JPS62130510A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPS62130510A
JPS62130510A JP26935785A JP26935785A JPS62130510A JP S62130510 A JPS62130510 A JP S62130510A JP 26935785 A JP26935785 A JP 26935785A JP 26935785 A JP26935785 A JP 26935785A JP S62130510 A JPS62130510 A JP S62130510A
Authority
JP
Japan
Prior art keywords
island
recrystallized
semiconductor
silicon
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26935785A
Other languages
Japanese (ja)
Inventor
Shigenobu Akiyama
秋山 重信
Genichi Yamazaki
山崎 弦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP26935785A priority Critical patent/JPS62130510A/en
Publication of JPS62130510A publication Critical patent/JPS62130510A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable crystal growth to be accomplished in a minute island by using the laser recrystallization process two times in forming a monocrystalline SOI (Silicon On Insulator) Si island. CONSTITUTION:A polycrystalline Si island 3 which is surrounded by SiO2 so as to be insulated and isolated is formed on an Si substrate 1. Then, a laser beam is applied to the island 3 to fuse and set it, and recrystallize it. Next, a recrystallized Si island 3' is selectively removed, leaving a portion thereof. Then, an amorphous Si island 4 is formed so as to cover the partially left island 3'. Next, the island 4 is recrystallized by irradiation with a laser beam. As a result, a recrystallized Si island 4' of good quality is obtained. Since a portion of the first recrystallized Si becomes a seed crystal and becomes a definite nucleus of crystal growth, stable crystal growth is accomplished, and thus the SiO recrystallized Si island 4 formed by the above manufacturing method becomes a nearly perfect monocrystalline Si island.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、30 I (Sem1conductor 
0nInsulator )構造素子を形成するための
半導体基体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to 30 I (Sem1 conductor
0nInsulator) relates to a method for manufacturing a semiconductor substrate for forming a structural element.

従来の技術 SOI構造素子は、低消費電力、高速処理を実現する素
子として期待されており、特に基盤要素技術としてのS
O工結晶形成技術に関する研究が精力的に行われている
。8102などの絶縁物基体上に形成された多結晶やア
モルファスのシリコン層をレーザや電子ビームなどのエ
ネルギービームの照射によシ溶融再結晶化する技術の研
究開発が特に盛んに行われている。〔B 、R、App
leton &G、に、 Cellar編 レーザー 
アントエレクトロンビーム インタラクンラン ウィズ
 ソリッド(La5er and Rlectron−
Beam interactionwith 5oli
ds)、 North−Holland、New Yo
rk。
Conventional technology SOI structural elements are expected to be devices that realize low power consumption and high-speed processing, and in particular, SOI structural elements are expected to realize low power consumption and high-speed processing.
Research on O-technical crystal formation technology is being actively conducted. Particularly active research and development is being carried out on a technique for melting and recrystallizing a polycrystalline or amorphous silicon layer formed on an insulating substrate such as 8102 by irradiating it with an energy beam such as a laser or an electron beam. [B, R, App
Leton & G, Cellar Edition Laser
Ant Electron Beam Interacunlan with Solid (La5er and Relectron-
Beam interaction with 5oli
ds), North-Holland, New York
rk.

(1982))  良好な結晶品質の再結晶化層を得る
ために、従来より、種々の工夫がされている。
(1982)) Various attempts have been made to obtain recrystallized layers with good crystal quality.

種結晶を用いる結晶化法としてのブリッジングエビタキ
シー法やラテラルシープイツトビームアニーリング法で
は、種結晶としての半導体基板の開口部よシ結晶成長が
生ずるために、原理的には結晶方位が側脚され良質な結
晶が得られる筈であるが、実際には、ヒートフローの側
脚性の困難さにより種結晶からの単結晶の成長は高々数
1Qμmの距離であり、大面積の単結晶化は困難である
In the bridging epitaxy method and lateral seed beam annealing method, which are crystallization methods using a seed crystal, crystal growth occurs from the opening of the semiconductor substrate serving as the seed crystal, so in principle, the crystal orientation is However, in reality, due to the difficulty of the lateral nature of heat flow, single crystal growth from a seed crystal is at most several Qμm, and single crystallization over a large area is difficult. Have difficulty.

