JPH027416A - Formation of soi thin film - Google Patents

Formation of soi thin film

Info

Publication number
JPH027416A
JPH027416A JP15685888A JP15685888A JPH027416A JP H027416 A JPH027416 A JP H027416A JP 15685888 A JP15685888 A JP 15685888A JP 15685888 A JP15685888 A JP 15685888A JP H027416 A JPH027416 A JP H027416A
Authority
JP
Japan
Prior art keywords
film
silicon
oxide film
semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15685888A
Other languages
Japanese (ja)
Inventor
Kenichi Koyama
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15685888A priority Critical patent/JPH027416A/en
Publication of JPH027416A publication Critical patent/JPH027416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form an SOI thin film in a uniform thickness by a method wherein a semiconductor film capable of sufficiently absorbing a laser beam is formed on a semiconductor oxide film having regularly protruding and recessed parts, the film is then irradiated with the laser beam and heated, an extremely thin film is heated, melted and recrystallized and, after that, all upper-layer films are removed. CONSTITUTION:A film of a semiconductor oxide film is processed to be a stripe pattern; after that, a silicon oxide film is formed on it; a silicon oxide film 6 having protruding and recessed parts is formed. The surface of a substrate where these films have been constituted is irradiated with an argon gas laser and the laser is scanned; a recrystallization process progresses in a silicon oxide film 3 from a low-temperature part; a single-crystal silicon thin film is formed under thick parts of the polysilicon oxide film 6. The polysilicon oxide thin film 3 is recrystallized; after that, a silicon film 7 is dried and removed. Then, the polysilicon oxide film 6 is removed. Then, a silicon nitride film 5 is removed; lastly, a silicon oxide film 4 is removed. Thereby, an SOI substrate having a single-crystal silicon thin film of about 0.1mum or lower can be formed on a silicon oxide film 2 with better accuracy in a film thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、5OI(セミコンダクタ・オン・インシュレ
2り、Sem1conductor on In5ul
ator)基板をレーザビームアニールすることによっ
て絶縁層上に単結晶半導体の薄膜を形成する方法に関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to 5OI (semiconductor on insulation).
ator) A method for forming a thin film of a single crystal semiconductor on an insulating layer by laser beam annealing a substrate.

(従来の技術) 従来、SOI構造を有する単結晶半導体膜を絶縁層上に
形成するためには、絶縁層上に形成された多結晶あるい
は非晶質半導体膜をレーザにより加熱・溶融・再結晶化
して単結晶化する方法を用いていた。しかしながら、目
的の単結晶半導体膜が極薄い場合、例えば、膜厚0.1
pm程度の場合には、多結晶あいろは非晶質半導体薄膜
の薄さ由にレーザ光を十分に吸収することが難しく、そ
のため溶融・再結晶化・単結晶化が困難であった。
(Prior art) Conventionally, in order to form a single crystal semiconductor film having an SOI structure on an insulating layer, a polycrystalline or amorphous semiconductor film formed on the insulating layer is heated, melted, and recrystallized using a laser. The method used was to convert it into single crystals. However, if the target single crystal semiconductor film is extremely thin, for example, the film thickness is 0.1
In the case of about pm, it is difficult for polycrystalline aluminum to sufficiently absorb laser light due to the thinness of the amorphous semiconductor thin film, and therefore it is difficult to melt, recrystallize, and form a single crystal.

