JPS62257718A - Solid phase epitaxy of semiconductor thin film - Google Patents

Solid phase epitaxy of semiconductor thin film

Info

Publication number
JPS62257718A
JPS62257718A JP10162686A JP10162686A JPS62257718A JP S62257718 A JPS62257718 A JP S62257718A JP 10162686 A JP10162686 A JP 10162686A JP 10162686 A JP10162686 A JP 10162686A JP S62257718 A JPS62257718 A JP S62257718A
Authority
JP
Japan
Prior art keywords
region
solid phase
semiconductor layer
substrate
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10162686A
Other languages
Japanese (ja)
Inventor
Takashi Noguchi
隆 野口
Toshiro Tsumori
利郎 津守
Minoru Takeda
実 武田
Hisao Hayashi
久雄 林
Yasushi Morita
靖 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10162686A priority Critical patent/JPS62257718A/en
Publication of JPS62257718A publication Critical patent/JPS62257718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a solid phase epitaxial region to be formed at any position as required, by applying energy beams to a region having a smaller area than that of the solid phase epitaxial region while moving the energy beam applied region. CONSTITUTION:Insulation films 2, 2... are formed selectively on the surface of a wafer-type semiconductor substrate 1. A silicon semiconductor layer 4 is deposited over the whole surface of the substrate 1. A region 4a of the semiconductor layer 4 located on an exposed region 3 of the substrate 3, including its peripheral region, is heated by laser beams. Thereby, the solid phase epitaxy is started from the exposed region 3 of the substrate 1 and extended to the region 4a. The semiconductor layer 4 is then irradiated, in its broad region 4b including the irradiated region 4a and a peripheral region extending around it, with laser beams and heated thereby, During this process, the epitaxial region can be further extended from the region 4a to the region 4b. The position and configuration of the extended epitaxial region can be selected as required by controlling the region irradiated with laser beams.

Description

【発明の詳細な説明】 以下の順序に従って本発明を説明する。[Detailed description of the invention] The present invention will be described in the following order.

A、産業上の利用分野 B1発明の概要 C1従来技術[第4図] B1発明が解決しようとする問題点[第4図]E9問題
点を解決するための手段 F1作用 G、実施例[第1図乃至第3図] H0発明の効果 (A、産業上の利用分野) 本発明は半導体薄膜の固相エピタキシャル成長法に関す
るものである。
A. Industrial field of application B1 Overview of the invention C1 Prior art [Figure 4] B1 Problems to be solved by the invention [Figure 4] E9 Means for solving the problems F1 Effects G. Examples [Figure 4] 1 to 3] H0 Effects of the Invention (A, Industrial Application Field) The present invention relates to a method for solid-phase epitaxial growth of semiconductor thin films.

(B、発明の概要) 本発明は、半導体薄膜の固相エピタキシャル成長法にお
いて、 基体上に固相エピタキシャル領域を選択的に形成し、ま
た、固相エピタキシャル領域のラテラル方向への延びを
良くするため。
(B. Summary of the Invention) The present invention provides a method for selectively forming a solid-phase epitaxial region on a substrate in a solid-phase epitaxial growth method for a semiconductor thin film, and for improving the lateral extension of the solid-phase epitaxial region. .

基体上の半導体層の固相エピタキシーを形成すべき領域
より大きな断面積を有するエネルギーを照射領域規制手
段により上記固相エピタキシーを形成すべき領域よりも
小さな断面積にし、そして照射領域を移動させるように
したことを特徴とするものであり、 本発明半導体薄膜の固相エピタキシセル成長法によれば
、上記エネルギーの照射領域を半導体層の種と接する部
分から任意の領域へ移動させることにより固相エピタキ
シャル領域を任意の位置に広く形成することができる。
The energy having a larger cross-sectional area than the area where solid-phase epitaxy is to be formed in the semiconductor layer on the substrate is made to have a smaller cross-sectional area than the area where solid-phase epitaxy is to be formed by the irradiation area regulating means, and the irradiated area is moved. According to the solid-phase epitaxy cell growth method of a semiconductor thin film of the present invention, the solid-phase epitaxy cell growth method of the present invention is achieved by moving the irradiation region of the above energy from the part of the semiconductor layer in contact with the seed to an arbitrary region. A wide epitaxial region can be formed at an arbitrary position.

