JPS6091622A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPS6091622A
JPS6091622A JP58199050A JP19905083A JPS6091622A JP S6091622 A JPS6091622 A JP S6091622A JP 58199050 A JP58199050 A JP 58199050A JP 19905083 A JP19905083 A JP 19905083A JP S6091622 A JPS6091622 A JP S6091622A
Authority
JP
Japan
Prior art keywords
region
manufacturing
semiconductor substrate
semiconductor
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58199050A
Other languages
Japanese (ja)
Inventor
Yutaka Kobayashi
裕 小林
Hiroshi Suga
須賀 博
Akira Fukami
深見 彰
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58199050A priority Critical patent/JPS6091622A/en
Publication of JPS6091622A publication Critical patent/JPS6091622A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To equalize the facial direction of a semiconductor assuring the reliability of characteristics of the element formed on the surface of semiconductor by a method wherein a part of semiconductor layer is not crystallized as a region to be melted for regrowing process. CONSTITUTION:Polycrystalline Si layer 2 is formed on the surface of an optically ground quartz substrate 1 by CVD process later to form an Si island by dry etching process. Furthermore Si is etched excluding the region on the end of the side wherein recrystalization is to be started. The residual Si island and the exposed part of the substrate 1 is coated with the Si2 film 6. The substrate 1 thus formed may be melted to be regrown by means of zone-melting regrowing device.

Description

【発明の詳細な説明】 〔発明の利用分封〕 本発明は絶縁基板あるいは絶縁膜上に半導体単結晶薄膜
を形成してなる半導体基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Uses of the Invention] The present invention relates to a method for manufacturing a semiconductor substrate in which a semiconductor single crystal thin film is formed on an insulating substrate or an insulating film.

〔発明の背景〕[Background of the invention]

従来、絶縁基板として単結晶サファイヤあるいはマピネ
ル等を用い、この基板上に結晶化していないシリコン層
を気相成長(CV D : (:’hemicaIVa
por 、[)eposition )により形成し、
それを溶融再成長によって単結晶化する半導体基板の製
造方法が知られていfc、 Lかし、単結晶サファイヤ
あるいはスピネル等が高価な材料であるため、この構造
それ自体が一般化されるまでKは至らなかったものであ
る。
Conventionally, single-crystal sapphire or Mapinel is used as an insulating substrate, and an uncrystallized silicon layer is grown on this substrate by vapor phase growth (CVD: (:'hemicaIVa).
por, [)eposition),
A manufacturing method for semiconductor substrates is known in which semiconductor substrates are made into single crystals by melting and regrowing them.Since fc, L oak, single crystal sapphire, spinel, etc. are expensive materials, it will be difficult to manufacture semiconductor substrates until this structure itself becomes generalized. was not reached.

このため、絶縁基板として非晶質石英、ガラスあるいは
Si上に形成した非晶質s;0.膜等の廉価な材料を使
用し、この面上に結晶化されたsiを形成する方法が提
案されてきた。しかし、この方法の欠点は種結晶を使用
しないため、溶融再成長後の単結晶層の面方位の制御が
非常に困難な仁とである。一方、種結晶を使用する方法
として、単結晶Si上の5iQ2膜に突を形成しその上
に堆積した多結晶siを再成長させることによシ面方位
を制御する方法があるが、素子設計に自由度がなく、使
用しすらい。
For this reason, an amorphous s;0. Methods have been proposed to form crystallized Si on this surface using inexpensive materials such as films. However, the drawback of this method is that since no seed crystal is used, it is very difficult to control the plane orientation of the single crystal layer after melting and regrowth. On the other hand, as a method using a seed crystal, there is a method in which the crystal plane orientation is controlled by forming protrusions in the 5iQ2 film on single crystal Si and regrowing the polycrystalline Si deposited on the protrusions. There is no freedom in using it.

〔発1.1IlJの目的〕 本発明の目的i−J溶融再成長させた半導体単結晶領域
の面方位が一定となるように、シ、これにより各領域に
形成する素子の特性の信頼性を確保できる半導体基板の
製造方法を提供するにある。
[1.1 Purpose of IlJ] Purpose of the present invention To make the plane orientation of the i-J melted and regrown semiconductor single crystal region constant, thereby increasing the reliability of the characteristics of the elements formed in each region. An object of the present invention is to provide a method for manufacturing a semiconductor substrate that can be manufactured with high reliability.