そこで、膜厚0.1μm程度の単結晶半導体薄膜を絶縁
層上に形成する場合には以下の方法をとっていた。まず
、第2図(a)に示す様に、半導体基板としてシリコン
基板1、絶縁膜として膜厚111mシリコン酸化膜2、
半導体膜として膜厚0.5pmの多結晶シリコン膜3を
順次形成する。この時、半導体膜の膜厚は、アルゴンガ
スレーザ光を吸収するのに十分な膜厚である。この基板
をレーザアニールすることにより、多結晶シリコン膜3
を加熱・溶融・再結晶化させていた。その後、図2(b
)に示すように多結晶シリコン膜3を膜厚0.1pm以
下になるまで、多結晶シリコン膜3を研磨やエツチング
により極薄い薄膜へと加工していた。(楠他、第35回
応用物理学関係連合講演会講演予稿集第2分冊613ペ
ージ、29a−M−4)(発明か解決しようとする課題
) しかしながら、レーザアニールにより再結晶化させたシ
リコン膜3を研磨やエツチングにより0.1pm程度の
設定膜厚に精度良く薄膜化することは困難である。すな
わち、研磨は、シリコン基板1の下側の底面に平行な面
で進むため、使用したシリコン基板1の上側、下側の底
面が完全に平行でなければ、基板全面を均一に極薄い薄
膜とすることは難しい。また、研磨速度エツチング速度
にも基板内完全均一が要求されるが、現在する研磨法の
研磨速度は、0.1pm以下の薄膜を形成するためには
十分でない。
Therefore, when forming a single crystal semiconductor thin film with a thickness of about 0.1 μm on an insulating layer, the following method has been used. First, as shown in FIG. 2(a), a silicon substrate 1 is used as a semiconductor substrate, a silicon oxide film 2 with a thickness of 111 m is used as an insulating film,
A polycrystalline silicon film 3 having a thickness of 0.5 pm is successively formed as a semiconductor film. At this time, the thickness of the semiconductor film is sufficient to absorb the argon gas laser beam. By laser annealing this substrate, a polycrystalline silicon film 3
was heated, melted, and recrystallized. After that, Fig. 2(b)
As shown in ), the polycrystalline silicon film 3 was processed into an extremely thin film by polishing or etching until the thickness of the polycrystalline silicon film 3 became 0.1 pm or less. (Kusuno et al., Proceedings of the 35th Applied Physics Conference, Part 2, page 29a-M-4) (Problem to be solved by invention) However, the silicon film recrystallized by laser annealing It is difficult to accurately reduce the thickness of 3 to a set thickness of about 0.1 pm by polishing or etching. In other words, polishing proceeds in a plane parallel to the lower bottom surface of the silicon substrate 1, so if the upper and lower bottom surfaces of the silicon substrate 1 used are not completely parallel, the entire surface of the substrate will be uniformly coated with an extremely thin film. It's difficult to do. Further, the polishing rate and etching rate are also required to be completely uniform within the substrate, but the polishing rate of the current polishing method is not sufficient to form a thin film of 0.1 pm or less.

本発明の目的は0.1pm程度あるいはそれ以下のSO
I薄膜を厚さを均一に形成する方法を提供することを目
的とする。
The purpose of the present invention is to reduce SO to about 0.1 pm or less.
An object of the present invention is to provide a method for forming an I thin film with a uniform thickness.

(課題を解決するための手段) 本発明は、少なくとも表面に絶縁層を有する基板上に多
結晶あるいは非晶質半導体からなる極薄い薄膜を形成し
た後、半導体酸化膜と半導体窒化膜を順次形成し、その
上に規則的な凹凸を有する半導体酸化膜を形成し、その
上にレーザ光を十分に吸収できる膜厚を有する多結晶あ
るはい非晶質半導体膜を形成した後、レーザ光を照射し
、前記多結晶あるいは非晶質半導体膜を十分に加熱し、
前記多結晶あるいは非晶質半導体膜からの熱伝導により
、前記多結晶あるいは非晶質半導体からなる極薄い薄膜
を加熱・溶融して再結晶化した後、前記極薄い半導体薄
膜より上層の全ての膜を除去することを特徴とするSO
I薄膜形成方法である。
(Means for Solving the Problems) The present invention forms an extremely thin film made of polycrystalline or amorphous semiconductor on a substrate having an insulating layer on at least the surface, and then sequentially forms a semiconductor oxide film and a semiconductor nitride film. Then, a semiconductor oxide film with regular irregularities is formed on top of that, and after forming a polycrystalline or amorphous semiconductor film with a film thickness sufficient to absorb laser light, irradiation with laser light is performed. and sufficiently heating the polycrystalline or amorphous semiconductor film,
After heating and melting the extremely thin film made of the polycrystalline or amorphous semiconductor and recrystallizing it by heat conduction from the polycrystalline or amorphous semiconductor film, all of the layers above the extremely thin semiconductor film are SO characterized by removing the film
This is a thin film forming method.

