JPS5961117A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5961117A
JPS5961117A JP57171219A JP17121982A JPS5961117A JP S5961117 A JPS5961117 A JP S5961117A JP 57171219 A JP57171219 A JP 57171219A JP 17121982 A JP17121982 A JP 17121982A JP S5961117 A JPS5961117 A JP S5961117A
Authority
JP
Japan
Prior art keywords
insulating film
layer
substrate
polycrystalline
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57171219A
Other languages
Japanese (ja)
Inventor
Seiichiro Kawamura
河村 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57171219A priority Critical patent/JPS5961117A/en
Publication of JPS5961117A publication Critical patent/JPS5961117A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To perform a uniform heating as well as to prevent the exfoliation of a single crystal silicon layer and also to prevent the generation of cracks and the like by a method wherein the first insulating film and a polycrystalline silicon layer are selectively formed on a single crystal silicon substrate, the second insulating film is formed on the upper surface of the region where said two layers come in contact with each other, and a laser beam is scanned on them. CONSTITUTION:The first silicon dioxide insulating film 3 isolated in island form is formed on an Si substrate 1 using a selective oxidization method, and then a non-doped polycrystalline Si layer 4 is formed on the substrate using a chemical vapor-phase growing method. Then, the first silicon nitride film 6, which covers the upper part of an element formation region 2, is provided on the polycrystalline Si layer 4, and a selective thermal oxidization is performed. A second SiO2 insulating film 7 is formed in the thickness almost equal to that of the first SiO2 insulating film 3, with which the element formation region 2 is laid out, and a continuous laser beam of carbonic acid having an absorption wavelength band of the SiO2 insulating films 3 and 7 is made to scan on the substrate.

Description

【発明の詳細な説明】 (al  発明の技術分野 不発明け5Nicon On In5ulator (
SOI )構造の半導体装置の製造方法に係り、特に絶
縁膜上への単結晶゛シリ3フ層の成長方法に関する。
[Detailed description of the invention] (al Technical field of the invention
The present invention relates to a method of manufacturing a semiconductor device having an SOI structure, and particularly to a method of growing a single crystal silicon 3 layer on an insulating film.

(bl  技術の背景 半導体集積回路(IC)に於て、80 S (8111
conOn’8apphire )構造に代わるものと
して、絶縁膜上に単結晶シリコン層?形成するS OI
 (Sil 1conOn In5ulator )m
aカ提供すtzTイル。
(bl Technology Background In semiconductor integrated circuits (IC), 80S (8111
As an alternative to the conOn'8apphire) structure, is there a single crystal silicon layer on the insulating film? S OI to form
(Sil 1conOn In5ulator)m
I'll provide you with a copy.

この構造は、シリコン基板?使用するのでSO8構造に
比べて極めて廉価で808構造の具備する高分離耐圧、
低寄生容量等の%’Jt’を備えたICが形成できると
いう利点?持っている。
Is this structure a silicon substrate? Because it is used, it is extremely inexpensive compared to the SO8 structure, and the high separation voltage that the 808 structure has,
The advantage of being able to form an IC with %'Jt' such as low parasitic capacitance? have.

そしてこの構造の更に大きな利点は、絶縁膜?介して半
導体ICi何層も積層する三次元ICの形成?可能なら
しめたことである。
And the even bigger advantage of this structure is the insulating film? Formation of a three-dimensional IC by stacking multiple layers of semiconductor ICi through it? This made it possible.

(cl  従来技術と問題点 上記SOI構造に於ける絶縁膜上の単結晶シリコノ(S
i)層は、連続波レーザ・ビーム走査によるアニール手
段音用いたラテラル・エピタキシャル−g長(Late
ral Epitaxi;II Growth )技術
によって形成式れる。
(cl) Conventional technology and problems Single crystal silicon (S) on the insulating film in the above SOI structure
i) The layer is annealed by continuous wave laser beam scanning using lateral epitaxial-g length (Late
ral Epitaxy; II Growth) technology.

