laboratory Co., Ltd. | Process for laser processing and apparatus for use in the same |
US6991975B1 (en) | 1992-06-26 | 2006-01-31 | Semiconductor Energy Laboratory Co., Ltd. | Laser process |
US6440785B1 (en) | 1992-06-26 | 2002-08-27 | Semiconductor Energy Laboratory Co., Ltd | Method of manufacturing a semiconductor device utilizing a laser annealing process |
US7985635B2 (en) | 1992-06-26 | 2011-07-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser process |
US5968383A (en) * | 1992-06-26 | 1999-10-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus having beam expander |
US6002101A (en) * | 1992-06-26 | 1999-12-14 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device by using a homogenized rectangular laser beam |
US7799665B2 (en) | 1992-11-06 | 2010-09-21 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus and laser processing process |
US7179726B2 (en) | 1992-11-06 | 2007-02-20 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus and laser processing process |
JPH0677132A (en) * | 1992-12-04 | 1994-03-18 | Semiconductor Energy Lab Co Ltd | Production of semiconductor device |
US6159777A (en) * | 1993-02-04 | 2000-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a TFT semiconductor device |
US6096581A (en) * | 1994-03-09 | 2000-08-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for operating an active matrix display device with limited variation in threshold voltages |
US6509212B1 (en) | 1994-03-09 | 2003-01-21 | Semiconductor Energy Laboratory Co., Ltd. | Method for laser-processing semiconductor device |
US6723590B1 (en) | 1994-03-09 | 2004-04-20 | Semiconductor Energy Laboratory Co., Ltd. | Method for laser-processing semiconductor device |
US6057183A (en) * | 1994-04-22 | 2000-05-02 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of drive circuit of active matrix device |
US7459355B2 (en) | 1994-04-22 | 2008-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Drive circuit of active matrix device and manufacturing method thereof |
US7027022B2 (en) | 1994-04-22 | 2006-04-11 | Semiconductor Energy Laboratory Co., Ltd. | Drive circuit of active matrix type display device having buffer with parallel connected elemental circuits and manufacturing method thereof |
US7015057B2 (en) | 1994-04-22 | 2006-03-21 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a drive circuit of active matrix device |
JPH07176499A (en) * | 1994-06-21 | 1995-07-14 | Semiconductor Energy Lab Co Ltd | Light emitting apparatus |
US7550765B2 (en) | 1994-08-19 | 2009-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and fabrication method thereof |
US8450743B2 (en) | 1994-08-19 | 2013-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having parallel thin film transistors |
US7557377B2 (en) | 1994-08-19 | 2009-07-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having thin film transistor |
US7223938B2 (en) | 1995-05-31 | 2007-05-29 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a display device including irradiating overlapping regions |
US8835801B2 (en) | 1995-05-31 | 2014-09-16 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing method |
US6919533B2 (en) | 1995-05-31 | 2005-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a display device including irradiating overlapping regions |
JPH09199421A (en) * | 1996-09-26 | 1997-07-31 | Semiconductor Energy Lab Co Ltd | Method for casting light |
US6496171B2 (en) | 1998-01-23 | 2002-12-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor display device |
US6549184B1 (en) | 1998-03-27 | 2003-04-15 | Semiconductor Energy Laboratory Co., Ltd. | Driving circuit of a semiconductor display device and the semiconductor display device |
US7304625B2 (en) | 1998-03-27 | 2007-12-04 | Semiconductor Energy Laboratory Co., Ltd. | Driving circuit of a semiconductor display device and the semiconductor display device |
US7315296B2 (en) | 1998-03-27 | 2008-01-01 | Semiconductor Energy Laboratory Co., Ltd. | Driving circuit of a semiconductor display device and the semiconductor display device |
US8054270B2 (en) | 1998-03-27 | 2011-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Driving circuit of a semiconductor display device and the semiconductor display device |
US6538632B1 (en) | 1998-04-28 | 2003-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor circuit and a semiconductor display device using the same |
US7042432B2 (en) | 1998-04-28 | 2006-05-09 | Semiconductor Energy Laboratory Co., Ltd. | Thin-film transistor circuit and a semiconductor display using the same |
US7746311B2 (en) | 1998-04-28 | 2010-06-29 | Semiconductor Energy Laboratory Co., Ltd. | Thin-film transistor circuit and a semiconductor display using the same |
EP1063049A3 (en) * | 1999-06-25 | 2003-03-26 | Mitsubishi Denki Kabushiki Kaisha | Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same |
EP1063049A2 (en) * | 1999-06-25 | 2000-12-27 | Mitsubishi Denki Kabushiki Kaisha | Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same |
US7384832B2 (en) | 2000-03-21 | 2008-06-10 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
US6872607B2 (en) | 2000-03-21 | 2005-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
US7229864B2 (en) | 2000-03-21 | 2007-06-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
JP2001085353A (en) * | 2000-08-10 | 2001-03-30 | Semiconductor Energy Lab Co Ltd | Laser process method |
US7652289B2 (en) | 2000-11-09 | 2010-01-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8217395B2 (en) | 2000-11-09 | 2012-07-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US6831299B2 (en) | 2000-11-09 | 2004-12-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9099362B2 (en) | 2000-11-09 | 2015-08-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2009283480A (en) * | 2008-05-19 | 2009-12-03 | Sumitomo Heavy Ind Ltd | Method of manufacturing strained silicon film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58127318A (en) | Forming method for single-crystal film on insulating layer | |
US4330363A (en) | Thermal gradient control for enhanced laser induced crystallization of predefined semiconductor areas | |
US4323417A (en) | Method of producing monocrystal on insulator | |
JP2765968B2 (en) | Method for manufacturing crystalline silicon film | |
Celler et al. | Seeded recrystallization of thick polysilicon films on oxidized 3‐in. wafers | |
JPH027415A (en) | Formation of soi thin film | |
JPS6319809A (en) | Laserr beam annealing equipment | |
DE10005484B4 (en) | Process for forming a thin crystallized layer | |
JP2740281B2 (en) | Method for producing crystalline silicon | |
JP2692138B2 (en) | Manufacturing method of single crystal thin film | |
JPS59128292A (en) | Method for crystallizing thin film | |
JPS58127319A (en) | Forming method for single-crystal film on insulating layer | |
JPS5825220A (en) | Manufacture of semiconductor substrate | |
JPS61179523A (en) | Formation of single crystal thin film | |
JPS5886716A (en) | Forming of single crystal semiconductor film | |
JPH03280418A (en) | Manufacture of semiconductor film | |
JPH03284831A (en) | Forming method for semiconductor thin-film | |
JPS61212012A (en) | Method for forming soi structure | |
JPS62297289A (en) | Formation of single crystal thin film | |
JPS60191090A (en) | Manufacture of semiconductor device | |
JPS5835916A (en) | Manufacture of semiconductor device | |
JPH027414A (en) | Formation of soi thin film | |
JPH077829B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0287519A (en) | Manufacture of single crystal semiconductor thin film | |
JPS6234716B2 (en) |