JPH027414A - Formation of soi thin film - Google Patents

Formation of soi thin film

Info

Publication number
JPH027414A
JPH027414A JP15685688A JP15685688A JPH027414A JP H027414 A JPH027414 A JP H027414A JP 15685688 A JP15685688 A JP 15685688A JP 15685688 A JP15685688 A JP 15685688A JP H027414 A JPH027414 A JP H027414A
Authority
JP
Japan
Prior art keywords
film
thin film
silicon oxide
oxide film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15685688A
Other languages
Japanese (ja)
Inventor
Kenichi Koyama
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15685688A priority Critical patent/JPH027414A/en
Publication of JPH027414A publication Critical patent/JPH027414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form an SOI thin film in a uniform thickness by a method wherein an insulating film having regularly protruding and recessed parts on an extremely thin film is formed, a semiconductor film having a film thickness capable of sufficiently absorbing a laser beam is formed on it, this film is then irradiated with the laser beam and heated, the extremely thin film is heated, melted and recrystallized and, after that, all upper-layer films are removed. CONSTITUTION:A silicon oxide film 2 and a polysilicon oxide film 3 are formed one after another on a silicon substrate 1. A silicon oxide film is formed on them; a stripe pattern is processed; after that, a silicon oxide film is formed on it; a silicon oxide film 4 having protruding and recessed parts is formed. Lastly, a polysilicon film 5 is formed. The surface of a substrate where these films have been constituted is irradiated with an argon gas laser; when this laser is scanned, the polysilicon film 5 is heated, melted and recrystallized by the laser. The heat accumulated in the polysilicon film 5 is conducted to the polysilicon thin film 3; this film is heated, melted and recrystallized. After that, the silicon film 5 and the silicon oxide film 4 are removed; an SOI substrate having a single-crystal silicon thin film with a film thickness of about 0.1mum or lower is formed on the silicon oxide film 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は5ol(セミコンダクタ・オン・インシュレー
タ、Sem1conductor on In5ula
tor)基板をレーザビームアニールすることによって
絶縁層上に単結晶半導体の薄膜を形成する方法に関する
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to 5ol (semiconductor on insulator).
tor) A method for forming a thin film of single crystal semiconductor on an insulating layer by laser beam annealing a substrate.

(従来の技術) 従来、SO■構造を有する単結晶半導体膜を絶縁層上に
形成するためには、絶縁層上に形成された多結晶あるい
は非晶質半導体膜をレーザにより加熱・溶融Φ再結晶化
して単結晶化する方法を用いていた。しかしながら、目
的の単結晶半導体膜が極薄い場合、例えば、膜厚0.1
μm程度の場合には、多結晶あるいは非晶質半導体薄膜
の薄さ由にレーザ光を十分に吸収することが難しく、そ
のため溶融φ再結晶化・単結晶化が困難であった。
(Prior art) Conventionally, in order to form a single crystal semiconductor film having an SO structure on an insulating layer, a polycrystalline or amorphous semiconductor film formed on an insulating layer is heated and melted using a laser. The method used was to crystallize it into a single crystal. However, if the target single crystal semiconductor film is extremely thin, for example, the film thickness is 0.1
In the case of about .mu.m, it is difficult to sufficiently absorb laser light due to the thinness of the polycrystalline or amorphous semiconductor thin film, and therefore it is difficult to melt φ recrystallization and single crystallization.

そこで、膜厚0.1μm程度の単結晶半導体薄膜を絶縁
層上に形成する場合には以下の方法をとっていた。まず
、図2(a)に 示す様に、半導体基板としてシリコン
基板1、絶縁膜として膜厚1μmのシリコン酸化膜2、
半導体膜とじて膜厚0.5μmの多結晶シリコン膜3を
順次形成する。この時、半導体の膜厚は、アルゴンガス
レーザ光を吸収するのに十分な膜厚である。この基板を
レーザビームアニールすることにより、多結晶シリコン
膜3を加熱・溶融・再結晶化させていた。その後、図2
(b)に示す様に多結晶シリコン膜3を膜厚0.1 μ
m以下になるまで、多結晶シリコン膜3を研磨やエツチ
ングにより極薄い薄膜へと加工していた。
Therefore, when forming a single crystal semiconductor thin film with a thickness of about 0.1 μm on an insulating layer, the following method has been used. First, as shown in FIG. 2(a), a silicon substrate 1 is used as a semiconductor substrate, a silicon oxide film 2 with a thickness of 1 μm is used as an insulating film, and
A polycrystalline silicon film 3 having a thickness of 0.5 μm is sequentially formed as a semiconductor film. At this time, the film thickness of the semiconductor is sufficient to absorb the argon gas laser light. By subjecting this substrate to laser beam annealing, the polycrystalline silicon film 3 was heated, melted, and recrystallized. After that, Figure 2
As shown in (b), the polycrystalline silicon film 3 has a thickness of 0.1 μm.
The polycrystalline silicon film 3 was processed into an extremely thin film by polishing or etching until the thickness was less than m.

