JP2740281B2 - Method for producing crystalline silicon - Google Patents
Method for producing crystalline siliconInfo
- Publication number
- JP2740281B2 JP2740281B2 JP19582389A JP19582389A JP2740281B2 JP 2740281 B2 JP2740281 B2 JP 2740281B2 JP 19582389 A JP19582389 A JP 19582389A JP 19582389 A JP19582389 A JP 19582389A JP 2740281 B2 JP2740281 B2 JP 2740281B2
- Authority
- JP
- Japan
- Prior art keywords
- amorphous silicon
- crystal
- silicon film
- crystalline silicon
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は多結晶、或るいは単結晶で代表される結晶性
シリコンの製造方法に関する。The present invention relates to a method for producing crystalline silicon represented by polycrystal or single crystal.
(ロ)従来の技術 結晶膜の低温成膜要求や大面積化要求を実現する方法
として、基板表面に低温成膜技術であるプラズマCVD
法、熱CVD法、真空蒸着法、或るいはスパッタ法などに
より、非晶質膜や多結晶膜などの非単結晶膜を得、その
非晶質膜を多結晶膜や単結晶膜に変換したり、或るいは
多結晶膜を単結晶膜に変換する方法が挙げられる。その
一例として、例えば特開昭63−170976号公報に開示され
た先行技術は、予め基板表面にプラズマCVD法により非
晶質膜を低温成膜し、その後にレーザビーム照射による
アニーリングを施し、多結晶膜を得る方法がある。(B) Conventional technology Plasma CVD, a low-temperature film forming technology on the substrate surface, is a method of realizing the low-temperature film forming request and the large area request of the crystal film.
Non-single-crystal films such as amorphous films and polycrystalline films are obtained by a method, thermal CVD method, vacuum deposition method, or sputtering method, and the amorphous films are converted to polycrystalline films or single-crystal films. Or a method of converting a polycrystalline film into a single crystalline film. For example, in the prior art disclosed in Japanese Patent Application Laid-Open No. 63-17076, for example, an amorphous film is formed on a substrate surface in advance by a plasma CVD method at a low temperature, followed by annealing by laser beam irradiation. There is a method of obtaining a crystal film.
(ハ)発明が解決しようとする課題 然し乍らアニーリングに用いるレーザビームの強度分
布は概して中心部にピークを持つガウス分布を呈するた
めに、レーザビームの中心部と周縁部分とでは均一なア
ニーリングを施すことができず、また多結晶膜の結晶粒
径はアニール時間と温度により決定されるために、再現
性の点で問題があった。(C) Problems to be Solved by the Invention However, since the intensity distribution of the laser beam used for annealing generally exhibits a Gaussian distribution having a peak at the center, uniform annealing should be performed between the center and the periphery of the laser beam. However, since the crystal grain size of the polycrystalline film is determined by the annealing time and temperature, there is a problem in reproducibility.
(ニ)課題を解決するための手段 本発明はこのような課題に鑑みて為されたものであっ
て、基板表面にアモルファスシリコン膜を被着させた
後、エネルギービームをこのアモルファスシリコン膜の
微小領域に集光してその微小領域を溶融・再結晶化する
と同時に、不活性イオンビームを照射して配向性が制御
された結晶核を得、その核を基に結晶性シリコンを成長
させている。(D) Means for Solving the Problems The present invention has been made in view of such problems, and after depositing an amorphous silicon film on a substrate surface, an energy beam is applied to the amorphous silicon film to reduce the size of the amorphous silicon film. At the same time, the micro-area is melted and recrystallized by focusing on the area, and at the same time, an inert ion beam is irradiated to obtain a crystal nucleus whose orientation is controlled, and crystalline silicon is grown based on the nucleus. .
(ホ)作用 本発明によれば、不活性イオンビームによって配向性
が制御された結晶核を結晶成長の核としているので、成
長したシリコンの品質は高く、欠陥の少ない結晶性シリ
コンが得られる。(E) Function According to the present invention, since the crystal nucleus whose orientation is controlled by the inert ion beam is used as the nucleus for crystal growth, the quality of grown silicon is high and crystalline silicon with few defects can be obtained.
(ヘ)実施例 本発明の第1の工程は第1図に示すように、ガラス、
セラミックなどの絶縁性材料からなる基板1表面にプラ
ズマCVD法などによって下層アモルファスシリコン膜2
を0.1〜1μm程度の厚さに成長させるところにある。(F) Example In the first step of the present invention, as shown in FIG.
A lower amorphous silicon film 2 is formed on the surface of a substrate 1 made of an insulating material such as ceramic by a plasma CVD method or the like.
Is grown to a thickness of about 0.1 to 1 μm.