一方、種結晶を用いない結晶化法は、積層SO工影形成
とって有利であり、数10μm角の微小なSOエシリコ
ン島をレーザ照射によシ形成する方法においては、再結
晶シリコン島は比較的良質な結晶であるが、種結晶がな
いために安定な結晶成長の核が存在せず未だ、結晶粒界
がかなシ存在する。
On the other hand, the crystallization method that does not use a seed crystal is advantageous for the formation of laminated SO etching. Although the crystal is of good quality, since there is no seed crystal, there is no nucleus for stable crystal growth, and grain boundaries still exist.

発明が解決しようとする問題点 しかしながら、結晶粒界の存在する再結晶層に形成した
sor素子では、リーク電流の発生や易動度の低下など
の特性劣化が生ずる。したがって、LSI、特に次世代
の超LSIとしてのSO工素子を実現するためには、素
子の活性領域に、結晶粒界の存在しない単結晶SOI基
体を形成することが要求される。
Problems to be Solved by the Invention However, in a SOR element formed in a recrystallized layer where grain boundaries exist, characteristic deterioration such as generation of leakage current and decrease in mobility occurs. Therefore, in order to realize SO devices as LSIs, especially next-generation VLSIs, it is required to form a single-crystal SOI substrate free of grain boundaries in the active region of the device.

問題点を解決するための手段 本発明は、前記問題点を解決するために、SO工微小シ
リコン島のレーザ照射による再結晶化法において、2回
のレーザ再結晶化工程を用いるものであシ、第1回目で
形成された再結晶シリコン島の一部を種結晶として用い
、アモルファスシリコンで再び形成したシリコン島を第
2回目のレーザ照射により結晶粒界のない単結晶SOエ
シリコン島を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses two laser recrystallization steps in a recrystallization method by laser irradiation of SO-processed microsilicon islands. Using a part of the recrystallized silicon island formed in the first time as a seed crystal, the silicon island formed again with amorphous silicon is irradiated with a second laser to provide a single crystal SO silicon island without grain boundaries. It is something.

作用 第2回目のレーザ照射においては、アモルファスシリコ
ンは溶融するが単結晶シリコンは溶融しない条件で再結
晶化するために第1回目の再結晶化で形成した一部の単
結晶シリコンが種結晶となりこれが安定な結晶成長の核
となシ、微小島内で安定な結晶成長が実現され、単結晶
SOIシリコン島が形成できる。
In the second laser irradiation, a part of the single crystal silicon formed in the first recrystallization becomes a seed crystal in order to recrystallize under the conditions that the amorphous silicon melts but the single crystal silicon does not melt. This becomes a nucleus for stable crystal growth, and stable crystal growth is realized within the micro-island, forming a single-crystal SOI silicon island.

実施例 以下に、本発明の実施列を第1図に従って示す。Example Below, an implementation sequence of the present invention is shown according to FIG.

第1図は、本発明の工程手順を示すものであシ、第1図
の’ + ’ + gは断面図、b、c、d、fは、平
面図である。シリコン基板1上に5i022に囲まれて
絶縁分離された厚さ0.5μmの多結晶シリコンの島3
をたとえばLPCVD法など通常用いられているIC製
造プロセスによシ形成する。
FIG. 1 shows the process steps of the present invention; ' + ' + g in FIG. 1 is a sectional view, and b, c, d, and f are plan views. A polycrystalline silicon island 3 with a thickness of 0.5 μm surrounded by 5i022 and insulated and isolated on a silicon substrate 1
is formed by a commonly used IC manufacturing process such as the LPCVD method.

