JPS59101822A - Manufacture of substrate for semiconductor device - Google Patents
Manufacture of substrate for semiconductor deviceInfo
- Publication number
- JPS59101822A JPS59101822A JP57212219A JP21221982A JPS59101822A JP S59101822 A JPS59101822 A JP S59101822A JP 57212219 A JP57212219 A JP 57212219A JP 21221982 A JP21221982 A JP 21221982A JP S59101822 A JPS59101822 A JP S59101822A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- single crystal
- opening
- insulating film
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02691—Scanning of a beam
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は半導体装置用基板に関し、詳しくは少なくとも
一部の単体素子を絶縁膜上に形成し、超高速化を実現す
ることによシ、合理的に装置全体の速度を向上せしめ、
且つ、特性の向上2歩留り向上を実現する超LSI技術
に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a substrate for a semiconductor device, and more specifically, it is possible to form at least some of the single elements on an insulating film to achieve ultra-high speed. improves the overall speed of the device,
The present invention also relates to VLSI technology that realizes improved characteristics and improved yield.
従来例の構成とその問題点
絶縁膜上に単結晶半導体層を形成する技術としては、種
々の方法が提案されている。グラフオエピタキシーによ
れば、微小な凹部内に方位の定まったある程度の単結晶
が得られるようになってきているが、単結晶自体の大き
さが小さく実用にはなっていない。また溝の形状で結晶
方位が制御されることが一部で言われているが、例えば
シリコンでVi制御されておらず、又、原理的にみても
(11o)と(1−00)を区別するのは実用上非常に
難しい。Conventional Structures and Their Problems Various methods have been proposed as techniques for forming a single crystal semiconductor layer on an insulating film. According to graphoepitaxy, it has become possible to obtain a certain amount of single crystal with a fixed orientation within a minute recess, but the size of the single crystal itself is small and it has not been put to practical use. Also, it is said that the crystal orientation is controlled by the shape of the groove, but for example, in silicon, Vi is not controlled, and even in principle, (11o) and (1-00) can be distinguished. It is extremely difficult to do so in practice.
さらに、イオン注入によって非晶質化した単結晶半導体
表面を固相エピによシ、再び良質の単結晶半導体に戻せ
ることが知られているが、絶縁膜上への単結晶半導体の
成長は限度があシ、多結晶化してしまうなどの難点があ
った。即ち、第1図に示すように、先ずたとえばシリコ
ン単結晶シリコン基板1の開口部2及び絶縁部3上に、
例えばポリシリコン膜4を形成し、次にセルフイオン注
入などによシ基板1表面の膜4との界面51で非晶質化
し、さらに500〜700℃に基板を加熱してポリシリ
コン膜4の単結晶化を行う訂第1図においてロコの部分
はイオン注入による非晶質化部分を示す。この方法では
基板1を種結晶として矢印のごとくポリシリコン膜4の
単結晶化が進むが、この時、図に示すように、別の場合
6から核形成が生じ、絶縁膜3上の大部分は多結晶とな
ってし1う不都合がちシ、絶縁膜3上に良質な単結晶シ
リコン層を得ることが困難である。Furthermore, it is known that the surface of a single crystal semiconductor that has been made amorphous by ion implantation can be returned to a high-quality single crystal semiconductor by solid-phase epitaxy, but there is a limit to the growth of a single crystal semiconductor on an insulating film. There were problems such as oxidation and polycrystalline formation. That is, as shown in FIG. 1, first, for example, on the opening 2 and the insulating part 3 of the silicon single crystal silicon substrate 1,
For example, a polysilicon film 4 is formed, and then the surface of the substrate 1 is made amorphous at the interface 51 with the film 4 by self-ion implantation, and the substrate is further heated to 500 to 700°C to form the polysilicon film 4. In FIG. 1, the loco portion indicates the portion made amorphous by ion implantation. In this method, the single crystallization of the polysilicon film 4 proceeds as shown by the arrow using the substrate 1 as a seed crystal. However, it is difficult to obtain a high quality single crystal silicon layer on the insulating film 3.