第2の工程は、この下層アモルファスシリコン膜2表
面にエキシマレーザなどのハイパワーレーザ3を集光さ
せて該膜2を溶融し、再結晶化して結晶核4を形成する
と同時に、この下層アモルファスシリコン膜2の側方か
ら、Ar、He、Hなどの不活性イオンビーム5を照射して
この結晶核4の配向性を制御するところにある。ここで
用いられるハイパワーレーザ3はレンズ系によってレー
ザビーム径が1μm以下に集光されて下層アモルファス
シリコン膜2表面におけるエネルギー密度は、0.1〜10J
/cm2程度である。また、不活性イオンビーム5は、加速
エネルギー数〜数千eV、イオン電流数10μA〜数Aで、
所望のSi結晶核の軸方向に照射するのが適している。斯
る条件下において0.01〜0.1分間程度紫外光レーザ2、
並びに不活性イオンビーム5を照射することによって、
数μm程度の直径のシリコンの結晶核4が得られる。
尚、この時の基板1の温度は、その基板1がガラスであ
っても変形などすることのない、600℃以下であること
が望ましい。In the second step, a high power laser 3 such as an excimer laser is focused on the surface of the lower amorphous silicon film 2 to melt and recrystallize the film 2 to form crystal nuclei 4 and, at the same time, form the lower amorphous silicon film 2. The orientation of the crystal nuclei 4 is controlled by irradiating an inert ion beam 5 of Ar, He, H or the like from the side of the film 2. The high power laser 3 used here is focused by a lens system to a laser beam diameter of 1 μm or less, and the energy density on the surface of the lower amorphous silicon film 2 is 0.1 to 10 J.
/ cm 2 . The inert ion beam 5 has an acceleration energy of several to several thousand eV, an ion current of 10 μA to several A,
Irradiation in the axial direction of a desired Si crystal nucleus is suitable. Under such conditions, ultraviolet light laser 2 for about 0.01 to 0.1 minutes,
And by irradiating the inert ion beam 5,
A silicon crystal nucleus 4 having a diameter of about several μm is obtained.
The temperature of the substrate 1 at this time is desirably 600 ° C. or less, which does not deform even if the substrate 1 is glass.
第3の工程は、部分的に結晶核4を有する下層アモル
ファスシリコン膜2表面に該結晶核4も含めてプラズマ
CVD法、熱CVD法、真空蒸着法、或るいはスパッタ法など
により、厚さ0.1〜10μm程度の表層アモルファスシリ
コン膜6を成長させるところにある(第3図)。In the third step, a plasma including the crystal nuclei 4 is formed on the surface of the lower amorphous silicon film 2 having the crystal nuclei 4 partially.
The surface amorphous silicon film 6 having a thickness of about 0.1 to 10 μm is to be grown by a CVD method, a thermal CVD method, a vacuum evaporation method, a sputtering method, or the like (FIG. 3).
本発明の最終工程は第4図に示す如く、基板1表面の
表層アモルファスシリコン膜6にArレーザ、エキシマレ
ーザなどのハイパワーのレーザビーム7を照射して該ア
モルファスシリコン膜6にレーザアニールを施すところ
にある。具体的には例えばArレーザを用いた場合、5〜
10W/cm2の出力のものが用いられ、数cm/秒の速度で走査
される。このレーザアニール処理を施すことによって、
表層アモルファスシリコン膜6は結晶核4を再結晶化の
核として単結晶化が進み、直径0.01〜1mm程度の単結晶
領域8が得られる。In the final step of the present invention, as shown in FIG. 4, the surface amorphous silicon film 6 on the surface of the substrate 1 is irradiated with a high-power laser beam 7 such as an Ar laser or an excimer laser to perform laser annealing on the amorphous silicon film 6. There. Specifically, for example, when using an Ar laser,
An output of 10 W / cm 2 is used, and scanning is performed at a speed of several cm / sec. By performing this laser annealing process,
Single crystallization of the surface amorphous silicon film 6 proceeds with the crystal nucleus 4 as a recrystallization nucleus, and a single crystal region 8 having a diameter of about 0.01 to 1 mm is obtained.
斯して得られた単結晶領域8中に作成したTFTの電子
電界効果移動度は、150〜300cm2/V・sを示し、プラズ
マCVD法を用いて得た従来品のそれが40〜50cm2/V・sで
あったことに鑑みると、本発明による特性改善は顕著で
あろう。The electron field effect mobility of the TFT formed in the single crystal region 8 thus obtained is 150 to 300 cm 2 / V · s, and that of the conventional product obtained by using the plasma CVD method is 40 to 50 cm. In view of 2 / V · s, the improvement in characteristics according to the present invention will be remarkable.
尚、上記した実施例においては、部分的に結晶核4を
有するアモルファスシリコン膜2表面に表層アモルファ
スシリコン膜6を成長させ、その膜6を結晶核4を再結
晶化の核として結晶化していたが、結晶核4の成長工程
を長時間、具体的には0.1〜1時間程度継続することに
よって、その結晶核4そのものを核として下層アモルフ
ァスシリコン膜2の単結晶化を進め、直径約10〜100μ
mの単結晶領域8とすることも可能である。In the above embodiment, the surface amorphous silicon film 6 was grown on the surface of the amorphous silicon film 2 partially having the crystal nuclei 4, and the film 6 was crystallized using the crystal nuclei 4 as recrystallization nuclei. However, by continuing the growth process of the crystal nucleus 4 for a long time, specifically, about 0.1 to 1 hour, the single crystallization of the lower amorphous silicon film 2 is promoted by using the crystal nucleus 4 itself as a nucleus, and the diameter is about 10 to 1 hour. 100μ
It is also possible to use the single crystal region 8 of m.