(実施例) 以下、本発明について実施例を用いて説明する。本実施
例においては、半導体膜として多結晶シリコン膜、半導
体酸化膜としてシリコン酸化膜、半導体窒化膜としてシ
リコン窒化膜、表面に絶縁層を有する基板として表面に
シリコン酸化膜を形成したシリコン基板、レーザとして
アルゴンガスレーザを用いている。
(Example) Hereinafter, the present invention will be explained using Examples. In this example, a polycrystalline silicon film is used as the semiconductor film, a silicon oxide film is used as the semiconductor oxide film, a silicon nitride film is used as the semiconductor nitride film, a silicon substrate with a silicon oxide film formed on the surface as the substrate having an insulating layer on the surface, and a laser. An argon gas laser is used.

第1図(a)は、レーザアニールを施す試料の断面図で
ある。まず、第1図(a)に示す様に、シリコン基板1
上にシリコン酸化膜2、ポリシリコン薄膜3、シリコン
酸化膜4、シリコン窒化膜5をそれぞれ膜厚1、Opm
、0.1pm、0.1pm、0.1pmとCVD法で順
次形成する。この上に膜厚0.1pmのシリコン酸化膜
を形成し、この膜を10pm幅、1511mピッチのス
トライプパターンに加工した後、その上に膜厚0.1p
mのシリコン酸化膜を形成し、1511mピッチで0.
1pmの凹凸のついたシリコン酸化膜6とする。最後に
膜厚0.5pmのポリシリコン膜7を形成する。
FIG. 1(a) is a cross-sectional view of a sample subjected to laser annealing. First, as shown in FIG. 1(a), a silicon substrate 1
A silicon oxide film 2, a polysilicon thin film 3, a silicon oxide film 4, and a silicon nitride film 5 are deposited on top, each with a film thickness of 1 Opm.
, 0.1 pm, 0.1 pm, and 0.1 pm by CVD method. A silicon oxide film with a thickness of 0.1 pm is formed on this, and after processing this film into a stripe pattern with a width of 10 pm and a pitch of 1511 m, a film with a thickness of 0.1 pm is formed on it.
A silicon oxide film with a thickness of 1,511 m and a pitch of 1,511 m is formed.
The silicon oxide film 6 is made to have an unevenness of 1 pm. Finally, a polysilicon film 7 with a thickness of 0.5 pm is formed.