(C,従来技術)[第4図] 第4°図に示すようにシリコン半導体基板a(表面が例
えば(100)面)の表面上に部分的に絶縁膜すを形成
し、該絶縁膜す上も含め半導体基板a上にエビタキャル
成長層Cを形成しようとする技術がある。このエビタキ
ャル成長層Cのエピタキシーは半導体基板aが露出した
部分上から徐々に絶縁膜す上に波及する。
(C, Prior Art) [Fig. 4] As shown in Fig. 4, an insulating film is partially formed on the surface of a silicon semiconductor substrate a (the surface is, for example, a (100) plane), and the insulating film is There is a technique that attempts to form an Evitacal growth layer C on the semiconductor substrate a including the top. The epitaxy of this epitaxy-grown layer C gradually spreads onto the insulating film from the exposed portion of the semiconductor substrate a.

(D、発明が解決しようとする問題点)[第4図] ところで、従来においては半導体層Cの形成時に半導体
基板aの表面部が少なくとも1つの素子形成領球内で全
体的に加熱されるので絶縁膜す上においてエピタキシー
発生の核が多数ランダムに発生し、多結晶領域eが形成
される。その結果、半導体基板aの露出部を種として発
生したエピタキシャル領域dが半導体基板a露出部から
絶縁膜す上に延びる部分の長さは4〜5ミクロン程度に
しかならず絶縁膜す上においてエピタキシーを得ること
が必要とされる領域の全部をエピタキシャル領域にする
ことは難しかった。
(D. Problem to be Solved by the Invention) [Fig. 4] By the way, conventionally, when forming the semiconductor layer C, the entire surface portion of the semiconductor substrate a is heated within at least one element formation sphere. Therefore, a large number of epitaxy nuclei are randomly generated on the insulating film, and a polycrystalline region e is formed. As a result, the length of the portion where the epitaxial region d, which is generated using the exposed portion of the semiconductor substrate a as a seed, extends from the exposed portion of the semiconductor substrate a onto the insulating film is only about 4 to 5 microns, and epitaxy is obtained on the insulating film. It has been difficult to make the entire region where this is required an epitaxial region.

本発明はこのような問題を解決すべく為されたもので、
同相エピタキシャル領域を選択的に均一性、再現性良く
形成することができるようにし。
The present invention was made to solve such problems,
It is possible to selectively form an in-phase epitaxial region with good uniformity and reproducibility.

また、固相エピタキシャル領域の絶縁膜上に延びる長さ
を長くすることを目的とする。
Another purpose is to increase the length of the solid phase epitaxial region extending over the insulating film.

(E、問題点を解決するための手段) 本発明半導体FJ膜の固相エピタキシャル成長法は、基
体上の半導体層の固相エピタキシーを形成すべき領域よ
り大きな断面積を有するエネルギーを照射領域規制手段
により固相エピタキシーを形成すべき領域よりも小さな
断面積にしてそのエネルギー照射領域を移動させるよう
にしたことを特徴とする。
(E. Means for Solving Problems) The solid-phase epitaxial growth method of the semiconductor FJ film of the present invention uses energy having a larger cross-sectional area than the area where solid-phase epitaxy of the semiconductor layer on the substrate is to be formed. The present invention is characterized in that the cross-sectional area is made smaller than the area where solid phase epitaxy is to be formed, and the energy irradiation area is moved.