〔発明の概要〕[Summary of the invention]

かかる目的を奏す本発明半導体基板の製造方法の特徴と
するところは、半導体層を溶融再成長する際に半導体層
の一部に結晶化から取り残された領域を生じさせる点に
ある。
A feature of the method for manufacturing a semiconductor substrate of the present invention that achieves the above object is that when the semiconductor layer is melted and regrown, a region left behind from crystallization is generated in a part of the semiconductor layer.

結晶化から取り残された領域を生じさせる具体的手段と
しては、半導体ノdの厚さ或いは幅を他の部分よシ大き
くして熱容量を大きくすること、溶融再成長時の加熱時
間或いは加熱温度を他の部分より小さくすること、更に
はこれらの組合せによって実現できる。
Specific means for creating a region left behind from crystallization include increasing the heat capacity by increasing the thickness or width of the semiconductor nozzle d compared to other parts, and increasing the heating time or heating temperature during melting and regrowth. It can be realized by making it smaller than other parts or by a combination of these parts.

結晶化から取シ残された領域は、半導体層の溶融再成長
が進行する方向の出発点付近に設けることが好ましい。
The region left behind from crystallization is preferably provided near the starting point in the direction in which melting and regrowth of the semiconductor layer progresses.

また、この結晶化から取シ残された領域は、半導体層が
大面積或いは細長い場合には略等間隔に複数個形成する
のが結晶性の点で好ましい。
Further, in the case where the semiconductor layer has a large area or is long and narrow, it is preferable to form a plurality of regions left after this crystallization at approximately equal intervals from the viewpoint of crystallinity.

このように結晶化から取勺残された領域を形成すると、
溶融再成長によって結晶化された領域はすべて(100
)の面方位にできるのである。この理由は定かではない
が、数多くの実験を通して発明者らにより確認され、再
現性よ< (100)の面方位を有する単結晶層が得ら
れることは事実である。
By forming the region left behind from crystallization in this way,
All regions crystallized by melt regrowth are (100
). Although the reason for this is not clear, it has been confirmed by the inventors through numerous experiments that it is true that a single crystal layer having a plane orientation of <(100) can be obtained with reproducibility.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を具体的実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to specific examples.

〔実m列l〕[Real m column l]

第1図において、厚さ500μInで表面を光学研摩し
た石英基板l上に厚さ1μmの多結晶5iN2をCVD
により形成しくa八その後ドライエッチによりll’!
30μm、長す80 pm(7)S rQ)gJ、3を
形成する(b)。さらに再結晶化が開始する側(再結晶
方向と逆方向)の端の領域4を残し0.25μmだけS
iをエツチングし、0.75μmの厚さにする(C)。
In Figure 1, polycrystalline 5iN2 with a thickness of 1 μm is deposited by CVD on a quartz substrate l with a thickness of 500 μIn and whose surface is optically polished.
After that, dry etching is performed to form ll'!
30 μm, 80 pm long (7)S rQ) gJ, 3 (b). Furthermore, a region 4 at the end on the side where recrystallization starts (in the direction opposite to the recrystallization direction) is left by 0.25 μm S.
i is etched to a thickness of 0.75 μm (C).

次に残ったSi膜島及び基板の露出部を1.2μmの5
j021漠6により被覆する(d)。このようにして形
成した基板を第2図に示すゾーンメルティング再成長装
置により溶融再成長させた。
Next, the remaining Si film islands and exposed parts of the substrate were
Covered by j021 6 (d). The thus formed substrate was melted and regrown using a zone melting regrowth apparatus shown in FIG.

第2図にしいて、11は石英管、12はワークコイル、
13はカーボンサセプタ、14は石英製支持台、15は
モーターで駆動される石英製押棒で、カーボンサセプタ
12の上面には長手方向と直交する帯域をあけてその両
側に加熱バッファ板16が配置され、高温領域と低温領
域が規定されている。17は第1 区:(d)に示す基
板である。この溶融再成長の結果、膜厚1.0μmの領
域4は溶融せず膜厚0,75μInの領域5では溶融再
成長が生じた。
In Figure 2, 11 is a quartz tube, 12 is a work coil,
13 is a carbon susceptor, 14 is a quartz support, 15 is a quartz push rod driven by a motor, and heating buffer plates 16 are arranged on both sides of the upper surface of the carbon susceptor 12 with a zone perpendicular to the longitudinal direction. , a high temperature region and a low temperature region are defined. 17 is the substrate shown in the first section (d). As a result of this melting and regrowth, region 4 with a film thickness of 1.0 .mu.m did not melt, but melting and regrowth occurred in region 5 with a film thickness of 0.75 .mu.In.

