JPS5835916A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS5835916A JPS5835916A JP56135720A JP13572081A JPS5835916A JP S5835916 A JPS5835916 A JP S5835916A JP 56135720 A JP56135720 A JP 56135720A JP 13572081 A JP13572081 A JP 13572081A JP S5835916 A JPS5835916 A JP S5835916A
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- grain size
- grow
- polycrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 9
- 239000013078 crystal Substances 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 abstract 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 239000010409 thin film Substances 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229920005591 polysilicon Polymers 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02683—Continuous wave laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、絶縁基板上に良質のシリコン層を形成する方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a high quality silicon layer on an insulating substrate.
集積回路の高集積化に伴ない多層に能動素子を積み重ね
ることにより、高密度化を行なうという三次元ICの考
え方が盛んになっている。しかし、三次元ICの実現の
為には、第1層目の基板上に非晶質絶縁膜である5i0
2 、Si3N4を介してこの上に、再び、第2層目の
膜を形成することが必要である。この第2層目の膜質は
、ここに能動素子を形成する関係上m結晶Si並みにす
る必要がある。膜質向上の為には熱処理が必要となるが
、下層膜に形成された素子に熱的影響を与えることにな
り、高温の熱処理を工程に入れることは不可能である。As integrated circuits become more highly integrated, the concept of three-dimensional ICs is gaining popularity, in which the density is increased by stacking active elements in multiple layers. However, in order to realize a three-dimensional IC, an amorphous insulating film of 5i0
2. It is necessary to form a second layer of film again on this layer via Si3N4. The film quality of this second layer needs to be comparable to that of m-crystal Si since active elements are formed here. Heat treatment is required to improve film quality, but it is impossible to include high-temperature heat treatment in the process because it will have a thermal effect on the elements formed in the underlying film.
そこでこれを実現可能妃しようとしているのが、レーザ
ー等の高エネルギー密度ビーム照射方法であり、この方
法により下層膜に熱的影響を与えず表面だけを溶融させ
ることが可能になる。しかしながら、今のととる大面積
にわたる単結晶Si化は成功に至っていない。この理由
の1つとしてレーザビームによる急熱急冷に伴なうポリ
シリコン層と下地絶縁膜間のストレスに起因する歪みが
あげられる。このストレスを逃がす為の1つが、まず累
子形成“の部分を島状に残してポリシリコンと下地絶縁
膜の接触面積を小さくしてストレスを逃がすという方法
である。この方法を用いると準結晶Si並みの易動度を
もつ素子を形成することが可能である。しかしながら、
上記方法は小面積の単結晶化であり、プロセス上不利な
面が多い欠点を有する。Therefore, we are trying to make this possible by using a high energy density beam irradiation method such as a laser, which makes it possible to melt only the surface without having any thermal effect on the underlying film. However, the current attempt to convert a large area into single crystal silicon has not been successful. One of the reasons for this is distortion caused by stress between the polysilicon layer and the underlying insulating film due to rapid heating and cooling by the laser beam. One way to release this stress is to first leave the "region formation" part in the form of an island to reduce the contact area between the polysilicon and the underlying insulating film, thereby releasing the stress. It is possible to form elements with mobility comparable to that of Si. However,
The above method involves single crystallization in a small area, and has many drawbacks in terms of process.
本発明は上記欠点にかんがみなされたもので、絶縁膜上
に薄いポリシリコン(多結晶シリコン膜)を形成し、こ
の薄いポリシリコンをレーザー等により単結晶化するこ
とにより、ストレス等を生じることなく易動度の大きい
シリコン層を犬面槓にわたって形成せんとするものであ
る。The present invention was developed in view of the above-mentioned drawbacks, and by forming a thin polysilicon (polycrystalline silicon film) on an insulating film and converting this thin polysilicon into a single crystal using a laser or the like, the present invention eliminates stress and the like. The aim is to form a highly mobile silicon layer over the entire surface.
本発明は、絶縁膜上のポリシリコン膜が薄い場合に急熱
急冷ストレスの点で有利であることを用いて、薄い多結
晶シリコン膜にレーザビーム照射を行ない、結晶成長を
行なうことを利用したものである。そして下地膜に薄く
ても良質膜ができればその上には上質の膜を作り易い。The present invention utilizes the fact that when a polysilicon film on an insulating film is thin, it is advantageous in terms of rapid heating and cooling stress, and irradiates a thin polycrystalline silicon film with a laser beam to grow crystals. It is something. If a thin but high-quality film can be formed on the base film, it is easy to form a high-quality film on top of it.