(F、作用) 本発明半導体薄膜の固相エピタキシャル成長法によれば
、エネルギーの照射領域を照射領域規制手段によって固
相エピタキシャル領域より小面積にしてその照射領域を
移動させるので、照射領域を半導体層の種と接する部分
から非エピタキシャル領域の任意の領域へ移動すること
によりその非エビタキャル領域をエピタキシャル望城化
することができる。従って固相エピタキシャル領域を半
導体層の任意の領域に形成することができ、また固相エ
ピタキシャル領域のラテラル方向への延びをより太きぐ
することができる。
(F. Effect) According to the solid-phase epitaxial growth method of a semiconductor thin film of the present invention, the energy irradiation area is made smaller than the solid-phase epitaxial region by the irradiation area regulating means and the irradiation area is moved, so that the irradiation area is moved to the semiconductor layer. By moving the non-epitaxial region from the part in contact with the seed to any region of the non-epitaxial region, the non-epitaxial region can be converted into an epitaxial cell. Therefore, the solid phase epitaxial region can be formed in any desired region of the semiconductor layer, and the solid phase epitaxial region can extend more widely in the lateral direction.

(G、実施例)[第1図乃至第3図1 以下、本発明を図示実施例に従って説明する。(G, Example) [Figures 1 to 3 1 Hereinafter, the present invention will be explained according to illustrated embodiments.

(a、製造方法)[第1図] 第1図(A)乃至(C)は本発明の一つの実施例を工程
順に示すものである。
(a. Manufacturing method) [Fig. 1] Fig. 1 (A) to (C) show one embodiment of the present invention in the order of steps.

(A)ウェハ状半導体基板(例えば表面が(100)面
)■の表面に選択的に絶縁膜2.2、・・・を形成する
。3は半導体基板lの露出部である。その後、半導体基
板lの表面に全面的にシリコン半導体層CHI厚例えば
1000オングストローム)4をデポジットする。この
半導体層4はアモルファス状態になる。第1図(A)は
シリコン半導体層4の形成後の状態を示す。
(A) Insulating films 2.2, . . . are selectively formed on the surface of a wafer-shaped semiconductor substrate (for example, the surface is (100) plane). 3 is an exposed portion of the semiconductor substrate l. Thereafter, a silicon semiconductor layer CHI (thickness, for example, 1000 angstroms) 4 is deposited over the entire surface of the semiconductor substrate l. This semiconductor layer 4 becomes an amorphous state. FIG. 1(A) shows the state after the silicon semiconductor layer 4 is formed.

(B)次に、第2図に示す装置(後で説明する)を用い
て第1図(B)に示すようにレーザビームにより半導体
層4を部分的に加熱して固相成長をさせる。この工程に
おいてレーザビームにより部分的に加熱するのは半導体
層4のうち半導体基板lの露出部(固相成長の種となる
)上に位置する部分とその周辺の領域4aであり、その
加熱により半導体基板1の露出部3を種として半導体層
4の加熱された部分4aに固相エピタキシーが拡がる。
(B) Next, using the apparatus shown in FIG. 2 (described later), the semiconductor layer 4 is partially heated with a laser beam to cause solid phase growth as shown in FIG. 1(B). In this step, the laser beam partially heats the portion of the semiconductor layer 4 located on the exposed portion of the semiconductor substrate l (which serves as the seed for solid phase growth) and the region 4a around it. Solid phase epitaxy spreads to the heated portion 4a of the semiconductor layer 4 using the exposed portion 3 of the semiconductor substrate 1 as a seed.

この工程で照射する領域の@d′は半導体基板1の露出
部の幅dよりもやや広め(種となる部分から4〜5ミク
ロン以上離れない限度で広め)にしておくと良い。
It is preferable that @d' of the area to be irradiated in this step be made slightly wider than the width d of the exposed portion of the semiconductor substrate 1 (as wide as not more than 4 to 5 microns away from the seed portion).

(C)次に、第1図(C)に示すように上記照射領域4
aを含みその照射領域4aを中心として周辺に拡がる広
い領域4bにわたって半導体層4をレーザビームで照射
して加熱する。
(C) Next, as shown in FIG. 1(C), the irradiation area 4 is
The semiconductor layer 4 is heated by irradiating it with a laser beam over a wide region 4b that includes the irradiation region 4a and extends around the irradiation region 4a.