そして該技術に於て従来性われた方法では、第1図(イ
)に示すよろに単結晶Si基板1面の素子形成が予定さ
れる領域2に島状に二酸化ン11コン(SI02)絶縁
膜37形成し、該基板上に多結晶81層4孕化学気相成
長ぜしめた後、第1図t”]に示すように該基板面を連
続波(CW)アルゴン(Ar )レーザ・ビームL+a
rで走青しく矢印mは走査方向)、多結晶Si層4?単
結晶SL基板1面上から5ho2絶縁膜3上に向って順
次溶融することにより単結晶化し基板1間尺U: S 
i 02絶縁膜3上に単結晶81層5金形成していた。
In the conventional method of this technology, as shown in FIG. After forming a film 37 and chemical vapor deposition of a polycrystalline 81 layer 4 on the substrate, the substrate surface is exposed to a continuous wave (CW) argon (Ar) laser beam as shown in FIG. L+a
r indicates the scanning direction; the arrow m indicates the scanning direction), and the polycrystalline Si layer 4? By sequentially melting from the top of the single crystal SL substrate 1 toward the top of the 5ho2 insulating film 3, the substrate is made into a single crystal, and the size of the substrate 1 is U: S.
A single crystal 81 layer 5 gold layer was formed on the i02 insulating film 3.

(図中4′はSL溶融領域プし力)し該従来方法に於て
1jsiot絶縁膜上の単結晶81層が剥離しやすく、
単結晶81基板1面に分散配設ぢれているS i02絶
縁膜の」二面全域にわたって欠落部、クラック等の欠陥
のない単結晶8+f@2形成させることが非常に困難で
あるという問題があった。
(4' in the figure is the SL melting region pushing force) In this conventional method, the single crystal 81 layer on the 1jsiot insulating film is likely to peel off.
The problem is that it is extremely difficult to form a single crystal 8+f@2 without any defects such as missing parts or cracks over the entire two sides of the Si02 insulating film which is dispersed and disposed on one surface of the single crystal 81 substrate. there were.

こればA、rレーザの波長が0.5[l1m、]程度の
短波長4有するため、S1層はこれケ良く吸収するが、
SiO□絶縁膜が該レーザに対しで殆んど透明であるこ
とに起因する。即ち上記従来方法に於ては多結晶S1層
はそれ自体に吸収されるレーザ・工オルキにより加熱逼
れるため、熱抵抗の高いSin!絶縁膜の上部と熱抵抗
の低い単結晶Sl基板上部との間に大きな温度差を生す
ることによる。
In this case, since the wavelength of the A and r lasers has a short wavelength of about 0.5 [l1m,], the S1 layer absorbs this well, but
This is due to the fact that the SiO□ insulating film is almost transparent to the laser. That is, in the conventional method described above, the polycrystalline S1 layer is heated by the laser/orc oil absorbed by itself, so the Sin! layer has a high thermal resistance. This is because a large temperature difference is generated between the upper part of the insulating film and the upper part of the single-crystal Sl substrate having low thermal resistance.

Fdl  発明の目的 不発明は絶縁膜か選択的に配設された単結晶シリコン基
板上に形成した多結晶ン【3コンffl’に、  レー
ザ・ビーム走査により均一な温度に力口熱し単結晶化す
る方法i提供するものであり、その目的とするとCろは
上記問題点全除去し、 SOI構造?有する半導体装置
の製造歩留まり紫向上せしめるVCある。
Fdl Purpose of the Invention The invention is based on polycrystalline silicon formed on a monocrystalline silicon substrate on which an insulating film is selectively disposed, and heated to a uniform temperature by laser beam scanning to form a monocrystal. Is there a way to do this, and its purpose is to eliminate all of the above problems and create an SOI structure? There is a VC that can improve the manufacturing yield of semiconductor devices.