(第1図のa) 次に第1図のbに示すように、多結晶シリコン島3にレ
ーザビームBi照射して熔融固化し、再結晶化する。こ
のとき、レーザビームBとして、たとえば、CWArレ
ーザの2〜16W、走査速度10tyyt/seeを用
いた。再結晶化後のシリコン島イは、比較的良質の結晶
となるが、第1図のCに示すように、いくつかの結晶粒
界人の発生をまぬがれ得ない。
(a in FIG. 1) Next, as shown in b in FIG. 1, the polycrystalline silicon island 3 is irradiated with a laser beam Bi to melt and solidify and recrystallize. At this time, as the laser beam B, for example, a CWAr laser of 2 to 16 W and a scanning speed of 10 tyyt/see was used. After recrystallization, the silicon island A becomes a crystal of relatively good quality, but as shown in C in FIG. 1, some crystal grain boundaries cannot be avoided.

次に、通常のIC製造プロセスで用いられているフォト
リングラフィ技術およびエツチング技術を用いて、再結
晶化シリコン島3′を選択的に除去しその一部を第1図
のdに示すように、残す。続いて、第1図のeに示すよ
うに、eoo℃以下の低温CVD法やプラズマ励起堆積
法などによシ形成したアモルファスシリコンの島4を一
部残存した再結晶シリコン3′を覆うようにして含み、
再び形成する。
Next, the recrystallized silicon island 3' is selectively removed using photolithography and etching techniques used in the normal IC manufacturing process, and a portion of it is removed as shown in d of FIG. ,leave. Subsequently, as shown in Fig. 1e, amorphous silicon islands 4 formed by low temperature CVD or plasma-enhanced deposition at temperatures below 00°C are made to partially cover the remaining recrystallized silicon 3'. including,
Form again.

次に第1図のfに示すように、第1回目のレーザ照射再
結晶化と同様にレーザビームBの照射によシアモルフア
ルシリコンの島4を再結晶化する。
Next, as shown at f in FIG. 1, the islands 4 of sheamorphous silicon are recrystallized by irradiation with the laser beam B, similar to the first laser irradiation recrystallization.

このときのレーザ照射条件として、アモルファスシリコ
ン4は熔融するが結晶シリコン3′は熔融しない条件た
とえば、結晶シリコンが熔融する最小のパワーより約1
0%〜30%程度小さいパワーの条件で照射することが
望ましい。即ちアモルファスシリコン4の方が結晶シリ
コン&’t’Jもレーザビームの吸収係数が1〜2桁程
度大きいことを利用する。〔徳山繊細、研究が急速に広
がるレーサー畢アニール技術1日経エレクトロニクス。
The laser irradiation conditions at this time are such that the amorphous silicon 4 is melted but the crystalline silicon 3' is not melted, for example, about 1
It is desirable that the irradiation be performed at a power that is approximately 0% to 30% lower. That is, it is utilized that the amorphous silicon 4 has a laser beam absorption coefficient that is about 1 to 2 orders of magnitude larger than that of crystalline silicon &'t'J. [Nikkei Electronics, Tokuyama Delicatessen, research on racer-fin annealing technology that is rapidly expanding.

1979年6月11日号、P120.(1979))こ
の結果、第1図のgに示す断面構造の良質の再結晶化シ
リコン島4′が得られる。
June 11, 1979 issue, P120. (1979)) As a result, a recrystallized silicon island 4' of good quality having the cross-sectional structure shown in g in FIG. 1 is obtained.

M2図は、第1回目の再結晶化後に、再結晶化シリコン
島の一部を残す方法の別の列の工程説明図である。
Diagram M2 is a process explanatory diagram of another row of a method for leaving a part of the recrystallized silicon island after the first recrystallization.

第2図でaは平面図、b、c、dは断面図である。In FIG. 2, a is a plan view, and b, c, and d are sectional views.