この工程によって第1図(B)の工程で形成されたとこ
ろのエピタキシャル領域4aを更に4bまで拡げること
ができる。そして、エピタキシャル領域を拡げる位置、
形状等はレーザビームを照射する領域をコントロールす
ることによって任意に選択することができる。
This step allows the epitaxial region 4a formed in the step of FIG. 1(B) to be further expanded to 4b. And the position where the epitaxial region is expanded,
The shape etc. can be arbitrarily selected by controlling the area irradiated with the laser beam.

(b、装置)[第2図、第3図] 第2図は本発明半導体薄膜の固相エピタキシャル成長法
の実施に用いる成長装置の一例を示す概略図である。
(b, Apparatus) [FIGS. 2 and 3] FIG. 2 is a schematic diagram showing an example of a growth apparatus used for carrying out the solid phase epitaxial growth method of a semiconductor thin film of the present invention.

1’F=l[1において、5はエキシでレーザ、6は該
二キシマレーザ5から出力されたレーザビームの断面形
状、エネルギー分布を整形するビーム整形器で、該ビー
ム整形器6によってレーザビームの断面形状が略矩形に
され、そしてエネルギー分布が略均一になるようにされ
る。7はビーム整形器6からのレーザビームを反射して
その向きを変えるミラー、8は該ミラー7で反射された
レーザビームのエネルギー分布がきれいなパルス状にな
るように所定レベル以上のエネルギーをカットするイン
テグレータ、9はコンデンサレンズ、lOはレーザビー
ムを基板1表面上に選択的に照射するためのマスクとな
るレチクルで、第1図CB)に示した工程のときと同図
(C)に示した工程のときとでマスクパターンの異なる
レチクルloa。
1'F=l[1, 5 is an excimer laser, 6 is a beam shaper that shapes the cross-sectional shape and energy distribution of the laser beam output from the excimer laser 5; The cross-sectional shape is approximately rectangular, and the energy distribution is approximately uniform. 7 is a mirror that reflects the laser beam from the beam shaper 6 and changes its direction; 8 is a mirror that cuts energy above a predetermined level so that the energy distribution of the laser beam reflected by the mirror 7 becomes a clean pulse shape. An integrator, 9 is a condenser lens, and 1O is a reticle that serves as a mask for selectively irradiating the surface of the substrate 1 with a laser beam. A reticle loa with a different mask pattern depending on the process.

10b(第3図参照)が使用される。11は縮小投影レ
ンズ11でレチクル10のマスクパターンを基板l上に
何分の1かに縮小して投影するものであり、上記コンデ
ンサ9、レチクル10、縮小投影レンズ11によってレ
ーザビームの照射領域を規制する照射領域規制手段が構
成され、該照射領域規制手段によりチャンバー12内の
ウェハ状半導体基板1表面の任意の領域を選択的に照射
することができる。
10b (see Figure 3) is used. Reference numeral 11 denotes a reduction projection lens 11 for projecting the mask pattern of the reticle 10 onto the substrate l by reducing it to a fraction of the original size. An irradiation area regulating means is configured, and an arbitrary area on the surface of the wafer-shaped semiconductor substrate 1 in the chamber 12 can be selectively irradiated by the irradiation area regulating means.

第3図(A)、(B)は本発明方法の実施に用いるレチ
クル10a、lObの一例を示し、同図(A)は第1回
目のレーザビーム照射の際にマスクとして用いるレチク
ル、同図(B)は第2回目のレーザビームの照射の際に
マスクとして用いるレチクルであり、13aは第2図(
B)で示す照射領域4aに向うレーザビームを通すビー
ム透過部、13bは第2図(C)で示す照射領域4bに
向うレーザビームを通すビーム透過部である。そして、
第1のレチクル10aのビーム透過部13aの幅は照射
領域4aの幅d′を縮小率の逆数倍した広さを有し、第
2のレチクル10bのビーム透過部13bの幅は照射領
域4bの幅d ”を縮小率の逆数倍した広さを有する。
3(A) and 3(B) show examples of reticles 10a and 10b used in carrying out the method of the present invention, and FIG. 3(A) shows a reticle used as a mask during the first laser beam irradiation, and FIG. (B) is the reticle used as a mask during the second laser beam irradiation, and 13a is the reticle shown in FIG.
A beam transmitting section 13b passes the laser beam toward the irradiation area 4a shown in B), and a beam transmitting section 13b passes the laser beam toward the irradiation area 4b shown in FIG. 2(C). and,
The width of the beam transmission section 13a of the first reticle 10a is equal to the width d' of the irradiation area 4a multiplied by the reciprocal of the reduction ratio, and the width of the beam transmission section 13b of the second reticle 10b is the width of the irradiation area 4b. The width is the reciprocal of the reduction ratio.