また、種結晶から絶縁膜上に単結晶をつづけて成長せし
める方法として、線状の加熱源によシ、多結晶材料を熔
融再結晶化する方法が提案され、ある程度の成考が伝え
られているが、本発明0者らの検討によっても、途中か
ら別の結晶′が絶縁膜壁から形成されたり、絶縁膜が溶
解し、例えば、酸素や窒素が過剰に溶解したり時には析
出し、得られる単結晶の品質が非常に悪いことが伴明し
ている。又、熔融するため表面にゆらぎが生じ、凹凸を
含む成長しまが形成されるなどの欠点がある。In addition, as a method for continuously growing single crystals from seed crystals on insulating films, a method has been proposed in which polycrystalline material is melted and recrystallized using a linear heating source, and some success has been reported. However, studies by the present inventors have shown that other crystals may be formed from the walls of the insulating film during the process, or the insulating film may dissolve, and for example, oxygen or nitrogen may be dissolved excessively or may precipitate. It has been revealed that the quality of single crystals is very poor. Furthermore, since it is melted, it has the disadvantage that the surface fluctuates and growth stripes with unevenness are formed.
又、1400℃を越える温度に基板を局所的にかなりの
時間さらすため、基板に大きな歪が残シ、破損し易すい
などの欠点も有している。Furthermore, since the substrate is locally exposed to temperatures exceeding 1400° C. for a considerable period of time, it also has drawbacks such as leaving large strains on the substrate and being easily damaged.
ビームアニール技術によっても多結晶の熔融。Polycrystalline melting is also achieved by beam annealing technology.
再結晶化によって、絶縁膜上に単結晶を形成できるが、
結晶品質が悪く、表面には大きな凹凸が形成される等の
問題が生じている。又、この方法は基板に対する熱歪も
非常に大きいとともに、開口部や絶縁部での加熱条件が
大巾に異なる等のため結晶性が悪いといった欠点もある
。Recrystallization can form a single crystal on an insulating film, but
Problems such as poor crystal quality and the formation of large irregularities on the surface occur. Further, this method has the disadvantage that the thermal strain on the substrate is very large, and the crystallinity is poor because the heating conditions at the opening and the insulating section are widely different.
発明の目的
本発明は、良好な単結晶域を絶縁膜下に形成し、超高速
化素子の実現しうる基板を提供するとともに、同時に低
温処理にょシ、絶縁膜下の半導体基板にも単体素子を形
成しておくことが可能となシ、良質の特性をもつ素子と
の組み合せができ、合理的な半導体装置を製造すること
ができる半導体装置用基板の製造方法を提供するもので
ある。Purpose of the Invention The present invention provides a substrate on which an ultra-high-speed device can be realized by forming a good single crystal region under an insulating film. The present invention provides a method for manufacturing a substrate for a semiconductor device, in which a semiconductor device can be formed in advance, and can be combined with elements having good quality characteristics to manufacture a rational semiconductor device.
発明の構成
本発明は、半導体基板の絶縁膜上に開口部を形成し、エ
ピタキシャル法により開口部に単結晶領域を形成し絶縁
膜上には多結晶部を形成したのち、イオン注入法により
多結晶部を非晶質化するとともに、単結晶領域と基板界
面には非晶質化を及ぼさず単結晶領域の非晶質化はその
表面部分のみとし、線状のエネルギー照射により非晶質
部分を熔融せずに単結晶化するもので、単結晶化が第1
図のごとく基板1から生じることなく単結晶領域がら住
することにょシ、良質の単結晶を基板ならびに絶縁膜上
に形成する方法である。Structure of the Invention The present invention involves forming an opening on an insulating film of a semiconductor substrate, forming a single crystal region in the opening by an epitaxial method, forming a polycrystalline region on the insulating film, and then forming a polycrystalline region by an ion implantation method. In addition to making the crystal part amorphous, the interface between the single crystal region and the substrate is not made amorphous, and the amorphization of the single crystal region is limited to the surface part, and the amorphous part is made by linear energy irradiation. Single crystallization is performed without melting, and single crystallization is the first
As shown in the figure, this is a method for forming a high-quality single crystal on a substrate and an insulating film, in which the single crystal does not originate from the substrate 1 but resides in the single crystal region.