(ト)発明の効果 本発明は以上の説明から明らかなように、基板表面に
アモルファスシリコン膜を被着させた後、エネルギービ
ームをこのアモルファスシリコン膜の微小領域に集光し
てその微小領域を溶融・再結晶化すると同時に、不活性
イオンビームを照射して配向性が制御された結晶核を
得、その核を基に結晶性シリコンを成長させているの
で、欠陥の少ない結晶性シリコンが得られる。その結
果、本発明によって得た結晶性シリコン中の電子移動度
が高いことから、ダイオードやトランジスタなどの素子
特性の向上を図ることができる。(G) Effect of the present invention As is apparent from the above description, the present invention, after depositing an amorphous silicon film on a substrate surface, focuses an energy beam on a minute region of the amorphous silicon film and focuses the energy on the minute region. At the same time as melting and recrystallizing, a crystal nucleus with controlled orientation is obtained by irradiating with an inert ion beam, and crystalline silicon is grown based on the nucleus. Can be As a result, since the electron mobility in the crystalline silicon obtained by the present invention is high, the characteristics of elements such as a diode and a transistor can be improved.
第1図〜第4図は本発明方法の実施例を工程順に示した
断面図である。 1……基板、 2……下層アモルファスシリコン膜、 3、7……ハイパワーレーザ、4……結晶核、 5……不活性イオンビーム、 6……表層アモルファスシリコン膜、 8……単結晶領域。1 to 4 are sectional views showing an embodiment of the method of the present invention in the order of steps. DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Lower amorphous silicon film, 3 ... 7 High power laser, 4 ... Crystal nucleus, 5 ... Inactive ion beam, 6 ... Surface amorphous silicon film, 8 ... Single crystal region .
Claims (1)
際し、基板表面にアモルファスシリコン膜を被着させた
後、エネルギービームをこのアモルファスシリコン膜の
微小領域に集光してその微小領域を溶融・再結晶化する
と同時に、不活性イオンビームを照射して配向性が制御
された結晶核を得、その核を基に結晶性シリコンを成長
させることを特徴とした結晶性シリコンの製造方法。When growing crystalline silicon on a substrate surface, after depositing an amorphous silicon film on the substrate surface, an energy beam is focused on a minute region of the amorphous silicon film to melt the minute region. A method for producing crystalline silicon, characterized by irradiating an inert ion beam at the same time as recrystallization to obtain a crystal nucleus with controlled orientation, and growing crystalline silicon based on the nucleus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19582389A JP2740281B2 (en) | 1989-07-27 | 1989-07-27 | Method for producing crystalline silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19582389A JP2740281B2 (en) | 1989-07-27 | 1989-07-27 | Method for producing crystalline silicon |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0360018A JPH0360018A (en) | 1991-03-15 |
JP2740281B2 true JP2740281B2 (en) | 1998-04-15 |
Family
ID=16347595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19582389A Expired - Lifetime JP2740281B2 (en) | 1989-07-27 | 1989-07-27 | Method for producing crystalline silicon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2740281B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102401758A (en) * | 2010-09-17 | 2012-04-04 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing TEM sample |
-
1989
- 1989-07-27 JP JP19582389A patent/JP2740281B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0360018A (en) | 1991-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5861622A (en) | Manufacture of single crystal thin film | |
JPS58127318A (en) | Forming method for single-crystal film on insulating layer | |
JP2765968B2 (en) | Method for manufacturing crystalline silicon film | |
JPH1032166A (en) | Formation of crystal thin film using laser ablation method | |
JP2740281B2 (en) | Method for producing crystalline silicon | |
JPS61260621A (en) | Retreatment for amorphous silicon film or polycrystalline silicon film | |
JPS6147627A (en) | Manufacture of semiconductor device | |
JP2714109B2 (en) | Crystal film manufacturing method | |
JP2517330B2 (en) | Method for forming SOI structure | |
JPS62296509A (en) | Manufacture of semiconductor device | |
JPH0282519A (en) | Solid phase epitaxy method | |
JP2929660B2 (en) | Method for manufacturing semiconductor device | |
JPH02188499A (en) | Production of polycrystal silicon film having large crystal grain diameter | |
JPH0113209B2 (en) | ||
JPS58212123A (en) | Manufacture of single crystal thin film | |
JPS6163018A (en) | Manufacture of semiconductor thin film crystal layer | |
JPH0136970B2 (en) | ||
JPS59151421A (en) | Laser annealing device | |
JP2993107B2 (en) | Semiconductor thin film manufacturing method | |
JPS60191090A (en) | Manufacture of semiconductor device | |
JPS59147425A (en) | Formation of semiconductor crystal film | |
JPH0371767B2 (en) | ||
JPS63174308A (en) | Manufacture of semiconductor thin film crystal layer | |
JPH03280418A (en) | Manufacture of semiconductor film | |
JPH03284831A (en) | Forming method for semiconductor thin-film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100123 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100123 Year of fee payment: 12 |