JPS5835916A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5835916A
JPS5835916A JP56135720A JP13572081A JPS5835916A JP S5835916 A JPS5835916 A JP S5835916A JP 56135720 A JP56135720 A JP 56135720A JP 13572081 A JP13572081 A JP 13572081A JP S5835916 A JPS5835916 A JP S5835916A
Authority
JP
Japan
Prior art keywords
film
layer
grain size
grow
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135720A
Other languages
Japanese (ja)
Inventor
Haruhide Fuse
玄秀 布施
Koichi Kugimiya
公一 釘宮
Shigenobu Akiyama
秋山 重信
Yasuaki Terui
照井 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56135720A priority Critical patent/JPS5835916A/en
Publication of JPS5835916A publication Critical patent/JPS5835916A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain an Si layer having large mobility extending over the large area at a semiconductor device without generating stress by a method wherein after a polycrystalline Si film is formed on an insulating substrate, a beam having high energy density is irradiated thereto to make the Si film to be molten and to enlarge grain size, and an epitaxial layer is made to grow thereon. CONSTITUTION:An SiO2 film 2 is adhered on the Su substrate 1 formed with the first layer element, and the polycrystalline Si layer 3 having thickness of 0.1mum or less is accumulated thereon. Then the high energy beam 4 of laser, etc., is irradiated thereto to convert the thin film 3 into the Si film 5 having favorable crystallinity and large grain size. After then, the Si layer 6 is made to grow epitaxially thereon. The layer 3 is converted into the single crystal having large grain size by this way, the epitaxial layer is made to grow thereon, and is made as suitable for formation of the three dimentional IC.

Description

【発明の詳細な説明】 本発明は、絶縁基板上に良質のシリコン層を形成する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a high quality silicon layer on an insulating substrate.

集積回路の高集積化に伴ない多層に能動素子を積み重ね
ることにより、高密度化を行なうという三次元ICの考
え方が盛んになっている。しかし、三次元ICの実現の
為には、第1層目の基板上に非晶質絶縁膜である5i0
2 、Si3N4を介してこの上に、再び、第2層目の
膜を形成することが必要である。この第2層目の膜質は
、ここに能動素子を形成する関係上m結晶Si並みにす
る必要がある。膜質向上の為には熱処理が必要となるが
、下層膜に形成された素子に熱的影響を与えることにな
り、高温の熱処理を工程に入れることは不可能である。
As integrated circuits become more highly integrated, the concept of three-dimensional ICs is gaining popularity, in which the density is increased by stacking active elements in multiple layers. However, in order to realize a three-dimensional IC, an amorphous insulating film of 5i0
2. It is necessary to form a second layer of film again on this layer via Si3N4. The film quality of this second layer needs to be comparable to that of m-crystal Si since active elements are formed here. Heat treatment is required to improve film quality, but it is impossible to include high-temperature heat treatment in the process because it will have a thermal effect on the elements formed in the underlying film.

そこでこれを実現可能妃しようとしているのが、レーザ
ー等の高エネルギー密度ビーム照射方法であり、この方
法により下層膜に熱的影響を与えず表面だけを溶融させ
ることが可能になる。しかしながら、今のととる大面積
にわたる単結晶Si化は成功に至っていない。この理由
の1つとしてレーザビームによる急熱急冷に伴なうポリ
シリコン層と下地絶縁膜間のストレスに起因する歪みが
あげられる。このストレスを逃がす為の1つが、まず累
子形成“の部分を島状に残してポリシリコンと下地絶縁
膜の接触面積を小さくしてストレスを逃がすという方法
である。この方法を用いると準結晶Si並みの易動度を
もつ素子を形成することが可能である。しかしながら、
上記方法は小面積の単結晶化であり、プロセス上不利な
面が多い欠点を有する。
Therefore, we are trying to make this possible by using a high energy density beam irradiation method such as a laser, which makes it possible to melt only the surface without having any thermal effect on the underlying film. However, the current attempt to convert a large area into single crystal silicon has not been successful. One of the reasons for this is distortion caused by stress between the polysilicon layer and the underlying insulating film due to rapid heating and cooling by the laser beam. One way to release this stress is to first leave the "region formation" part in the form of an island to reduce the contact area between the polysilicon and the underlying insulating film, thereby releasing the stress. It is possible to form elements with mobility comparable to that of Si. However,
The above method involves single crystallization in a small area, and has many drawbacks in terms of process.