tel  発明の構成 即ち不発明は半導体装置の製造方法に於て、単結晶シリ
コン基体上に選択的に第1の絶愚膜?形成し、該単結晶
ンリコン基体上に多結晶シリコン層?形成し、該多結晶
シリコン層に於ける少なくとも前記単結晶シリコン基体
に直に接する領域の上面に第2の絶縁膜葡形成し、しか
る後該基体面?連続波炭酸ガス・レーザにょυ走査して
前記多結晶シリコン層重単結晶シリコン基体上刃)ら第
1の絶縁膜上に向って順次溶融単結晶化する工程紮有す
ること全特徴とする。
tel The structure of the invention, that is, the non-invention, is that in a method of manufacturing a semiconductor device, a first crystalline film is selectively formed on a single crystal silicon substrate. Form a polycrystalline silicon layer on the monocrystalline silicon substrate? A second insulating film is formed on the upper surface of at least a region of the polycrystalline silicon layer that is in direct contact with the single crystal silicon substrate, and then a second insulating film is formed on the upper surface of the polycrystalline silicon layer, and then a second insulating film is formed on the upper surface of the region of the polycrystalline silicon layer that is in direct contact with the single crystal silicon substrate. The present invention is characterized by the step of scanning the polycrystalline silicon layer with a continuous wave carbon dioxide laser to sequentially melt and single-crystallize the polycrystalline silicon layer (over the single crystal silicon substrate) onto the first insulating film.

(fl  発明の実施例 以下本発明オー実施例について、箱2図げ)乃至1、I
−I VC示す工程断面図r用いて詳細に説明する。
(fl Embodiments of the Invention Below, see Box 2 for Embodiments of the Invention) to 1, I
A detailed explanation will be given using the process cross-sectional diagram r shown in -I VC.

不発明の方法を用いて801vt造のMO8IC2形成
するに際しては、第2図(イ)に示す、Jニー″lにシ
リコン(s皿)基体例えば8i基板1面に通常の選択酸
化法等・を用い島状に分離ケガた例えば浮名6G(ト)
〔入〕程度の第1の二酸化シリコン(S’(Jy)絶縁
1挨3で形成し、次いで通常の化学気相成& (CVI
))法ケ用い該基板上に例えばJ9さ5000(λ〕径
程度ノン・ドープ多結晶S1層4全形成する口なお前記
島状S+ (J 2絶縁膜3は素子形成領域2に配設さ
れる。
When forming an MO8IC2 made of 801vt using an uninvented method, a conventional selective oxidation method or the like is applied to one side of a silicon (s plate) substrate, for example, an 8i substrate, on a J knee shown in Fig. 2 (a). For example, Ukina 6G (G)
A first silicon dioxide (S' (Jy) insulator of about
)) Using a method, for example, a non-doped polycrystalline S1 layer 4 of about 5000 (λ) diameter is entirely formed on the substrate. Ru.

仄いて紀2図(01に示ずよろCC1前記多結晶Si層
4上に素子形成領域2の上部欠壊う累1の窒化シ111
 ’/ (Si、N4)膜6を設けて通常の選択熱酸化
全行い、多結晶S1層4上に素子形成領域2金画定する
7Hu)810.絶縁膜3とほぼ等しい厚さの第2(1
)SiO,絶縁膜7全形成する。な2挨m2の840.
絶縁膜7の下部には多結晶S1層4が残っていなければ
ならす、その厚ちは2000〜3000〔λ〕径程度望
ましい。従って第2のSin、絶縁膜7により素子形成
領域2は画定逼れているのみで、分離されていない。
2 (not shown in Fig. 01) CC1 The nitrided silicon 111 of the upper part of the element formation region 2 is broken on the polycrystalline Si layer 4.
'/ (Si, N4) film 6 is provided, normal selective thermal oxidation is carried out, and an element formation region 2 is defined on the polycrystalline S1 layer 4 (7Hu)810. The second (1
) SiO, insulating film 7 is completely formed. 840.
The polycrystalline S1 layer 4 must remain under the insulating film 7, and its thickness is preferably about 2000 to 3000 [λ] diameter. Therefore, the element formation region 2 is only defined by the second Sin insulating film 7 and is not separated.

次いで第2図Pjに示すように、該基板上2SiO。Then, as shown in FIG. 2Pj, 2SiO is deposited on the substrate.