(楠他、第35回応用物理学関係連合講演会講演予稿集
第2分冊613ページ、29a−M−4)(発明が解決
しようとする課題) しかしながら、レーザアニールにより再結晶化させたシ
リコン膜3を研磨やエツチングにより、0.1μm程度
の設定膜厚に精度良く薄膜化することは困難である。す
なわち、研磨は、シリコン基板1の下側の底面に平行な
面で進むため、使用したシリコン基板1の上側、下側の
底面が完全に平行でなければ、基板全面を均一に極薄い
薄膜とすることは難しい。また、研磨速度、エツチング
速度にも基板内完全均一が要求されるが、現存する研磨
法の研磨速度は、0.1μm以下の薄膜を形成するため
には十分ではない。
(Kusuno et al., Proceedings of the 35th Applied Physics Conference, Part 2, page 613, 29a-M-4) (Problem to be solved by the invention) However, the silicon film recrystallized by laser annealing It is difficult to accurately thin the film to a set thickness of about 0.1 μm by polishing or etching. In other words, polishing proceeds in a plane parallel to the lower bottom surface of the silicon substrate 1, so if the upper and lower bottom surfaces of the silicon substrate 1 used are not completely parallel, the entire surface of the substrate will be uniformly coated with an extremely thin film. It's difficult to do. Furthermore, complete uniformity within the substrate is required for the polishing rate and etching rate, but the polishing rate of existing polishing methods is not sufficient to form a thin film of 0.1 μm or less.

本発明の目的は、0.1μm程度あるいはそれ以下のS
OI薄膜を厚さを均一に形成する方法を提供することを
目的とする。
The object of the present invention is to
An object of the present invention is to provide a method for forming an OI thin film with a uniform thickness.

(課題を解決するための手段) 本発明は、少なくとも表面に絶縁層を存する基板上に多
結晶あるいは非晶質半導体からなる極薄い薄膜を形成し
た後、その上に規則的な凹凸を有する絶縁膜を形成し、
その上にレーザ光を十分に吸収できる膜厚を有する多結
晶あるいは非晶質半導体膜を形成した後、レーザ光を照
射し、前記多結晶あるいは非晶質半導体膜を十分に加熱
し、前記多結晶あるいは非晶質半導体膜からの熱伝導に
より、前記多結晶あるいは非晶質からなる極薄い薄膜を
加熱・溶融して再結晶化した後、前記極薄い半導体薄膜
より上層のすべての膜を除去することを特徴とするSO
I薄膜形成方法である。
(Means for Solving the Problems) The present invention involves forming an extremely thin film made of a polycrystalline or amorphous semiconductor on a substrate having an insulating layer on at least the surface, and then forming an insulating film having regular irregularities thereon. form a film,
After forming a polycrystalline or amorphous semiconductor film having a thickness sufficient to absorb laser light thereon, laser light is irradiated to sufficiently heat the polycrystalline or amorphous semiconductor film. Heat conduction from the crystalline or amorphous semiconductor film heats and melts the ultra-thin polycrystalline or amorphous thin film to recrystallize it, and then removes all films above the ultra-thin semiconductor film. SO characterized by
This is a thin film forming method.

(実施例) 以下、本発明について実施例を用いて説明する。本実施
例においては、半導体膜として多結晶シリコン膜、絶縁
膜としてシリコン酸化膜、表面に絶縁層を有する基板と
して、表面にシリコン酸化膜を形成したシリコン基板、
レーザとしてアルゴンガスレーザを用いている。
(Example) Hereinafter, the present invention will be explained using Examples. In this example, a polycrystalline silicon film is used as a semiconductor film, a silicon oxide film is used as an insulating film, and a silicon substrate with a silicon oxide film formed on its surface is used as a substrate having an insulating layer on its surface.
An argon gas laser is used as the laser.