本発明は、これらの原理を用いて結晶性の良い膜を形成
する。The present invention uses these principles to form a film with good crystallinity.
以下、本発明の構成について第1図の工程図にそって説
明を行なう。まず同図(ム)で第1層目の素子(図示せ
ず)をつくり込んだ÷リコン基板1にたとえば5i02
等の絶縁膜2を形成する。その上積する。次に同図(B
)において、レーザ等の高エネルギービーム4を照射し
て、薄いポリシリコンの膜3を結晶性の良い粒径の大き
いシリコン膜5に変換する。そして、同図fclの如く
、良質シリコン膜5の上に、所望の厚さにまで再ピタキ
シャル成長法によって、シリコン層6を形成する。Hereinafter, the structure of the present invention will be explained along with the process diagram of FIG. First, in the same figure (m), for example, 5i02
An insulating film 2 such as the following is formed. Add to that. Next, the same figure (B
), a high-energy beam 4 such as a laser beam is irradiated to convert the thin polysilicon film 3 into a silicon film 5 with good crystallinity and large grain size. Then, as shown at fcl in the figure, a silicon layer 6 is formed on the high-quality silicon film 5 by repeat epitaxial growth to a desired thickness.
以上の方法で実施した場合の結果を示す。The results obtained when carried out using the above method are shown below.
実験は、基板1として(1oo)方位シリコンを用いて
、絶縁膜2として酸化膜を1μm形敗し、コノ上ニ、5
ooX 、900^、11oOX。In the experiment, silicon with (1oo) orientation was used as the substrate 1, and an oxide film was 1 μm thick as the insulating film 2.
ooX, 900^, 11oOX.
2000人のポリシリコン膜3ヲL P CV Diテ
堆積したものを4種類用意した。基板を35000に加
熱した状態で、CW−ムrレーザ 8wで、5cIm焦
点距離レンズでポリシリコン膜3の溶融を行なった。こ
の結果を透過電子顕微鏡で観察したところ、第2図実線
に示すとと<900X以下の厚さのものは数語〜10B
のオーダでポリシリコン粒径が増大していることが分か
る。Four types of polysilicon films of 2,000 layers were prepared. With the substrate heated to 35,000 ℃, the polysilicon film 3 was melted using a CW-MR laser of 8W and a 5cIm focal length lens. When this result was observed with a transmission electron microscope, it was found that the thickness of <900X or less was several words to 10B, as shown by the solid line in Figure 2.
It can be seen that the polysilicon grain size increases on the order of .
一方、ポリシリコン膜厚が1100Xのものでは、数百
μm程度の粒径にしかならなかった。そこで6ooムの
ポリシリコン膜3を単結晶化(粒径が数鵡オーダーにな
っている)した層6の上に950°Cでエピタキシャル
成長法により、0.6μmのシリコン層6を積みあげた
。この結果、層6゜6を合計した0、66μmの全面層
が、はぼ結晶粒径数鵡のシリコンに成長した。On the other hand, when the polysilicon film thickness was 1100X, the grain size was only about several hundred μm. Therefore, a silicon layer 6 of 0.6 .mu.m was deposited on the layer 6 of a 60 .mu.m polysilicon film 3 made into a single crystal (the grain size was on the order of several micrometers) by epitaxial growth at 950.degree. As a result, a total layer of 0.66 .mu.m, totaling 6.6 layers, was grown on silicon with a crystal grain size of several micrometers.
以上の実験から下地の膜としてたとえば膜厚Q、1μm
以下のポリシリコン膜を形成し、この膜の結晶性を良く
したのち、この上にエピタキシャル成長を行うと、結晶
成長が非常に起こり易いととがわかる。なお、本発明は
2層以上の三次元I(jの形成も同様に行えばよい0
以上のように本発明は、絶縁膜を介して良質のシリコン
層を形成することができ、三次元ICの形成に有効な方
法を得ることができる。From the above experiments, for example, the thickness of the underlying film is Q, 1 μm.
It can be seen that when the following polysilicon film is formed, the crystallinity of this film is improved, and epitaxial growth is performed on this film, crystal growth is very likely to occur. Note that the present invention can form a three-dimensional I (j) of two or more layers in the same way.As described above, the present invention can form a high quality silicon layer through an insulating film, It is possible to obtain an effective method for forming.