絶縁膜3及゛び7の吸収波長帯91〜94〔μm〕に発
振波長金合わせた炭酸ガス(COt)の連続波レーザ・
ビームLC(+、によって走査し、該レー+1ヶ吸収し
て昇温した第t o)8 i02絶縁膜3及び第2の3
i02絶縁膜7孕介して多結晶Sj1m4y加熱し順次
接融して、単結晶St基板1上7J1ら第1O)SIO
2絶縁膜3上に向って順次単結晶Sit研5ka長して
行く。(図中mは走査方向矢印し、4′は81溶融領域
う igこcで多結晶S i 層4下’tf& Ol 第1
0.) S i 02絶縁膜3にレーザ・ビームが到達
するの1は、上記波長のレーザに対して81層が透明で
あることによる。
A carbon dioxide gas (COt) continuous wave laser whose oscillation wavelength is matched to the absorption wavelength band 91 to 94 [μm] of the insulating films 3 and 7.
Scanned by the beam LC(+), the ray +1 was absorbed and the temperature was increased.
The polycrystalline Sj1m4y is heated through the i02 insulating film 7 and sequentially welded to form 7J1 and 1st O) SIO on the single crystal St substrate 1.
The length of the single-crystal SIT layer is increased by 5ka toward the top of the second insulating film 3. (In the figure, m indicates an arrow in the scanning direction, and 4' indicates the 81 molten region below the polycrystalline Si layer 4'tf&Ol 1st
0. ) The reason why the laser beam reaches the S i 02 insulating film 3 is that the 81 layer is transparent to the laser of the above wavelength.

又第1のSin、絶縁膜3と第2のsiu、絶縁膜7の
厚さケはぼ等しく形成したのは、全領域の多結晶Si層
4tはぼ均一な温度に加熱するためである。
The reason why the first Si, insulating film 3, second SIU, and insulating film 7 are formed to have approximately the same thickness is to heat the polycrystalline Si layer 4t over the entire region to an almost uniform temperature.

そして父上記レーザービームの強さは、所望のスポット
径の走査スピードに於て多結晶3i層4が充分に溶融さ
れる強さであれば良く、上記5i02絶縁膜3及び7の
厚さ、多結晶81層4の厚さに於て、例えばビーム・ス
ポット径約100[μm〕。
The intensity of the above-mentioned laser beam may be such that the polycrystalline 3i layer 4 is sufficiently melted at the scanning speed of the desired spot diameter. Regarding the thickness of the crystal 81 layer 4, for example, the beam spot diameter is about 100 [μm].

走査スピード5〜1OCcIrL/SeC〕の場合30
〜40(W〕程度が適切であった。
Scanning speed 5-1OCcIrL/SeC] 30
~40 (W) was appropriate.

更に又図示しないが、琳1のSin、絶縁膜3上部の多
結晶81層上に薄い第3<7)SiO,絶縁膜を形成し
たり、多結晶Si層全全形成る際その厚さ孕基板面上と
m 1 o) S i02絶縁膜上で変えたシするCと
により、多結晶Si層の溶は具合?更に微妙に調節する
ことが可能である。
Furthermore, although not shown in the drawings, a thin 3<7) SiO insulating film is formed on the polycrystalline 81 layer on the Sin insulating film 3, and the thickness of the polycrystalline Si layer is changed when the entire polycrystalline Si layer is formed. How is the polycrystalline Si layer melted by changing the C on the substrate surface and on the m1o) Si02 insulating film? Further fine adjustment is possible.

次いで第2図に)に示すように、上記工程により形成嘔
れた単結晶3i層5上に素子形成領域2奮選択的に覆う
第2のSt、N、膜8?形底し、通常の選択熱酸化?行
い、第2の8i、N、l@sに覆われでいない領域の単
結晶Si層全全底部で完全に酸化し、前記第2の5in
2絶縁膜7が拡大して形rly、てれた第2′の510
2絶縁膜71により各第1の340、絶縁膜3上の単結
晶SI層5間才完全に分離する。
Next, as shown in FIG. 2), a second St, N, film 8 is formed to selectively cover the element formation region 2 on the single crystal 3i layer 5 that has been formed in the above steps. Shaped bottom and normal selection thermal oxidation? The entire bottom of the single crystal Si layer in the area not covered by the second 8i, N, l@s is completely oxidized, and the second 5in
2 insulating film 7 is enlarged to form rly and protruding 2'th 510
The single crystal SI layers 340 and 5 on each first insulating film 3 are completely separated by the second insulating film 71.