第1(a)図は、レーザアニールを施す試料の断面図で
ある。まず、第1(a)図に示す様に、シリコン基板1
上にシリコン酸化膜2、ポリシリコン酸化膜3、をCV
D法によりそれぞれ膜厚1.0μta 10.1 tt
mと順次形成する。この上に膜厚0.1μmのシリコン
酸化膜を形成し、この膜を10μm幅、15μmピッチ
のストライプパターンに加工した後、その上に膜厚0.
1μmのシリコン酸化膜を形成し、15μmピッチで0
.1μmの凹凸のついたシリコン酸化膜4婚作成する。
FIG. 1(a) is a cross-sectional view of a sample subjected to laser annealing. First, as shown in FIG. 1(a), a silicon substrate 1
CVD silicon oxide film 2 and polysilicon oxide film 3 on top.
Film thickness: 1.0 μta 10.1 tt by method D
Formed sequentially with m. A silicon oxide film with a thickness of 0.1 μm is formed on this, and this film is processed into a stripe pattern with a width of 10 μm and a pitch of 15 μm.
A 1 μm silicon oxide film is formed with a pitch of 15 μm.
.. Four silicon oxide films with 1 μm unevenness are created.

最後に膜厚0.5μ[のポリシリコン膜5を形成する。Finally, a polysilicon film 5 having a thickness of 0.5 μ is formed.

上記の膜構成の基板の表面にレーザーパワー12ワツト
のアルゴンガスレーザを速度5mm/seeで照射、走
査した場合、ポリシリコン膜5はレーザにより加熱され
、溶融し、再結晶化する。ポリシリコン膜5に蓄えらだ
熱は、シリコン酸化膜4を媒体として、ポリシリコン薄
膜3に伝導され、ポリシリコン薄膜3を加熱・溶融・再
結晶化する。この時、シリコン酸化膜4の薄い部分が厚
い部分より熱が伝導されやすいので、ポリシリコン薄膜
3中では、シリコン酸化膜4の薄い部分の下で温度が高
く、シリコン酸化膜4の厚い部分の下で温度が低くなる
。その結果、ポリシリコン薄膜3中では、温度が低い部
分から再結晶化がすすみ、シリコン酸化膜4の厚い部分
の下に単結晶シリコン薄膜が形成される。
When the surface of the substrate having the above film structure is irradiated and scanned with an argon gas laser having a laser power of 12 watts at a speed of 5 mm/see, the polysilicon film 5 is heated by the laser, melted, and recrystallized. The heat accumulated in the polysilicon film 5 is conducted to the polysilicon thin film 3 using the silicon oxide film 4 as a medium, and heats, melts, and recrystallizes the polysilicon thin film 3. At this time, heat is conducted more easily in the thinner part of the silicon oxide film 4 than in the thicker part, so in the polysilicon thin film 3, the temperature is higher under the thinner part of the silicon oxide film 4, and the temperature in the thicker part of the silicon oxide film 4 is higher. The temperature is lower at the bottom. As a result, in the polysilicon thin film 3, recrystallization proceeds from the lower temperature portion, and a single crystal silicon thin film is formed under the thicker portion of the silicon oxide film 4.

ポリシリコン薄膜3の再結晶化後に、シリコン膜5、シ
リコン酸化膜4をエツチングにより除去し、シリコン酸
化膜2上に膜厚0.1μmの単結晶シリコン薄膜を有す
るSOI基板が作成される。
After recrystallizing polysilicon thin film 3, silicon film 5 and silicon oxide film 4 are removed by etching, and an SOI substrate having a single crystal silicon thin film with a thickness of 0.1 μm on silicon oxide film 2 is created.

本実施例においては、半導体膜として多結晶シリコン膜
、絶縁膜としてシリコン酸化膜、表面に絶縁層を有する
基板として表面にシリコン酸化膜を訂するシリコン基板
、レーザとしてアルゴンガスレーブを用いたが、他の種
類の多結晶半導体膜あるいは非晶質半導体膜、他の種類
の半導体酸化膜、窒化膜、他の表面に絶縁層を有する基
板、他の種類のレーザを用いても良い。
In this example, a polycrystalline silicon film was used as the semiconductor film, a silicon oxide film was used as the insulating film, a silicon substrate with a silicon oxide film on the surface was used as the substrate having an insulating layer on the surface, and an argon gas slave was used as the laser. Other types of polycrystalline semiconductor films or amorphous semiconductor films, other types of semiconductor oxide films or nitride films, other types of substrates having insulating layers on their surfaces, and other types of lasers may be used.