第1図(ム)〜+C)は本発明の一実施例の製造工程図
、第2図はポリシリコン膜厚とレーザアニール後の結晶
粒長さを示す図である。
1・・・・・・半導体基板、2・・・・・・絶縁膜、3
・・−・・・ポリシリコン膜、5・・・・・・アニール
をうけたポリシリコン層、6・・・・・・エピタキシャ
ル成長シリコン層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
ホ6リラリ]ン朋1辱1(M) to +C) are manufacturing process diagrams of an embodiment of the present invention, and FIG. 2 is a diagram showing the polysilicon film thickness and crystal grain length after laser annealing. 1... Semiconductor substrate, 2... Insulating film, 3
. . . Polysilicon film, 5 . . . Annealed polysilicon layer, 6 . . . Epitaxially grown silicon layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 H 6 Rirari] N Tomo 1 Humiliation
Claims (1)
の上から、高エネルギー密度ビームの照射によって上記
多結晶シリコン膜を溶融してシリコンの粒径を増大する
工程と、との粒径の増大されたシリコン膜の上に、エピ
タキシャル成長法でシリコン層を形成し所望膜厚のシリ
コン層を上記絶縁基板上に形成する工程とを備えたこと
を特徴とする半導体装置の製造方法。A step of forming a polycrystalline silicon film on an insulating substrate, and a step of melting the polycrystalline silicon film by irradiating the polycrystalline silicon film with a high energy density beam from above to increase the grain size of the silicon. 1. A method of manufacturing a semiconductor device, comprising the steps of: forming a silicon layer on the increased silicon film by epitaxial growth, and forming a silicon layer with a desired thickness on the insulating substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56135720A JPS5835916A (en) | 1981-08-28 | 1981-08-28 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56135720A JPS5835916A (en) | 1981-08-28 | 1981-08-28 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5835916A true JPS5835916A (en) | 1983-03-02 |
Family
ID=15158299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56135720A Pending JPS5835916A (en) | 1981-08-28 | 1981-08-28 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5835916A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5739043A (en) * | 1992-03-25 | 1998-04-14 | Kanegafuchi Chemical Industry Co., Ltd. | Method for producing a substrate having crystalline silicon nuclei for forming a polysilicon thin film |
JP2005268441A (en) * | 2004-03-17 | 2005-09-29 | Seiko Epson Corp | Method for manufacturing semiconductor film, method for manufacturing semiconductor device, integrated circuit, electric optical device and electronic equipment |
-
1981
- 1981-08-28 JP JP56135720A patent/JPS5835916A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5739043A (en) * | 1992-03-25 | 1998-04-14 | Kanegafuchi Chemical Industry Co., Ltd. | Method for producing a substrate having crystalline silicon nuclei for forming a polysilicon thin film |
JP2005268441A (en) * | 2004-03-17 | 2005-09-29 | Seiko Epson Corp | Method for manufacturing semiconductor film, method for manufacturing semiconductor device, integrated circuit, electric optical device and electronic equipment |
JP4711042B2 (en) * | 2004-03-17 | 2011-06-29 | セイコーエプソン株式会社 | Semiconductor film manufacturing method and semiconductor device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4543133A (en) | Process for producing single crystalline semiconductor island on insulator | |
JPS61260621A (en) | Retreatment for amorphous silicon film or polycrystalline silicon film | |
JPS5835916A (en) | Manufacture of semiconductor device | |
JPH02295111A (en) | Manufacture of semiconductor device having thin film crystal layer | |
JP2743370B2 (en) | Method of forming polycrystalline film | |
JPS6018913A (en) | Manufacture of semiconductor device | |
JPS5837914A (en) | Manufacture of semiconductor device | |
JPH11251241A (en) | Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor | |
JPH02140916A (en) | Crystal growth of semiconductor thin film | |
JPS5825220A (en) | Manufacture of semiconductor substrate | |
JPS6151820A (en) | Manufacture of semiconductor device | |
JPH02188499A (en) | Production of polycrystal silicon film having large crystal grain diameter | |
JPS5853824A (en) | Manufacture of semiconductor device | |
JPS59121823A (en) | Fabrication of single crystal silicon film | |
JPS58175844A (en) | Manufacture of semiconductor device | |
JPH03284831A (en) | Forming method for semiconductor thin-film | |
JPS63174308A (en) | Manufacture of semiconductor thin film crystal layer | |
JPS63142810A (en) | Manufacture of semiconductor device | |
JPS5837919A (en) | Manufacture of semiconductor device | |
JPH01297814A (en) | Manufacture of single crystal | |
JPH038101B2 (en) | ||
JPS6380521A (en) | Manufacture of semiconductor thin film crystal layer | |
JPS62297289A (en) | Formation of single crystal thin film | |
JPS5961117A (en) | Manufacture of semiconductor device | |
JPH0287519A (en) | Manufacture of single crystal semiconductor thin film |