上記の膜構成の基板の表面にレーザパワー12ワツトの
アルゴンガスレーザを速度5mm/seeで照射、走査
した場合、ポリシリコン膜7はレーザにより加熱され、
溶融し再結晶化する。ポリシリコン膜7に蓄えられた熱
は、シリコン酸化膜6、シリコン窒化膜5、シリコン酸
化膜4を媒体として、ポリシリコン薄膜3に伝導され、
ポリシリコン薄膜3を加熱・溶融・再結晶化する。この
時シリコン酸化膜6の薄い部分が厚い部分より、熱が伝
導されやすいので、ポリシリコン薄膜3中では、シリコ
ン酸化膜6の薄い部分の下で温度が高く、シリコン酸化
膜6の厚い部分の下で温度が低くなる。その結果、ジノ
コン薄膜3中では温度が低い部分から再結晶化がすすみ
、ポリシリコン酸化膜6の厚い部分の下に単結晶シリコ
ン薄膜が形成される。ここで注意したいのは、シリコン
膜の溶融温度においてはシリコン酸化膜は軟化する点で
ある。このため、シリコン窒化膜5がないと薄いシリコ
ン酸化膜4とシリコン薄膜3の界面形状は変形し易く、
その結果、シリコン薄膜3の膜厚は不均一になり易い。
When the surface of the substrate with the above film structure is irradiated and scanned with an argon gas laser with a laser power of 12 watts at a speed of 5 mm/see, the polysilicon film 7 is heated by the laser,
Melt and recrystallize. The heat stored in the polysilicon film 7 is conducted to the polysilicon thin film 3 using the silicon oxide film 6, silicon nitride film 5, and silicon oxide film 4 as a medium.
The polysilicon thin film 3 is heated, melted, and recrystallized. At this time, heat is conducted more easily in the thinner part of the silicon oxide film 6 than in the thicker part, so in the polysilicon thin film 3, the temperature is higher under the thinner part of the silicon oxide film 6, and the temperature in the thicker part of the silicon oxide film 6 is higher. The temperature is lower at the bottom. As a result, recrystallization progresses in the Zinocon thin film 3 from the lower temperature portion, and a single crystal silicon thin film is formed under the thicker portion of the polysilicon oxide film 6. What should be noted here is that the silicon oxide film softens at the melting temperature of the silicon film. Therefore, without the silicon nitride film 5, the shape of the interface between the thin silicon oxide film 4 and the silicon thin film 3 is easily deformed.
As a result, the thickness of the silicon thin film 3 tends to become non-uniform.

極端な場合、シリコン薄膜3がなくなってしまう場所も
生じる。シリコン窒化膜5はシリコン薄膜3が溶融した
時でも十分に硬いので、シリコン薄膜3、シリコン酸化
膜4を上から押しつけ、シリコン薄膜3の表面平坦性を
確保し、膜厚の均一性を高める。また、シリコン窒化膜
5からシリコン薄膜3へ窒素が導入されてしまうことを
防止する目的で、シリコン窒化膜5とシリコン薄膜3の
間にシリコン酸化膜4を挿入した。
In extreme cases, there may be places where the silicon thin film 3 is missing. Since the silicon nitride film 5 is sufficiently hard even when the silicon thin film 3 is melted, the silicon thin film 3 and the silicon oxide film 4 are pressed from above to ensure the surface flatness of the silicon thin film 3 and improve the uniformity of the film thickness. Further, in order to prevent nitrogen from being introduced from the silicon nitride film 5 to the silicon thin film 3, a silicon oxide film 4 was inserted between the silicon nitride film 5 and the silicon thin film 3.

ポリシリコン薄膜3の再結晶化後に、シリコン膜7をド
ライまたはウェットエツチングにより除去する。次にシ
リコン酸化膜6をウェットエツチング(エッチャントは
例えばバッフアートフッ酸)により除去する。この時、
シリコン窒化膜5はエツチングのストッパーの役割を果
たしシリコン酸化膜6の表面凹凸が、シリコン酸化膜4
、シリコン薄膜3に転写されるのを防止する。次にシリ
コン窒化膜5をウェットエツチング(エッチャントは例
えば沸騰したリン酸丹こより除去する。この時、シリコ
ン酸化膜4は、やはりエツチングのストッ“バーの役割
を果たし、シリコン薄膜3の表面に、エツチングによる
ダメージが入るのを防止する。最後にシリコン酸化膜4
をウェットエツチング(エッチャントは例えばバッフア
ートフッ酸)により除去する。
After recrystallizing polysilicon thin film 3, silicon film 7 is removed by dry or wet etching. Next, the silicon oxide film 6 is removed by wet etching (the etchant is buffered hydrofluoric acid, for example). At this time,
The silicon nitride film 5 acts as an etching stopper, and the surface unevenness of the silicon oxide film 6
, to prevent it from being transferred to the silicon thin film 3. Next, the silicon nitride film 5 is removed by wet etching (the etchant is removed using boiling phosphoric acid, for example. At this time, the silicon oxide film 4 still plays the role of an etching stopper, and the surface of the silicon thin film 3 is etched). 4.Finally, silicon oxide film 4
is removed by wet etching (the etchant is buffered hydrofluoric acid, for example).