多結晶シリコン島3′をレーザビームB照射によシ再結
晶化すると(第2図の2L)、第2図のbに示すように
、再結晶化シリコン島3′のレーザビームB走査の終端
部で、再結晶シリコンの高さ約1〜1.5μmの盛り上
がi)Cが発生する。この状態でHFとHNO3混液系
のエツチング液により再結晶化シリコン島3′を適当な
時間たとえば、厚さ0.5〜0.8μm程度のシリコン
がエツチングされる時間でエツチングする。この結果、
第2図のCに示すように、再結晶シリコン島3′の大部
分は除去され、盛9上がった厚い部分Cの一部のみが島
の跡の端部に残る。この状態で第1図の6に示す工程と
同様にアモルファスシリコンの島4を形成し、レーザビ
ームBを第1回目のレーザ照射と逆の方向(矢印で示す
)に走査、即ち、第1回目の再結晶化シリコン3′が残
存している島端部がレーザ走査の始点になるように走査
すればよい。(第2図のd) 第1図に示す方法を1回用いても尚、いくつか、  の
結晶粒界が再結晶化シリコン島に発生する場合、この方
法を多数回用いてもよいことは言うまでもない。
When the polycrystalline silicon island 3' is recrystallized by laser beam B irradiation (2L in FIG. 2), as shown in FIG. A protuberance i) C of recrystallized silicon with a height of about 1 to 1.5 μm occurs at the portion. In this state, the recrystallized silicon island 3' is etched using an etching solution containing a mixture of HF and HNO3 for an appropriate time, for example, a time that is sufficient to etch silicon having a thickness of about 0.5 to 0.8 .mu.m. As a result,
As shown in FIG. 2C, most of the recrystallized silicon islands 3' are removed and only a portion of the raised thick portion C remains at the end of the island trace. In this state, an amorphous silicon island 4 is formed in the same manner as in the step 6 in FIG. The laser scan may be performed such that the end of the island where the recrystallized silicon 3' remains becomes the starting point of the laser scan. (D in Figure 2) If the method shown in Figure 1 is used once and some grain boundaries still occur in the recrystallized silicon islands, it is possible to use this method multiple times. Needless to say.

発明の効果 以上の方法によシ形成したSOI再結晶化シリ、  コ
ン島は、言わゆる種なし再結晶化法にもがかわらず、第
1回目の再結晶化シリコンの一部が種結晶となり、明確
な結晶成長の核となるために、安定な結晶成長が実現さ
れ、はぼ完全に近い単結晶シリコン島となる。従って本
発明は、LSIあるいは超LSIのレベルでの単結晶S
OI構造、あるいは、3次元積層素子を実現する上での
飛躍的な前進をもたらすものと言える発明である。
Despite the so-called seedless recrystallization method, the SOI recrystallized silicon formed by a method that exceeds the effects of the invention, Kong Island, is caused by a part of the first recrystallized silicon becoming a seed crystal. , since it becomes a clear nucleus for crystal growth, stable crystal growth is achieved, resulting in a near-perfect single-crystal silicon island. Therefore, the present invention provides single crystal S at the LSI or VLSI level.
This invention can be said to bring about a dramatic advance in realizing OI structures or three-dimensional stacked devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の工程流れ図を示し、同’ 
r ’ r gは断面図、同す、c、d、fは平面図、
第2図は本発明の一部の他の実施例の工程流れ図を示し
、同aは平面図、同す、c、dは断面図である。 1・・・・・・シリコン基板、2・・・・・・Si 0
2.301010.多結晶シリコン島、4・・・・・−
アモルファスシリコン島、3/ 、 4/・・・・・再
結晶化シリコン島、ム・・・・・・結晶粒界、B・・・
・・・レーザビーム。 特許出願人 工業技術院長 等々力 達第2図
FIG. 1 shows a process flow chart of one embodiment of the present invention.
r' r g is a cross-sectional view, c, d, f are plan views,
FIG. 2 shows a process flow chart of some other embodiments of the present invention, in which a is a plan view and FIGS. 2, c, and d are cross-sectional views. 1... Silicon substrate, 2... Si 0
2.301010. Polycrystalline silicon island, 4...-
Amorphous silicon island, 3/, 4/... Recrystallized silicon island, Mu... Grain boundary, B...
...Laser beam. Patent applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 2