本発明は上記欠点にかんがみなされたもので、絶縁膜上
に薄いポリシリコン(多結晶シリコン膜)を形成し、こ
の薄いポリシリコンをレーザー等により単結晶化するこ
とにより、ストレス等を生じることなく易動度の大きい
シリコン層を犬面槓にわたって形成せんとするものであ
る。
The present invention was developed in view of the above-mentioned drawbacks, and by forming a thin polysilicon (polycrystalline silicon film) on an insulating film and converting this thin polysilicon into a single crystal using a laser or the like, the present invention eliminates stress and the like. The aim is to form a highly mobile silicon layer over the entire surface.

本発明は、絶縁膜上のポリシリコン膜が薄い場合に急熱
急冷ストレスの点で有利であることを用いて、薄い多結
晶シリコン膜にレーザビーム照射を行ない、結晶成長を
行なうことを利用したものである。そして下地膜に薄く
ても良質膜ができればその上には上質の膜を作り易い。
The present invention utilizes the fact that when a polysilicon film on an insulating film is thin, it is advantageous in terms of rapid heating and cooling stress, and irradiates a thin polycrystalline silicon film with a laser beam to grow crystals. It is something. If a thin but high-quality film can be formed on the base film, it is easy to form a high-quality film on top of it.

本発明は、これらの原理を用いて結晶性の良い膜を形成
する。
The present invention uses these principles to form a film with good crystallinity.

以下、本発明の構成について第1図の工程図にそって説
明を行なう。まず同図(ム)で第1層目の素子(図示せ
ず)をつくり込んだ÷リコン基板1にたとえば5i02
等の絶縁膜2を形成する。その上積する。次に同図(B
)において、レーザ等の高エネルギービーム4を照射し
て、薄いポリシリコンの膜3を結晶性の良い粒径の大き
いシリコン膜5に変換する。そして、同図fclの如く
、良質シリコン膜5の上に、所望の厚さにまで再ピタキ
シャル成長法によって、シリコン層6を形成する。
Hereinafter, the structure of the present invention will be explained along with the process diagram of FIG. First, in the same figure (m), for example, 5i02
An insulating film 2 such as the following is formed. Add to that. Next, the same figure (B
), a high-energy beam 4 such as a laser beam is irradiated to convert the thin polysilicon film 3 into a silicon film 5 with good crystallinity and large grain size. Then, as shown at fcl in the figure, a silicon layer 6 is formed on the high-quality silicon film 5 by repeat epitaxial growth to a desired thickness.

以上の方法で実施した場合の結果を示す。The results obtained when carried out using the above method are shown below.

実験は、基板1として(1oo)方位シリコンを用いて
、絶縁膜2として酸化膜を1μm形敗し、コノ上ニ、5
ooX 、900^、11oOX。
In the experiment, silicon with (1oo) orientation was used as the substrate 1, and an oxide film was 1 μm thick as the insulating film 2.
ooX, 900^, 11oOX.

2000人のポリシリコン膜3ヲL P CV Diテ
堆積したものを4種類用意した。基板を35000に加
熱した状態で、CW−ムrレーザ 8wで、5cIm焦
点距離レンズでポリシリコン膜3の溶融を行なった。こ
の結果を透過電子顕微鏡で観察したところ、第2図実線
に示すとと<900X以下の厚さのものは数語〜10B
のオーダでポリシリコン粒径が増大していることが分か
る。
Four types of polysilicon films of 2,000 layers were prepared. With the substrate heated to 35,000 ℃, the polysilicon film 3 was melted using a CW-MR laser of 8W and a 5cIm focal length lens. When this result was observed with a transmission electron microscope, it was found that the thickness of <900X or less was several words to 10B, as shown by the solid line in Figure 2.
It can be seen that the polysilicon grain size increases on the order of .

一方、ポリシリコン膜厚が1100Xのものでは、数百
μm程度の粒径にしかならなかった。そこで6ooムの
ポリシリコン膜3を単結晶化(粒径が数鵡オーダーにな
っている)した層6の上に950°Cでエピタキシャル
成長法により、0.6μmのシリコン層6を積みあげた
。この結果、層6゜6を合計した0、66μmの全面層
が、はぼ結晶粒径数鵡のシリコンに成長した。
On the other hand, when the polysilicon film thickness was 1100X, the grain size was only about several hundred μm. Therefore, a silicon layer 6 of 0.6 .mu.m was deposited on the layer 6 of a 60 .mu.m polysilicon film 3 made into a single crystal (the grain size was on the order of several micrometers) by epitaxial growth at 950.degree. As a result, a total layer of 0.66 .mu.m, totaling 6.6 layers, was grown on silicon with a crystal grain size of several micrometers.