以上の工程により、シリコン酸化膜2上に膜厚0.1p
mの単結晶シリコン薄膜を有するSOI基板を、より膜
厚精度良く作成できる。
Through the above steps, a film with a thickness of 0.1p is formed on the silicon oxide film 2.
An SOI substrate having a monocrystalline silicon thin film of m thickness can be created with higher film thickness accuracy.

本実施例においては、半導体膜として多結晶シリコン膜
、半導体酸化膜としてシリコン酸化膜、半導体窒化膜と
してシリコン窒化膜、表面に絶縁層を有する基板として
表面にシリコン酸化膜を有するシリコン基板、レーザと
してアルゴンガスレーザを用いたが、他の種類の半導体
膜、あるいは非晶質半導体膜、他の種類の半導体酸化膜
、他の種類の半導体窒化膜、他の表面に絶縁層を有する
基板、他の種類のレーザを用いても良い。
In this example, a polycrystalline silicon film is used as a semiconductor film, a silicon oxide film is used as a semiconductor oxide film, a silicon nitride film is used as a semiconductor nitride film, a silicon substrate has a silicon oxide film on its surface as a substrate having an insulating layer on its surface, and a silicon substrate is used as a laser. Although an argon gas laser was used, other types of semiconductor films, amorphous semiconductor films, other types of semiconductor oxide films, other types of semiconductor nitride films, other types of substrates with insulating layers on their surfaces, other types of A laser may also be used.

(発明の効果) 以上のように本発明によれば、膜厚0.1μm程度ある
いはそれ以下の単結晶薄膜を絶縁層上に膜厚精度良く均
一に形成することが可能になる。また、シリコン窒化膜
5が存在するので、シリコン薄膜3が加熱・溶融・再結
晶化した時に、シリコン薄膜3の膜厚が変化することが
ない。さらに、試料上面から見て、シリコン薄膜3がな
い所は存在しない。それゆえ、シリコン酸化膜4を除去
する時にウェットエツチング液がシリコン酸化膜2を侵
触することがなく、製造プロセスの信頼性も増す。
(Effects of the Invention) As described above, according to the present invention, a single crystal thin film having a thickness of about 0.1 μm or less can be formed uniformly and accurately on an insulating layer. Further, since the silicon nitride film 5 is present, the thickness of the silicon thin film 3 does not change when the silicon thin film 3 is heated, melted, and recrystallized. Furthermore, when viewed from the top of the sample, there is no place where the silicon thin film 3 is not present. Therefore, when removing the silicon oxide film 4, the wet etching solution does not invade the silicon oxide film 2, and the reliability of the manufacturing process is increased.