実施例の説明
以下本発明の方法を図面とともに詳細に説明する0
本発明は固相エピタキシャル法を用いるものである。本
発明では、断面を第2図に示すように1絶縁膜3上に形
成される多結晶部7は、たとえばシリコン単結晶基板1
上の開口部2にエビ的に形成される単結晶部8の厚さよ
シ一般に薄く形成される0しかるのち、イオン9をセル
フイオン注入により注入し、非晶質化を行う。このとき
、絶縁膜s上の多結晶部を完全に非晶質化しても、非晶
質領域は開口部2の単結晶部8と基板1の界面5まで到
達せず、その下の基板1に損傷を与えることなく、基板
1のその部所に素子が組み込まれても何らの影響を与え
ない。DESCRIPTION OF EMBODIMENTS The method of the present invention will be described in detail below with reference to the drawings.The present invention uses a solid phase epitaxial method. In the present invention, the polycrystalline portion 7 formed on one insulating film 3, as shown in cross section in FIG.
After that, ions 9 are injected by self-ion implantation to make it amorphous. At this time, even if the polycrystalline portion on the insulating film s is completely amorphous, the amorphous region does not reach the interface 5 between the single crystal portion 8 of the opening 2 and the substrate 1, and the substrate 1 below Even if the element is incorporated in that part of the substrate 1 without causing any damage, it will not have any effect.
次に、この状態で第3図のごとく線状のエネルギー源(
線ビーム)11、例えばタングステンフィラメントから
のビームによって加熱し、その直下を加熱し、その部分
の非晶質部を熔融することなく結晶化してゆく。このと
き単結晶化は部分っの付近から生じる。第3図では基板
1.絶縁M3のみを示し、その上の非晶質部、単結晶部
は省略している。線ビーム11を少しずつ移動してゆく
ことによって、固相エビを横方向へ移動せしめる。Next, in this state, as shown in Figure 3, a linear energy source (
A beam from a tungsten filament (ray beam) 11, for example, is used to heat the area immediately below the beam, and the amorphous portion of that area is crystallized without melting. At this time, single crystallization occurs near the part. In FIG. 3, substrate 1. Only the insulation M3 is shown, and the amorphous portion and single crystal portion thereon are omitted. By moving the line beam 11 little by little, the solid shrimp is moved laterally.
この時には、第1図に示すように5〜10μm程度矢印
の方向へ結晶が成長した点で下の基板1の界面よシ核形
成が突然性ずるが、本発明では基板1からでなく基板か
ら遠い基板上の部分10の付近から生ずる。さらに本発
明では望ましくは第3図に示すように線ビーム11をゆ
っく9と移動せしめる方位に沿って、連続した開口2を
設ける。At this time, as shown in FIG. 1, the nucleation occurs suddenly at the interface of the substrate 1 below at the point where the crystal has grown about 5 to 10 μm in the direction of the arrow, but in the present invention, the nucleation occurs not from the substrate 1 but from the substrate It originates from the vicinity of portion 10 on the far substrate. Furthermore, in the present invention, as shown in FIG. 3, continuous openings 2 are preferably provided along the direction in which the line beam 11 is slowly moved 9.
そしてそれらの開口間の巾を10μm以下にしておく。The width between these openings is set to 10 μm or less.
最初の固相結晶成長は例えば基板1の上方の2a部で生
じ、それが横方向に成長してゆく。The first solid-phase crystal growth occurs, for example, in the upper portion 2a of the substrate 1, and then grows laterally.