Claims (1)

【特許請求の範囲】[Claims] 絶縁物基体上に完全絶縁分離した非単結晶半導体の島を
形成する工程と、前記非単結晶半導体の島にエネルギー
ビームを照射して再結晶化する工程と、前記再結晶化し
た半導体の島の一部を残してエッチング除去する工程と
、前記残存した再結晶半導体を含んで前記半導体の島を
アモルファス半導体により再び形成する工程と、前記再
び形成した半導体の島にアモルファス半導体を溶融し単
結晶半導体を溶融しない条件でエネルギービームを照射
して、再び前記半導体の島を再結晶化する工程とを備え
たことを特徴とする半導体基体の製造方法。
a step of forming a completely insulated non-single crystal semiconductor island on an insulating substrate, a step of recrystallizing the non-single crystal semiconductor island by irradiating the non-single crystal semiconductor island with an energy beam, and a step of recrystallizing the recrystallized semiconductor island. a step of etching away leaving a part of the recrystallized semiconductor, a step of re-forming the semiconductor island with an amorphous semiconductor including the remaining recrystallized semiconductor, and a step of melting the amorphous semiconductor into the re-formed semiconductor island to form a single crystal. A method for manufacturing a semiconductor substrate, comprising the step of recrystallizing the semiconductor islands again by irradiating the semiconductor with an energy beam under conditions that do not melt the semiconductor.
JP26935785A 1985-12-02 1985-12-02 Manufacture of semiconductor substrate Pending JPS62130510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26935785A JPS62130510A (en) 1985-12-02 1985-12-02 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26935785A JPS62130510A (en) 1985-12-02 1985-12-02 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS62130510A true JPS62130510A (en) 1987-06-12

Family

ID=17471251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26935785A Pending JPS62130510A (en) 1985-12-02 1985-12-02 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS62130510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970003805A (en) * 1995-06-26 1997-01-29 김주용 Semiconductor device manufacturing method
JP2014103248A (en) * 2012-11-20 2014-06-05 Japan Steel Works Ltd:The Laser processing method and laser processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194517A (en) * 1981-05-27 1982-11-30 Toshiba Corp Manufacture of semiconductor crystal film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194517A (en) * 1981-05-27 1982-11-30 Toshiba Corp Manufacture of semiconductor crystal film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970003805A (en) * 1995-06-26 1997-01-29 김주용 Semiconductor device manufacturing method
JP2014103248A (en) * 2012-11-20 2014-06-05 Japan Steel Works Ltd:The Laser processing method and laser processing apparatus

Similar Documents

Publication Publication Date Title
US4448632A (en) Method of fabricating semiconductor devices
JPH0454370B2 (en)
JPS59161014A (en) Crystallization of semiconductor thin film
JPS5939790A (en) Production of single crystal
JPS60143624A (en) Manufacture of semiconductor device
JPS62130510A (en) Manufacture of semiconductor substrate
KR20060061201A (en) Single crystal substrate and fabrication method thereof
JPS59121823A (en) Fabrication of single crystal silicon film
JPS59128292A (en) Method for crystallizing thin film
JPS6147627A (en) Manufacture of semiconductor device
JP2699325B2 (en) Method for manufacturing semiconductor device
JPS5939791A (en) Production of single crystal
JPS59184517A (en) Manufacture of lamination-type semiconductor device
JPS60246621A (en) Manufacture of semiconductor crystal layer
JPH0236052B2 (en)
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JPS58175844A (en) Manufacture of semiconductor device
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JPH0354819A (en) Manufacture of soi substrate
JPS59224114A (en) Manufacture of single crystal semiconductor thin-film
JP2793241B2 (en) SOI formation method
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPS62226621A (en) Forming method for single crystal silicon thin film
JPS6055614A (en) Manufacture of film of semiconductor single crystal
JPS61125122A (en) Manufacture of semiconductor thin film crystal layer