さらに、シリコン窒化膜5がシリコン酸化膜6のウェッ
トエツチング時のストッパーになるので試料表面に存在
する凹凸が転写することがなく、シリコン薄膜3の膜厚
均一性は向上する。
Furthermore, since the silicon nitride film 5 serves as a stopper during wet etching of the silicon oxide film 6, the unevenness existing on the sample surface is not transferred, and the uniformity of the film thickness of the silicon thin film 3 is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における試料の断面図、第2図
は従来例における試料の断面図である。 図中の替号は以下のものを示す。 1はシリコン基板、2,4.6はシリコン酸化膜、3.
7はポリシリコン膜、5はシリコン窒化膜である。
FIG. 1 is a sectional view of a sample in an embodiment of the present invention, and FIG. 2 is a sectional view of a sample in a conventional example. The alternate numbers in the figure indicate the following. 1 is a silicon substrate, 2, 4.6 is a silicon oxide film, 3.
7 is a polysilicon film, and 5 is a silicon nitride film.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも表面に絶縁層を有する基板上に多結晶あるい
は非晶質半導体からなる極薄い薄膜を形成した後、半導
体酸化膜と半導体窒化膜を順次形成し、その上に規則的
な凹凸を有する半導体酸化膜を形成し、その上にレーザ
光を十分に吸収できる膜厚を有する多結晶あるいは非晶
質半導体膜を形成した後、レーザ光を照射し、前記多結
晶あるいは非晶質半導体膜を十分に加熱し、前記多結晶
あるいは非晶質半導体膜からの熱伝導により、前記多結
晶あるいは非晶質半導体からなる極薄い薄膜を加熱・溶
融して再結晶化した後、前記極薄い半導体薄膜より上層
の全ての膜を除去することを特徴とするSOI薄膜形成
方法。
After forming an extremely thin film made of polycrystalline or amorphous semiconductor on a substrate having an insulating layer on at least the surface, a semiconductor oxide film and a semiconductor nitride film are sequentially formed, and then a semiconductor oxide film having regular irregularities is formed on the semiconductor oxide film and the semiconductor nitride film. After forming a polycrystalline or amorphous semiconductor film on top of the film and forming a polycrystalline or amorphous semiconductor film having a thickness that can sufficiently absorb laser light, laser light is irradiated to fully absorb the polycrystalline or amorphous semiconductor film. After heating and recrystallizing the extremely thin film made of the polycrystalline or amorphous semiconductor by heat conduction from the polycrystalline or amorphous semiconductor film, the layer above the extremely thin semiconductor film is heated and melted. A method for forming an SOI thin film, characterized in that all of the films are removed.
JP15685888A 1988-06-27 1988-06-27 Formation of soi thin film Pending JPH027416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15685888A JPH027416A (en) 1988-06-27 1988-06-27 Formation of soi thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15685888A JPH027416A (en) 1988-06-27 1988-06-27 Formation of soi thin film

Publications (1)

Publication Number Publication Date
JPH027416A true JPH027416A (en) 1990-01-11

Family

ID=15636919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15685888A Pending JPH027416A (en) 1988-06-27 1988-06-27 Formation of soi thin film

Country Status (1)

Country Link
JP (1) JPH027416A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132311A (en) * 1985-12-04 1987-06-15 Fujitsu Ltd Recrystallizing method for conductor film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132311A (en) * 1985-12-04 1987-06-15 Fujitsu Ltd Recrystallizing method for conductor film

Similar Documents

Publication Publication Date Title
US4395433A (en) Method for manufacturing a semiconductor device having regions of different thermal conductivity
JPH084067B2 (en) Method for manufacturing semiconductor device
JPH027415A (en) Formation of soi thin film
JPH027416A (en) Formation of soi thin film
JPS621220A (en) Manufacture of defect localized orientation silicon monocrystalline film on insulation support
JPH027414A (en) Formation of soi thin film
JPS59114829A (en) Formation of silicon nitride film
JPS6265317A (en) Wafer structure for formation of semiconductor single crystal film
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JPS5825220A (en) Manufacture of semiconductor substrate
JPH0442358B2 (en)
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JP2892321B2 (en) Semiconductor device and manufacturing method thereof
JPH03284831A (en) Forming method for semiconductor thin-film
JPS6252923A (en) Method for insulating isolation of semiconductor layer by dielectric
JPH04214615A (en) Manufacture of semiconductor device
JPH01162321A (en) Manufacture of semiconductor single crystal layer
JPS6091622A (en) Manufacture of semiconductor substrate
JPS6246510A (en) Manufacture of semiconductor device
JPS62179112A (en) Formation of soi structure
JPS6149411A (en) Single crystallizing method of silicon film
JPS6184825A (en) Manufacture of semiconductor substrate
JPH01297814A (en) Manufacture of single crystal
JPH0223030B2 (en)
JPS61193423A (en) Manufacture of semiconductor device