この時、側面2bからも固相成長が同時に生ずるために
、6〜10μm程度の結晶成長の後に生じている前述の
ような突然の好ましくない核形成を抑制する。従って、
全域を低温で単結晶化することができる。At this time, since solid phase growth occurs simultaneously from the side surface 2b, sudden undesirable nucleation as described above that occurs after crystal growth of about 6 to 10 μm is suppressed. Therefore,
The entire area can be single crystallized at low temperatures.
さらに、また第3図にポすように、格子状に開口部を設
けることによって、さらに完全に単結晶化した良質の結
晶基板を形成できる。これは、非常にわずかの突然の異
方向の核形成が万−生じても、線ビームが例えば開口部
2cを通過することによって、新たにその開口部を核と
して、再び元の方位の固相エピが再開するからである。Furthermore, as shown in FIG. 3, by providing openings in a lattice pattern, it is possible to form a high-quality crystal substrate that is more completely single-crystalline. This means that even if a very small amount of sudden nucleation occurs in a different direction, the line beam will pass through the aperture 2c, for example, and will form a new solid phase with the aperture as the nucleus again. This is because the episode will restart.
又、このような固相エピを生じしめるのは、基板(ウェ
ハー)の極〈一部あればよい。即ち、第5図に示すよう
に、−テップの一部であればよい。Furthermore, it is only necessary to cause such solid-phase epitaxial growth at a very small portion of the substrate (wafer). That is, as shown in FIG. 5, it is sufficient if it is a part of the -step.
開口部をかねたスクライプライン21で囲まれたテップ
内に、上述したような開口部2を有した絶縁部3を形成
し、この上に結晶化層をさらに形成すれば、この絶縁部
3上だけS○工構造となる。If an insulating part 3 having an opening 2 as described above is formed in the tip surrounded by a scribe line 21 which also serves as an opening, and a crystallized layer is further formed on this insulating part 3, Only S○ construction will be used.
したがって、この部分に高速を要する半導体素子を形成
し、厳しいリークや耐圧特性などが必要とされる素子を
エビ成長したより完全な単結晶域である開口部2上に構
成すれば、両者の特性を最大限に活かした良質の半導体
装置が形成される。Therefore, if a semiconductor element that requires high speed is formed in this part, and an element that requires severe leakage and voltage resistance characteristics is formed on the opening 2, which is a more perfect single crystal region grown with shrimp, it is possible to achieve both characteristics. A high-quality semiconductor device that takes full advantage of this is formed.
さらに、エビ成長にょシ単結晶部8.多結晶部7をする
時に、通常のエビ成長のよう1C1050−1150℃
の温度でなく、6oo’cから750℃でエビ成長が可
能な荷電粒子蒸着を行えば、低温処理であるため、例え
ば、上述の絶縁膜3の下にも素子を形成しておくことが
できる等の長所がある。Furthermore, the single crystal part 8 for shrimp growth. When forming the polycrystalline part 7, the temperature is 1C 1050-1150℃ like normal shrimp growth.
If charged particle deposition is performed at a temperature of 60°C to 750°C, which allows shrimp growth, instead of at a temperature of There are advantages such as
この時の加速電圧としては、通常500V望ましくは3
〜7KVもあればよい。The accelerating voltage at this time is usually 500V, preferably 3
~7KV is sufficient.
さらに、本発明の方法によれば、固相エピであるため、
従来のように1420℃を大巾に上回る温度が必要でな
く、高々、500℃高くとも900℃で良いため、基板
の一部にすでに素子が組み込まれていても、好ましくな
い拡散を生じしめるなどの欠点もない。Furthermore, according to the method of the present invention, since it is a solid phase epitaxial method,
There is no need for a temperature that greatly exceeds 1420°C as in the past, and a temperature of at most 500°C and 900°C is sufficient, so even if an element is already incorporated in a part of the substrate, undesirable diffusion may occur. There are no drawbacks.