以後第1のS io2絶縁絶縁及3肌2′の810!絶
縁膜7′によって島状に分離された前記ノン・ドープ単
結晶3i層5にイオン注入等の方法デ用G)て所望の導
電型?何カした後、通常のMO8ICの製造方法に従っ
て、第2図(ホに示すように該所望の導電型?有する各
単結晶Si層5′面に例えば多結晶S1絶縁ゲート9及
びノース・ドレイン領域10 a、 10 b k形成
し、次いで図示しないが絶縁膜の形成、電極コンタクト
窓の形成、配線形成等がな芒れでSOI構造のMO8I
Cが提供されるO 彦2本発明の方法は上記実施例に限らず、基体として8
1層2用いることが可能であり、これによりICが絶縁
膜を介して積層てれてなる三次元I(I=影形成ること
ができる。
After that, 1st S io2 insulation insulation and 3 skin 2' 810! G) Using a method such as ion implantation into the non-doped single crystal layer 5 separated into islands by the insulating film 7', the desired conductivity type is obtained. After several steps, a polycrystalline S1 insulated gate 9 and a north drain region are formed on the 5' surface of each single crystal Si layer having the desired conductivity type, as shown in FIG. 10a, 10bk are formed, and then, although not shown, an insulating film is formed, an electrode contact window is formed, wiring is formed, etc., to form an SOI structure MO8I.
The method of the present invention is not limited to the above embodiments, and the method of the present invention is not limited to the above embodiments.
It is possible to use one layer and two layers, thereby making it possible to form a three-dimensional I (I=shadow) in which ICs are laminated with an insulating film interposed therebetween.

jgl  発明の効シー 以上d発明したように本発明によればSOI構造を形成
する際の多結晶〕11コンF#(1)単結晶化工程に於
て、レーザ・ビーム走査により単結晶シリコン基板にi
[に接する領域の多結晶71197層と絶縁1換上部領
域の多結晶シリコン層とケ殆んど等しい温度にカロ熱づ
−ることかできる。
jgl EFFECTS OF THE INVENTION According to the invention, according to the present invention, in the single crystallization process, a single crystal silicon substrate is formed by laser beam scanning. ni i
It is possible to heat the polycrystalline 71197 layer in the region in contact with the polycrystalline silicon layer and the polycrystalline silicon layer in the insulating upper region to almost the same temperature.

そのため上記谷狽域七の年結晶比されたシ1ノコノ層の
界面VC温度差によって発生する応力が大幅に減少し、
単結晶シリコン)→の剥1ii1c 、り゛7ツク等の
欠陥が防止される。
Therefore, the stress generated by the interfacial VC temperature difference of the Shi1 Nokono layer compared to the above-mentioned Tanigai area 7 is greatly reduced,
Defects such as single-crystal silicon peeling and cracking are prevented.

従って本発明は801構造の半導体装11警の製造歩留
まり向上に有効である。
Therefore, the present invention is effective in improving the manufacturing yield of semiconductor devices having an 801 structure.

な8本発明の技術はバイポーラICにも適用できる。又
絶縁膜は二酸化シ11コン膜に限らなG1゜
The technology of the present invention can also be applied to bipolar ICs. In addition, the insulating film is limited to G1゜ silicon dioxide film.