このような装置によれば200ミリジユ一ル/cm’の
強さのレーザビームによって基板1表面を選択的に充分
に加熱してエピタキシーの固相成長を行うことができる
With such an apparatus, the surface of the substrate 1 can be selectively and sufficiently heated with a laser beam having an intensity of 200 millijoules/cm' to perform solid-phase epitaxial growth.

尚、照射領域の広さの異なる2回のレーザビーム照射を
レチクルを変えて行うのではなく投影の縮小率を変える
ことにより行うようにしても良い、また、2回のレーザ
ビーム照射によってエビ  、タキシャル領域の拡張を
行うのではなくぞれよりも多い回数のレーザビーム照射
によって選択的固相エピタキシーの成長を行うようにし
ても良い。
It should be noted that the laser beam irradiation with different widths of the irradiation area may be performed not by changing the reticle but by changing the projection reduction ratio. Instead of expanding the taxial region, selective solid phase epitaxy growth may be performed by laser beam irradiation more times than each.

更ニまた、上記実施例のようにシリ、コン半導体層4の
種となる半導体基板1露出部3と接する部分及びその付
近を先ずレーザビームで加熱してエピタキシーを固相成
長させた後第2回目のレーザビーム加熱によってエピタ
キシーをその周辺(四方)に拡げるようにしても良いが
、周辺ではなく例えば一方向にエピタキシーを拡げるよ
うにしても良い。要するに、照射領域を移動することに
よりエピタキシーを固相成長するものであれば良く、照
射領域の移動の方向は特に限定されるものではない。
Further, as in the above embodiment, the portion in contact with the exposed portion 3 of the semiconductor substrate 1 which is the seed of the silicon semiconductor layer 4 and its vicinity are first heated with a laser beam to achieve solid phase epitaxial growth, and then the second layer is heated. The epitaxy may be spread to the periphery (four sides) by the laser beam heating for the second time, but the epitaxy may be spread in one direction instead of the periphery. In short, any method may be used as long as solid phase epitaxy is achieved by moving the irradiation area, and the direction of movement of the irradiation area is not particularly limited.

又、上記実施例においてはシリコン半導体層4を予めデ
ポジットした後上記チャンバー12内において上述した
ようにエピタキシーの固相成長を行っており、このよう
にすれば、St陽イオンのイオン打込み処理が可能であ
るが、しかし、シリコン半導体層4をデボジー、トしな
い状態で上記チャンバー12内にウェハ状半導体基板1
を入れ、シリコン表面を洗浄面化した後光CVD、プラ
ズマCVD等により半導体層4を成長させ、その後レー
ザビームによるエピタキシーの固相成長を行うようにし
ても良い。
Furthermore, in the above embodiment, after depositing the silicon semiconductor layer 4 in advance, solid phase epitaxy is performed in the chamber 12 as described above, and in this way, ion implantation of St cations is possible. However, the wafer-shaped semiconductor substrate 1 is placed in the chamber 12 without debossing the silicon semiconductor layer 4.
After cleaning the silicon surface, the semiconductor layer 4 may be grown by photochemical CVD, plasma CVD, etc., and then solid-phase epitaxy may be performed using a laser beam.