(発明の効果) 以上のように本発明によれば、膜厚0.1μm程度ある
いはそれ以下の単結晶薄膜を絶縁層上に膜厚精度良く均
一に形成することが可能になる。
(Effects of the Invention) As described above, according to the present invention, a single crystal thin film having a thickness of about 0.1 μm or less can be formed uniformly and accurately on an insulating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における試料の断面図、第2図
は従来例における試料の断面図である。 図中の番号は以下のものを示す。 1、はシリコン基板、2.4、はシリコン酸化膜、3、
はポリシリコン膜である。
FIG. 1 is a sectional view of a sample in an embodiment of the present invention, and FIG. 2 is a sectional view of a sample in a conventional example. The numbers in the figure indicate the following. 1, silicon substrate, 2.4, silicon oxide film, 3,
is a polysilicon film.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも表面に絶縁層を有する基板上に多結晶あるい
は非晶質半導体からなる極薄い薄膜を形成した後、その
上に規則的な凹凸を有する絶縁膜を形成し、その上にレ
ーザ光を十分に吸収できる膜厚を有する多結晶あるいは
非晶質半導体膜を形成した後、レーザ光を照射し、前記
多結晶あるいは非晶質半導体膜を十分に加熱し、前記多
結晶あるいは非晶質半導体膜からの熱伝導により、前記
多結晶あるいは非晶質半導体からなる極薄い薄膜を加熱
・溶融して再結晶化した後、前記極薄い半導体薄膜より
上層の全ての膜を除去することを特徴とするSOI薄膜
形成方法。
After forming an extremely thin film made of polycrystalline or amorphous semiconductor on a substrate that has an insulating layer on at least the surface, an insulating film with regular irregularities is formed on top of it, and a laser beam is sufficiently applied on top of the insulating film. After forming a polycrystalline or amorphous semiconductor film having a thickness that allows absorption, laser light is irradiated to sufficiently heat the polycrystalline or amorphous semiconductor film, and the polycrystalline or amorphous semiconductor film is removed. SOI characterized in that, after heating and melting the ultra-thin thin film made of polycrystalline or amorphous semiconductor to recrystallize it by heat conduction, all films above the ultra-thin semiconductor thin film are removed. Thin film formation method.
JP15685688A 1988-06-27 1988-06-27 Formation of soi thin film Pending JPH027414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15685688A JPH027414A (en) 1988-06-27 1988-06-27 Formation of soi thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15685688A JPH027414A (en) 1988-06-27 1988-06-27 Formation of soi thin film

Publications (1)

Publication Number Publication Date
JPH027414A true JPH027414A (en) 1990-01-11

Family

ID=15636875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15685688A Pending JPH027414A (en) 1988-06-27 1988-06-27 Formation of soi thin film

Country Status (1)

Country Link
JP (1) JPH027414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467731A (en) * 1993-02-26 1995-11-21 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor structure including a recrystallized film
US6039560A (en) * 1996-01-31 2000-03-21 Sanyo Electric Co., Ltd. Low NOx burner and method of controlling recirculation of exhaust gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132311A (en) * 1985-12-04 1987-06-15 Fujitsu Ltd Recrystallizing method for conductor film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132311A (en) * 1985-12-04 1987-06-15 Fujitsu Ltd Recrystallizing method for conductor film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467731A (en) * 1993-02-26 1995-11-21 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor structure including a recrystallized film
US6039560A (en) * 1996-01-31 2000-03-21 Sanyo Electric Co., Ltd. Low NOx burner and method of controlling recirculation of exhaust gas

Similar Documents

Publication Publication Date Title
JPH084067B2 (en) Method for manufacturing semiconductor device
JP2603418B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JPH027415A (en) Formation of soi thin film
JPH027414A (en) Formation of soi thin film
US4678538A (en) Process for the production of an insulating support on an oriented monocrystalline silicon film with localized defects
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JP2817613B2 (en) Method for forming crystalline silicon film
JPH0442358B2 (en)
JPS6265317A (en) Wafer structure for formation of semiconductor single crystal film
JPS5825220A (en) Manufacture of semiconductor substrate
JPH03284831A (en) Forming method for semiconductor thin-film
JPH027416A (en) Formation of soi thin film
JPH06140324A (en) Method of crystallizing semiconductor film
JPH02226718A (en) Production of unsingle crystal semiconductor
JPS5958821A (en) Manufacture of semiconductor single crystal film
JP2892321B2 (en) Semiconductor device and manufacturing method thereof
JPS6083322A (en) Crystallizing method of semiconductor thin-film
JPH03280418A (en) Manufacture of semiconductor film
JPS6216509A (en) Manufacture of substrate for semiconductor device
JPH01162321A (en) Manufacture of semiconductor single crystal layer
JPS627116A (en) Manufacture of soi single crystal
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPS62165908A (en) Forming method for single crystal thin-film
JPS6126598A (en) Preparation of germanium thin film crystal
JPH04246819A (en) Manufacture of semiconductor thin film