以上の実験から下地の膜としてたとえば膜厚Q、1μm
以下のポリシリコン膜を形成し、この膜の結晶性を良く
したのち、この上にエピタキシャル成長を行うと、結晶
成長が非常に起こり易いととがわかる。なお、本発明は
2層以上の三次元I(jの形成も同様に行えばよい0 以上のように本発明は、絶縁膜を介して良質のシリコン
層を形成することができ、三次元ICの形成に有効な方
法を得ることができる。
From the above experiments, for example, the thickness of the underlying film is Q, 1 μm.
It can be seen that when the following polysilicon film is formed, the crystallinity of this film is improved, and epitaxial growth is performed on this film, crystal growth is very likely to occur. Note that the present invention can form a three-dimensional I (j) of two or more layers in the same way.As described above, the present invention can form a high quality silicon layer through an insulating film, It is possible to obtain an effective method for forming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(ム)〜+C)は本発明の一実施例の製造工程図
、第2図はポリシリコン膜厚とレーザアニール後の結晶
粒長さを示す図である。 1・・・・・・半導体基板、2・・・・・・絶縁膜、3
・・−・・・ポリシリコン膜、5・・・・・・アニール
をうけたポリシリコン層、6・・・・・・エピタキシャ
ル成長シリコン層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 ホ6リラリ]ン朋1辱
1(M) to +C) are manufacturing process diagrams of an embodiment of the present invention, and FIG. 2 is a diagram showing the polysilicon film thickness and crystal grain length after laser annealing. 1... Semiconductor substrate, 2... Insulating film, 3
. . . Polysilicon film, 5 . . . Annealed polysilicon layer, 6 . . . Epitaxially grown silicon layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 H 6 Rirari] N Tomo 1 Humiliation

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に、多結晶シリコン膜を形成する工程と、そ
の上から、高エネルギー密度ビームの照射によって上記
多結晶シリコン膜を溶融してシリコンの粒径を増大する
工程と、との粒径の増大されたシリコン膜の上に、エピ
タキシャル成長法でシリコン層を形成し所望膜厚のシリ
コン層を上記絶縁基板上に形成する工程とを備えたこと
を特徴とする半導体装置の製造方法。
A step of forming a polycrystalline silicon film on an insulating substrate, and a step of melting the polycrystalline silicon film by irradiating the polycrystalline silicon film with a high energy density beam from above to increase the grain size of the silicon. 1. A method of manufacturing a semiconductor device, comprising the steps of: forming a silicon layer on the increased silicon film by epitaxial growth, and forming a silicon layer with a desired thickness on the insulating substrate.
JP56135720A 1981-08-28 1981-08-28 Manufacture of semiconductor device Pending JPS5835916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135720A JPS5835916A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135720A JPS5835916A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5835916A true JPS5835916A (en) 1983-03-02

Family

ID=15158299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135720A Pending JPS5835916A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5835916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739043A (en) * 1992-03-25 1998-04-14 Kanegafuchi Chemical Industry Co., Ltd. Method for producing a substrate having crystalline silicon nuclei for forming a polysilicon thin film
JP2005268441A (en) * 2004-03-17 2005-09-29 Seiko Epson Corp Method for manufacturing semiconductor film, method for manufacturing semiconductor device, integrated circuit, electric optical device and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739043A (en) * 1992-03-25 1998-04-14 Kanegafuchi Chemical Industry Co., Ltd. Method for producing a substrate having crystalline silicon nuclei for forming a polysilicon thin film
JP2005268441A (en) * 2004-03-17 2005-09-29 Seiko Epson Corp Method for manufacturing semiconductor film, method for manufacturing semiconductor device, integrated circuit, electric optical device and electronic equipment
JP4711042B2 (en) * 2004-03-17 2011-06-29 セイコーエプソン株式会社 Semiconductor film manufacturing method and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPS5835916A (en) Manufacture of semiconductor device
JPH02295111A (en) Manufacture of semiconductor device having thin film crystal layer
JP2743370B2 (en) Method of forming polycrystalline film
JPS6018913A (en) Manufacture of semiconductor device
JPS5837914A (en) Manufacture of semiconductor device
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JPH02140916A (en) Crystal growth of semiconductor thin film
JPS5825220A (en) Manufacture of semiconductor substrate
JPS6151820A (en) Manufacture of semiconductor device
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JPS5853824A (en) Manufacture of semiconductor device
JPS59121823A (en) Fabrication of single crystal silicon film
JPS58175844A (en) Manufacture of semiconductor device
JPH03284831A (en) Forming method for semiconductor thin-film
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPS63142810A (en) Manufacture of semiconductor device
JPS5837919A (en) Manufacture of semiconductor device
JPH01297814A (en) Manufacture of single crystal
JPH038101B2 (en)
JPS6380521A (en) Manufacture of semiconductor thin film crystal layer
JPS62297289A (en) Formation of single crystal thin film
JPS5961117A (en) Manufacture of semiconductor device
JPH0287519A (en) Manufacture of single crystal semiconductor thin film