本発明はアニールによるエピタキシーの固相成長、選択
気相エビタキャル成長等に適用でき(H,発明の効果) 以上に述べたところから明らかなように1本発明半導体
薄膜の固相エピタキシャル成長法は、基体上の半導体層
の固相エピタキシーを形成すべき領域より、大面積の略
均一なエネルギー分布を有するエネルギーを照射領域規
制手段により上記固相エピタキシーを形成すべき領域よ
り小面積に規制し、上記照射領域を移動させること企特
徴とするものである。
The present invention can be applied to solid phase growth of epitaxy by annealing, selective vapor phase epitaxial growth, etc. (H, Effects of the Invention) As is clear from the above description, the solid phase epitaxial growth method for semiconductor thin films of the present invention can be applied to The energy having a substantially uniform energy distribution over a large area is regulated by the irradiation area regulating means to a smaller area than the region where solid phase epitaxy is to be formed in the upper semiconductor layer, and the irradiation The feature is to move the area.

従って、本発明半導体a膜の固相エピタキシャル成長法
によれば、均一なエネルギー分布を有するエネルギーの
照射領域を照射領域規制手段によって固相エピタキシャ
ル領域より小面積にしてその照射領域を移動させるので
、照射領域を半導体層の種と接する部分から非エピタキ
シャル領域の任意の領域へ移動することによりその非エ
ピタキャル領域をエピタキシャル領域化することができ
る。従って固相エピタキシャル領域を半導体層の任意の
領域に形成することができ、また固相エピタキシャル領
域のラテラル方向への延びをより大きくすることができ
る。
Therefore, according to the solid phase epitaxial growth method of a semiconductor a film of the present invention, the irradiation area with uniform energy distribution is made smaller than the solid phase epitaxial area by the irradiation area regulating means and the irradiation area is moved. By moving the region from the portion of the semiconductor layer in contact with the seed to any region of the non-epitaxial region, the non-epitaxial region can be made into an epitaxial region. Therefore, the solid phase epitaxial region can be formed in an arbitrary region of the semiconductor layer, and the extension of the solid phase epitaxial region in the lateral direction can be made larger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明半導体薄膜の固相エピタキシ
ャル成長法の一実施例を説明するためのもので、第1図
(A)乃至(C)は成長法を工程j@に示す基板の断面
図、第2図は成長装置の概略構成図、第3図(A)、(
B)は照射領域の規制に用いる各別のレチクルを示す平
面図、第4図は従来技術及びその問題点を説明するため
の断面図である。 符号の説明 1壷・や基体、4−勘−半導体層。 4a、4bΦ・・照射領域、 9〜11・・O照射領域規制手段。 CB) (C) 大力しテJをニオbmに示す断面図 第1図 底&装置が肌略講成図 第2図 第1fルヂフル (A> 第3図
1 to 3 are for explaining an embodiment of the solid-phase epitaxial growth method for a semiconductor thin film of the present invention, and FIGS. 1(A) to 3(C) illustrate the growth method on a substrate shown in step j@. A cross-sectional view, FIG. 2 is a schematic diagram of the growth apparatus, and FIG. 3 (A), (
B) is a plan view showing different reticles used for regulating the irradiation area, and FIG. 4 is a sectional view for explaining the prior art and its problems. Explanation of symbols: 1-bottle/substrate, 4-concept-semiconductor layer. 4a, 4bΦ...irradiation area, 9-11...O irradiation area regulating means. CB) (C) Cross-sectional diagram showing the large force Te J to Niobm Fig. 1 Bottom & device schematic diagram Fig. 2 Fig. 1f Lujiful (A> Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)基体上の半導体層の固相エピタキシーを形成すべ
き領域より大面積の略均一なエネルギー分布を有するエ
ネルギーを照射領域規制手段により上記固相エピタキシ
ーを形成すべき領域より小面積に規制し、 上記照射領域を移動させる ことを特徴とする半導体薄膜の固相エピタキシャル成長
(1) The energy having a substantially uniform energy distribution over an area larger than the area where solid phase epitaxy is to be formed in the semiconductor layer on the substrate is restricted to an area smaller than the area where solid phase epitaxy is to be formed by the irradiation area regulating means. , A method for solid-phase epitaxial growth of semiconductor thin films, characterized by moving the irradiation area.
JP10162686A 1986-04-30 1986-04-30 Solid phase epitaxy of semiconductor thin film Pending JPS62257718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10162686A JPS62257718A (en) 1986-04-30 1986-04-30 Solid phase epitaxy of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10162686A JPS62257718A (en) 1986-04-30 1986-04-30 Solid phase epitaxy of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS62257718A true JPS62257718A (en) 1987-11-10