【図面の簡単な説明】[Brief explanation of the drawing]

m1図1−を従来ノSOI (S i l 1con 
On In5ulator)構造形成方法の工程断面図
で、第2図は本発明Q)方法に於ける一笑施例の工程断
面図である。 図に於て、lはシリコン基板、2は累子形収領域、3は
第1の二酸化シリコン絶縁膜、4は多結晶シリコンrm
、cはシリコン溶融領域、5は単結晶シリコン層、6に
第1の窒化シリコン膜、7は第2の二酸化シリコン絶縁
膜、I、Co2は遅絖波炭酸ガス・レーザ・ビーム、【
]lj:走査方向矢印しt示す。
m1 Figure 1- to conventional SOI (S i l 1con
FIG. 2 is a process cross-sectional view of an example of method Q) of the present invention. In the figure, l is a silicon substrate, 2 is a reticulated storage region, 3 is a first silicon dioxide insulating film, and 4 is a polycrystalline silicon rm.
, c is a silicon melting region, 5 is a single crystal silicon layer, 6 is a first silicon nitride film, 7 is a second silicon dioxide insulating film, I, Co2 are slow wave carbon dioxide laser beams, [
]lj: Scanning direction arrow indicates t.

Claims (1)

【特許請求の範囲】[Claims] 単結晶シリコン基体上に選択的に第1の絶縁膜を形成し
、該単結晶シリコン基板上に多結晶シリコン層金形成し
、該多結晶シリコン層に於ける少なくとも前記単結晶シ
リコン基体に直に接する領域の上面に第2の絶縁膜?形
成し、シfJ)る後該基体面葡連続波炭酸ガス・レーザ
により走査して前記多結晶シリコン/Fl?単結晶シリ
コン基体上の1ら第1の絶、縁膜上に向って順次溶融単
結品化する工程?有することを特徴とする半導体装置の
製造方法。
selectively forming a first insulating film on a single-crystal silicon substrate; forming a polycrystalline silicon layer on the single-crystal silicon substrate; A second insulating film on the top surface of the contact area? After forming and scanning the substrate surface with a continuous wave carbon dioxide laser, the polycrystalline silicon/Fl? Is it a process of sequentially melting the first insulation layer on the monocrystalline silicon substrate and turning it into a single product? A method for manufacturing a semiconductor device, comprising:
JP57171219A 1982-09-30 1982-09-30 Manufacture of semiconductor device Pending JPS5961117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171219A JPS5961117A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171219A JPS5961117A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5961117A true JPS5961117A (en) 1984-04-07

Family

ID=15919244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171219A Pending JPS5961117A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5961117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183145A (en) * 1988-01-18 1989-07-20 Fujitsu Ltd Manufacture of soi semiconductor device
CN112701033A (en) * 2020-12-29 2021-04-23 济南晶正电子科技有限公司 Preparation method of composite substrate, composite substrate and composite film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183145A (en) * 1988-01-18 1989-07-20 Fujitsu Ltd Manufacture of soi semiconductor device
CN112701033A (en) * 2020-12-29 2021-04-23 济南晶正电子科技有限公司 Preparation method of composite substrate, composite substrate and composite film
CN112701033B (en) * 2020-12-29 2022-03-15 济南晶正电子科技有限公司 Preparation method of composite substrate, composite substrate and composite film

Similar Documents

Publication Publication Date Title
JPS5939790A (en) Production of single crystal
JPS5961117A (en) Manufacture of semiconductor device
JPS59148322A (en) Manufacture of semiconductor device
JPS59121823A (en) Fabrication of single crystal silicon film
JPS5885520A (en) Manufacture of semiconductor device
JPS6342417B2 (en)
JPS58175844A (en) Manufacture of semiconductor device
JPS5825220A (en) Manufacture of semiconductor substrate
JPS5856457A (en) Manufacture of semiconductor device
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPH0236050B2 (en)
JPS58180019A (en) Semiconductor base body and its manufacture
JPS59158515A (en) Manufacture of semiconductor device
JPS59163817A (en) Substrate for semiconductor device
JPS61201414A (en) Manufacture of semiconductor single crystal layer
JPS5948532B2 (en) Manufacturing method of semiconductor device
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JPH03284831A (en) Forming method for semiconductor thin-film
JPS5961118A (en) Manufacture of semiconductor device
JPS6038809A (en) Manufacture of semiconductor device
JPS5919311A (en) Manufacture of semiconductor device
JPH0243331B2 (en)
JPS5893218A (en) Manufacture of semiconductor thin film structure
JPS62130510A (en) Manufacture of semiconductor substrate
JPS5919312A (en) Manufacture of semiconductor device