再成長した領域の面方位を調べたところ面方位は全て(
ioo)而であった。さらに、この再成長Si膜にnチ
ャネルMO8FET を作製したところ、表面のチャネ
ル移動度は600〜1000cm”/ V−へリーク電
流1O−13A/μmと良好な値が得られた。
When we investigated the plane orientation of the regrown region, all plane orientations were (
ioo) It was. Furthermore, when an n-channel MO8FET was fabricated on this regrown Si film, a good surface channel mobility of 600 to 1000 cm''/V- leakage current of 10-13 A/μm was obtained.

〔実施例2〕 実施例1では、S’島に膜厚の厚い個所と薄い個所を形
成した場合を示したが、第3図に示すように各Si島3
ごとに溶融再成長方向と直角をなす方向の幅の大きい部
分31と小さい部分32とを形成した場合に訃いても実
施例1と同様の結果が得られた。
[Example 2] In Example 1, a case was shown in which thick and thin parts were formed on the S' island, but as shown in Fig. 3, each Si island 3
The same results as in Example 1 were obtained even when a wide portion 31 and a narrow portion 32 in the direction perpendicular to the melting and regrowth direction were formed in each case.

〔実施例3〕 実施例1と同様の方法C石英基板上に膜厚0.75μm
の多結晶Si膜を形成する。このSi膜をドライエツチ
ングにより次に述べるパターンに加工する。素子を形成
するSi島21(本実施例では幅20μm1長さ80μ
m)を書結晶の方向に幅10μmのSL連結膜22で連
結し、再成長が開始する画の端に幅100μm1長さ2
rrsの島23(素子を形成するSi島21よシ大きい
)を形成し、この島23にそれぞれ素子を形成する複数
のSi島21と連結膜22からなる複数列の条状領域全
連結する(第4図)。
[Example 3] Same method as Example 1 C film thickness 0.75 μm on quartz substrate
A polycrystalline Si film is formed. This Si film is processed into the following pattern by dry etching. Si island 21 forming the element (in this example, the width is 20 μm and the length is 80 μm)
m) in the direction of the book crystal with a 10 μm wide SL connecting film 22, and a 100 μm wide 1 length 2 film at the edge of the picture where regrowth starts.
rrs islands 23 (larger than the Si islands 21 forming the elements) are formed, and on this island 23, all the striped regions of multiple rows consisting of the plurality of Si islands 21 forming the elements and the connecting film 22 are all connected ( Figure 4).

このようにして形成した多結晶Si膜表面を膜厚1.2
μm(7)CvDSjOz膜テvlaEした後実施1+
l11と同様溶融再成長を行った。その結果島23は一
部分しか溶融せず、そこから続く連結膜22及びSi島
21は全領域再結晶化しており、面方位を調べたところ
(100)面に配向していた。また実施例1と同様nチ
ャネルf\40Sl;’ETを作製したところ表面移動
度は600〜1000crn2/v−81リ一ク社流I
Q−1371/μmの特性が得られた。
The surface of the polycrystalline Si film formed in this way has a film thickness of 1.2
μm (7) CvDSjOz membrane test performed after vlaE 1+
Melt regrowth was performed in the same manner as 111. As a result, only a portion of the island 23 was melted, and the connecting film 22 and the Si island 21 continuing therefrom were all recrystallized, and when the plane orientation was examined, it was found to be oriented in the (100) plane. In addition, when an n-channel f\40Sl;'ET was prepared in the same manner as in Example 1, the surface mobility was 600 to 1000 crn2/v-81 Riik's I
A characteristic of Q-1371/μm was obtained.

本実施例にかいては端部に幅100μm長さ2闘の島2
3をもうけたが、これを素子を形成するSi島21よシ
大きな島で分割してもよい。また、基板内を複数のブロ
ックに分け、各ブロックに1つの割シ合で大きな島を形
成してもよい。
In this example, the end portion has a width of 100 μm and a length of 2 pieces.
3, but this may be divided into islands larger than the Si island 21 forming the element. Alternatively, the inside of the substrate may be divided into a plurality of blocks, and one large island may be formed in each block.