Family

ID=14305611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10162686A Pending JPS62257718A (en) 1986-04-30 1986-04-30 Solid phase epitaxy of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS62257718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562672B2 (en) 1991-03-18 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153326A (en) * 1979-05-18 1980-11-29 Nec Corp Locally heating laser device
JPS57138129A (en) * 1981-02-19 1982-08-26 Matsushita Electric Ind Co Ltd Manufacture of amorphous thin-film
JPS57181537A (en) * 1981-05-01 1982-11-09 Agency Of Ind Science & Technol Light pattern projector
JPS5893217A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor crystal film
JPS58127318A (en) * 1982-01-25 1983-07-29 Nippon Telegr & Teleph Corp <Ntt> Forming method for single-crystal film on insulating layer
JPS60117710A (en) * 1983-11-30 1985-06-25 Fujitsu Ltd Manufacture of semiconductor device
JPS60245124A (en) * 1984-05-18 1985-12-04 Sony Corp Manufacture of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153326A (en) * 1979-05-18 1980-11-29 Nec Corp Locally heating laser device
JPS57138129A (en) * 1981-02-19 1982-08-26 Matsushita Electric Ind Co Ltd Manufacture of amorphous thin-film
JPS57181537A (en) * 1981-05-01 1982-11-09 Agency Of Ind Science & Technol Light pattern projector
JPS5893217A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor crystal film
JPS58127318A (en) * 1982-01-25 1983-07-29 Nippon Telegr & Teleph Corp <Ntt> Forming method for single-crystal film on insulating layer
JPS60117710A (en) * 1983-11-30 1985-06-25 Fujitsu Ltd Manufacture of semiconductor device
JPS60245124A (en) * 1984-05-18 1985-12-04 Sony Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562672B2 (en) 1991-03-18 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor

Similar Documents

Publication Publication Date Title
EP0730292B1 (en) Method of growing semiconductor crystal
CA2385119C (en) Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidification
JP4220156B2 (en) Surface planarization of silicon films during and after processing by sequential lateral crystallization.
JPS6281709A (en) Manufacture of semiconductor device
JP2000306859A (en) Crystallization of semiconductor thin film and laser irradiating apparatus
JPS62257718A (en) Solid phase epitaxy of semiconductor thin film
JPH0273623A (en) Apparatus and method for radiating of laser beam
JP3404766B2 (en) Method for manufacturing semiconductor device
JPH06140321A (en) Method of crystallizing of semiconductor film
JPH0562924A (en) Laser annealing device
JPS621220A (en) Manufacture of defect localized orientation silicon monocrystalline film on insulation support
JPS59182529A (en) Pattern formation of semiconductor layer
JP3104080B2 (en) Semiconductor substrate processing method
JPH06140324A (en) Method of crystallizing semiconductor film
JPS5963720A (en) Growing method for semiconductor single crystal
JPS6130028A (en) Vapor growth method
JPH073632Y2 (en) Laser CVD equipment
JP2586700B2 (en) Wiring formation method
JPS62243314A (en) Manufacture of semiconductor device
JPS6263417A (en) Solid phase growth method of polycrystalline semiconductor thin film
JP2785551B2 (en) Heat treatment method by excimer laser light irradiation
JPH01147826A (en) Manufacture of multilayer semiconductor substrate
JPS63151015A (en) Manufacture of soi substrate
JPH0529714A (en) Quantum fine lead wire or quantum box
JPS6184825A (en) Manufacture of semiconductor substrate