〔実施例4〕 実施例1と同様の方法で膜厚1μmの多結晶Siを形成
する。その後、素子を形成する領域のSt島41と、連
らなるSi島の列で再結晶化が開始する領域の端にSi
島42を少なくとも1ヶ以上形成し、それぞれの島を幅
10μmのBtで再結晶化が進む方向に連結膜43によ
り連結した形状にドライエッチする(第5図)。その後
、余分に形成したSi島42をのぞき他の領域41゜4
3を0.25μmエツチングした後、全面を膜厚1、2
μnlのCVD5’Oz膜で被覆する。その後、実施例
1.3と同様溶融再成長させた。
[Example 4] Polycrystalline Si having a thickness of 1 μm is formed in the same manner as in Example 1. After that, Si
At least one or more islands 42 are formed, and each island is dry-etched into a shape connected by a connecting film 43 in the direction in which recrystallization proceeds with Bt having a width of 10 μm (FIG. 5). After that, except for the extra formed Si island 42, the other regions 41°4
After etching 3 by 0.25 μm, the entire surface was etched with a film thickness of 1 and 2.
Coat with μnl of CVD 5'Oz film. Thereafter, it was melted and regrown in the same manner as in Example 1.3.

再成長させたSi島41の面方位を調べた結果、全て(
100)面であることが分った。実施例1と同様17)
工程テn −cbannel MOSFET を製作し
たところ、キャリアの移動度は600〜1200an”
 / V−8となシ、実施例1に比べ良好な結果が得ら
れた。この実施例4は実施例1と同様の方法で)溶ml
域を形成しているが、異なる点は)溶領域の後を細い連
結領域で連ねている点である。
As a result of examining the plane orientation of the regrown Si island 41, all (
100) surface. Same as Example 117)
When a n-cbannel MOSFET was manufactured, the carrier mobility was 600 to 1200 an''.
/V-8, better results were obtained than in Example 1. This Example 4 was prepared in a similar manner to Example 1)
The difference is that the melted area is followed by a thin connecting area.

5溶領域が含まれる島は表面に垂直な方位は(100)
となるので面方位は(100)である。
The direction perpendicular to the surface of the island containing 5 melting regions is (100)
Therefore, the surface orientation is (100).

しかし、表面に垂直な軸での回転方向の角度が異なるA
域が混在する。
However, A with different angles of rotation about the axis perpendicular to the surface
areas are mixed.

これに比べ5溶領域を會む島からその後に続く島を連結
することにより、連結領域で優勢な面方位が選択される
。即ち、軸の回転方向の角度もそろった(100)の単
結晶Si島が形成できる。
In contrast, by connecting the islands following the island that meets the five melting regions, the plane orientation that is dominant in the connected region is selected. In other words, single crystal Si islands with (100) angles in the rotation direction of the axes can be formed.

このため上述の如く移動度が大きく特性のばらつきも少
なかった。
Therefore, as mentioned above, the mobility was large and the variation in characteristics was small.

実施例3.4にしいては、熱容量の大きな3i島をチッ
プ端やウェハ端に形成したが、周9の素子に悪影響をあ
たえないならばチップ内等に形成してもよいことは明ら
かである。
In Example 3.4, the 3i islands with large heat capacity were formed at the edge of the chip or the edge of the wafer, but it is clear that they may be formed inside the chip, etc., as long as they do not adversely affect the elements on the periphery 9. .

〔実施例5〕 実施例1と同様の方法で膜厚0.75μIllの多結晶
Siを形成する。その後、素子を形成する領域とを形成
し、それぞれの島を幅10μmのSiの連結膜53で再
結晶化が進む方向に連結した形状にドライエッチする(
第6図)。この多結晶Si表1ffiKII&厚1.2
 p mノCV D −S j(h膜−t’muする。
[Example 5] A polycrystalline Si film having a thickness of 0.75 μIll is formed in the same manner as in Example 1. After that, a region where an element will be formed is formed, and each island is dry-etched into a shape in which the islands are connected in the direction of recrystallization by a Si connection film 53 with a width of 10 μm (
Figure 6). This polycrystalline Si table 1ffiKII & thickness 1.2
pm CV D - S j (h membrane - t'mu.

このようにして形成した後第2図に示す装置で溶融再結
晶するが、この時、余分のSi島52の間は高温領域の
移動速度を速く(例えば5〜100鴫/S)するか、あ
るいは、高温領域の温度を融点以下にする。余分のSi
島52が完全に通過する前に高温領域の移動速度を従来
の速度(例えば0.01〜2wn/sΣかあるいは従来
の高温領域温度(例えば1430〜1470t:” )
にすることによシ溶融再成長を開始させる。このように
することによシ溶融再成長が開始する領域が溶融しない
領域に接し実施例1.3.4と同様の効果が生じた。こ
のように形成した再結晶Biの面方位ft調べたところ
(100)に配向していた。
After being formed in this way, it is melted and recrystallized using the apparatus shown in FIG. Alternatively, the temperature of the high temperature region is lowered to below the melting point. extra Si
Before the island 52 completely passes through, the moving speed of the high temperature area is set to a conventional speed (for example, 0.01 to 2 wn/sΣ or a conventional high temperature area temperature (for example, 1430 to 1470 t:").
This causes melting and regrowth to begin. By doing this, the region where melting and regrowth starts comes into contact with the region where melting does not occur, and the same effect as in Example 1.3.4 was produced. When the plane orientation ft of the recrystallized Bi thus formed was examined, it was found to be oriented in (100).

以上示した実施例にνいて、多結晶5it−sるパター
ンに形成する手段としてドライエッチフグを使用したが
、ウェットエツチングであっても、またSi島間を81
0を膜等でうめるLOCO8(、[、ocal Qxi
dation of 3i1icon)等の技術を使用
してもよいことは明らかである。また、本実施例では非
晶質石英板上のSiを例にしたが、単結晶Siや多結晶
Si上に形成したS’Oz膜や5rsNa 膜上の34
であっても同様に適用できる。
In the example shown above, a dry etching blower was used as a means to form a polycrystalline 5-it-s pattern, but even wet etching can also be used to
LOCO8 (, [, ocal Qxi
It is clear that techniques such as dation of 3ilicon may also be used. In addition, in this example, Si on an amorphous quartz plate was used as an example, but the S'Oz film formed on single crystal Si or polycrystalline Si, or the
The same applies even if

被覆膜としてCvDSjO*膜を使用したが、他の形成
法例えばスパッタs fix膜であってもよいし、また
81MN4 膜や、5j(h膜とS+sNa膜の複合膜
であってもよい。被覆膜としては、融点が形成する半導
体の融点以上で、しかも高温で安定な膜であればいかな
る膜であってもよい。さらに、81ばかシでなく、()
eやGaAS+ GaP、InP。
Although a CvDSjO* film was used as the coating film, other formation methods such as a sputter s fix film may be used, or a composite film of an 81MN4 film or a 5j(h film and an S+sNa film) may be used. The covering film may be any film as long as it has a melting point higher than the melting point of the semiconductor to be formed and is stable at high temperatures.
e, GaAS+ GaP, InP.

等のm v族化合物半導体や、JnQaAsP 。mv group compound semiconductors such as JnQaAsP.

U a AtA s * <J a AtAs P等の
混晶系の半導体、さらにはu■族半導体に適用できるこ
とは容易に分かる。
It is easy to see that the present invention can be applied to mixed crystal semiconductors such as U a AtAs * < J a AtAs P, and further to u-group semiconductors.

また、溶融再成長法として、第2図に示す。高周波誘導
加熱を使用したゾーンメルティング再成長を例にしたが
、カーボンストリップヒータや、タングステンヒータお
よび水銀ランプ等を使用したゾーンメルティング再成長
法にも適用が可能であることはもらろん、レーザ光や電
子線等を使用した溶融再成長にも適用できることは明確
である。
Further, a melt regrowth method is shown in FIG. 2. Although we have used zone melting regrowth using high-frequency induction heating as an example, it is of course also applicable to zone melting regrowth methods using carbon strip heaters, tungsten heaters, mercury lamps, etc. It is clear that the present invention can also be applied to melt regrowth using laser light, electron beams, etc.

〔発明の効果〕〔Effect of the invention〕

以上述べたことから明らかなように、本発明による半導
体基板の製造方法によれば再成長させた半導体の面方位
を一定にでき、これにより前記半導体面に形成する素子
の特性の信頼性を確保することができる。
As is clear from the above description, according to the method for manufacturing a semiconductor substrate according to the present invention, the plane orientation of the regrown semiconductor can be made constant, thereby ensuring the reliability of the characteristics of the element formed on the semiconductor surface. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す工程図、第2図は本発
明で使用する再成長装置の一例を示す概略断面図、第3
図から第6図は本発明の他の実施例を示す半導体基板の
平面図である。 拓1図 第 Z 閏 拓 3 m
Fig. 1 is a process diagram showing one embodiment of the present invention, Fig. 2 is a schematic sectional view showing an example of a regrowth apparatus used in the present invention, and Fig.
6 are plan views of a semiconductor substrate showing other embodiments of the present invention. Drawing 1 Figure Z Escape 3 m

Claims (1)

【特許請求の範囲】 ■、絶縁基板あるいは絶縁膜上の所定の領域に半導体ノ
ーを形成し、この半導体ノーを溶融再成長によって結晶
化する半導体基板の製造方法において、上記半導体層を
その一部に結晶化から取り残された領域が生じるような
信性で溶融再成長させることを%敵とする半導体基板の
製造方法。 2、特許請求の範囲第1項にしいて、上記半導体層の最
初に溶融再成長が行なわれる個所の近傍の領域の熱容量
を池より大きクシ、この領域を結晶化から取り残された
領域とすることを特徴とする半導体基板の製造方法。 3、特許請求の範囲第2項において、上記半導体層の熱
容量の大きい領域は、他よシ厚さが大きいことを特徴と
する半導体基板の製造方法。 4、特許請求の範囲第1項において、上記半導体層の溶
融再成長時に結晶化から取シ残される領域の加熱時間を
池の領域より短かくすることを特徴とする半導体基板の
製造方法。 5、特許請求の範囲第1項において、上記半導体層が多
数個の島状領域からなることを特徴とする半導体基板の
製造方法。 6、特許請求の範囲第5項において、上記半導体層の各
島状領域の最初に溶融再成長が行なわれる個所の近傍の
個所の熱容量を他より大きくシ、これによってこの個所
を結晶化から取り残された領域とすることを特徴とする
半導体基板の製造方法。 7、特許請求の範囲第6項において、上記島状領域の熱
容量の大きい領域は、他より厚さが大きいことを特徴と
する半導体基板の製造方法。 8、特許請求の範囲第5項、第6項或いは第7項におい
て、上記各島状領域の結晶化から取り残される領域の溶
融再成長が進行する方向と直角をなす方向の幅が曲より
大きくなっていることを特徴とする半導体基板の製造方
法。 9、特許請求の範囲第1項において、上記半導体層が一
方向に延びる複数個の第1の領域と、第1の領域相互を
一方向の端部で連結する第2の領域とから形成し、第2
の1頂載側から溶融再成長を行ないかつ第2の領域を結
晶化から取り残された領域とすることを特徴とする半導
体基板の製造方法。 10、特許請求の範囲第9項において、上記第2の領域
の熱容量を上記第1の領域のそれより大きくしたことを
%徴とする半導体基板の製造方法。 11、特許請求の範囲第9項或いは第10項において、
上記第1の領域が長手方向に沿って幅の広い部分と狭い
部分とからなっていることを特徴とする半4本基板の製
造方法。 12、特許請求の範囲第11項において、上記第1の領
域の幅の広い部分の一部にも結晶化から取り残された個
所が生じるような条件で溶融再成長を行なうことを特徴
とする半導体基板の製造方法。
[Scope of Claims] (1) A method for manufacturing a semiconductor substrate in which a semiconductor layer is formed in a predetermined region on an insulating substrate or an insulating film, and the semiconductor layer is crystallized by melting and regrowth; A method of manufacturing semiconductor substrates that aims to melt and re-grow them with such reliability that regions left behind from crystallization occur. 2. According to claim 1, the heat capacity of the region near the point where the semiconductor layer is first melted and regrown is larger than that of the pond, and this region is the region left behind from crystallization. A method for manufacturing a semiconductor substrate, characterized by: 3. The method of manufacturing a semiconductor substrate according to claim 2, wherein the region of the semiconductor layer having a large heat capacity has a larger thickness than the other regions. 4. The method of manufacturing a semiconductor substrate according to claim 1, characterized in that the heating time of the region left behind from crystallization during melting and regrowth of the semiconductor layer is made shorter than that of the pond region. 5. The method of manufacturing a semiconductor substrate according to claim 1, wherein the semiconductor layer is comprised of a large number of island-like regions. 6. In claim 5, the heat capacity of a portion of each island region of the semiconductor layer near the portion where melting and regrowth is first performed is made larger than other portions, thereby leaving this portion out of crystallization. 1. A method of manufacturing a semiconductor substrate, characterized in that the region is 7. The method of manufacturing a semiconductor substrate according to claim 6, wherein the region of the island-like region having a large heat capacity has a thickness larger than that of the other region. 8. Claims 5, 6, or 7, wherein the width of the region left behind from the crystallization of each of the island regions in the direction perpendicular to the direction in which melting and regrowth progresses is larger than the curve. A method for manufacturing a semiconductor substrate, characterized in that: 9. Claim 1, wherein the semiconductor layer is formed from a plurality of first regions extending in one direction and a second region connecting the first regions at ends in one direction. , second
A method for manufacturing a semiconductor substrate, characterized in that melting and regrowth is performed from the top side of the semiconductor substrate, and a second region is left behind from crystallization. 10. The method of manufacturing a semiconductor substrate according to claim 9, wherein the heat capacity of the second region is larger than that of the first region. 11. In claim 9 or 10,
A method for manufacturing a semi-quad board, characterized in that the first region consists of a wide part and a narrow part along the longitudinal direction. 12. The semiconductor according to claim 11, characterized in that the melting and regrowth is performed under conditions such that a portion of the wide portion of the first region is left behind from crystallization. Substrate manufacturing method.
JP58199050A 1983-10-26 1983-10-26 Manufacture of semiconductor substrate Pending JPS6091622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199050A JPS6091622A (en) 1983-10-26 1983-10-26 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199050A JPS6091622A (en) 1983-10-26 1983-10-26 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS6091622A true JPS6091622A (en) 1985-05-23

Family

ID=16401275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199050A Pending JPS6091622A (en) 1983-10-26 1983-10-26 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS6091622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222959A (en) * 2001-01-29 2002-08-09 Hitachi Ltd Thin film semiconductor device as well as method and apparatus for manufacturing polycrystal semiconductor thin film
JP2008199042A (en) * 2008-03-14 2008-08-28 Hitachi Ltd Method of manufacturing image display device using thin-film semiconductor device
JP2008199041A (en) * 2008-03-14 2008-08-28 Hitachi Ltd Thin-film semiconductor device and image display device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222959A (en) * 2001-01-29 2002-08-09 Hitachi Ltd Thin film semiconductor device as well as method and apparatus for manufacturing polycrystal semiconductor thin film
JP2008199042A (en) * 2008-03-14 2008-08-28 Hitachi Ltd Method of manufacturing image display device using thin-film semiconductor device
JP2008199041A (en) * 2008-03-14 2008-08-28 Hitachi Ltd Thin-film semiconductor device and image display device using the same

Similar Documents

Publication Publication Date Title
JPS5939790A (en) Production of single crystal
JPS6091622A (en) Manufacture of semiconductor substrate
JPS59229815A (en) Manufacture of semiconductor substrate
US4678538A (en) Process for the production of an insulating support on an oriented monocrystalline silicon film with localized defects
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JP2892321B2 (en) Semiconductor device and manufacturing method thereof
JPH0354819A (en) Manufacture of soi substrate
JPH0228560B2 (en) TANKETSUSHOSHIRIKONMAKUKEISEIHO
JPS61106484A (en) Substrate for semiconductor device and its preparation
JPS60136306A (en) Manufacture of semiconductor substrate
JPS5886716A (en) Forming of single crystal semiconductor film
JPS61230316A (en) Manufacture of semiconductor substrate
JPS6379953A (en) Production of thin single crystal film
JPS61212012A (en) Method for forming soi structure
JPH0334847B2 (en)
JPS60183718A (en) Crystallizing method of semiconductor thin film
JPH02154416A (en) Manufacture of single crystal film of semiconductor
JPH02238663A (en) Manufacture of semiconductor device
JPS61251114A (en) Manufacture of single crystal silicon film
JPS5919313A (en) Manufacture of semiconductor device
JPS59101822A (en) Manufacture of substrate for semiconductor device
JPH03167824A (en) Manufacture of semiconductor device
JPS63108A (en) Manufacture of semiconductor element
JPS60102728A (en) Manufacture of semiconductor substrate
JPS60182126A (en) Manufacture of semiconductor substrate