本発明の効果をンリコン基板を例にとって第6図ととも
に説明する。(100)シリコンウェハー1上に、絶縁
酸化膜3を0.5μm形成した後、第3図に示すような
パターンを通常の露光方法で形成し、開口部2を設けた
。開口部2の巾は約3μm全体の大きさは3×4mmで
あり、絶縁膜3の巾は約10μmであった。この上に、
電子ビーム蒸発を行ってンリコン半導体層を形成し単結
晶部8多結晶膜7を形成した。この時、電子イオンシャ
ワーを用い、一部を荷電粒子として加速し、電圧590
Vをかけた。なお基板温度は760℃である。得られた
膜を希弗酸液によシ、エツチングした所、開口部2上で
はエツチングは殆んど生ぜず、−穴、絶縁膜3上では約
10OA/minであることが分った。従って、第6図
(a)にも示すように開口部2上には単結晶部8が絶縁
膜3上には多結晶膜7が形成されていることが示されて
いる。この試料に対して、第6図(b)に示すようにさ
らにS1イオン9を300 KeVで1015ケ/cr
l 注入し、表面層を完生に非晶質化して非晶質層3
0とした。The effects of the present invention will be explained with reference to FIG. 6, taking a silicon substrate as an example. (100) After forming an insulating oxide film 3 with a thickness of 0.5 μm on a silicon wafer 1, a pattern as shown in FIG. 3 was formed by a normal exposure method, and an opening 2 was formed. The width of the opening 2 was about 3 μm, the overall size was 3×4 mm, and the width of the insulating film 3 was about 10 μm. On top of this
A silicon semiconductor layer was formed by electron beam evaporation, and a single crystal part 8 and a polycrystalline film 7 were formed. At this time, an electron ion shower is used to accelerate some of them as charged particles, and a voltage of 590
I applied V. Note that the substrate temperature was 760°C. When the obtained film was etched with a dilute hydrofluoric acid solution, it was found that almost no etching occurred on the opening 2, and that on the -hole and the insulating film 3, the etching rate was about 10 OA/min. Therefore, as shown in FIG. 6(a), a single crystal portion 8 is formed on the opening 2, and a polycrystalline film 7 is formed on the insulating film 3. To this sample, as shown in FIG. 6(b), S1 ions 9 were further irradiated with 1015 ions/cr at 300 KeV.
l to completely amorphize the surface layer and form an amorphous layer 3.
It was set to 0.
次に、試料を250’Cに加熱しながら、巾0.5−1
長さ100 mmのスリットよシ全光束を出すよう反射
板をもった1KWのハロゲンランプを、第3図に示すよ
うに3 mm / SeCで移動させた。第6図(C)
に示すよう鈍加熱ビーム11によシ、固相エピが生じ矢
印31のように単結晶が成長し単結晶領域32が形成さ
れる。得られた試料を前述のように希弗酸でエツチング
した所、エツチング速度は殆んどOであった。さらに、
異方性エツチング液でテストした所、四角錐が全面に生
じ、方位が基板と同じ(100)になっていることが認
められた。Next, while heating the sample to 250'C,
A 1 KW halogen lamp equipped with a reflector so as to emit a total luminous flux through a slit with a length of 100 mm was moved at a rate of 3 mm/SeC as shown in FIG. Figure 6 (C)
As shown in FIG. 3, solid phase epitaxial growth occurs due to the blunt heating beam 11, and a single crystal grows as shown by an arrow 31, forming a single crystal region 32. When the obtained sample was etched with dilute hydrofluoric acid as described above, the etching rate was almost O. moreover,
When tested using an anisotropic etching solution, it was found that quadrangular pyramids were formed over the entire surface, and the orientation was the same (100) as that of the substrate.
なお、これらのエツチングによって、多結晶体などで見
られる粒界は全く認められなかったことから、第6図(
d)に示すように表面層全面が良好な単結晶層32にな
っていることが分った。Furthermore, as a result of these etchings, no grain boundaries found in polycrystals were observed, as shown in Figure 6 (
As shown in d), it was found that the entire surface layer was a good single crystal layer 32.
次に第5図に示すようなパターンを用い同じ処理を行っ
た。この時、絶縁膜3と広域の開口部2にあらかじめ拡
散の速いボロンを深さ0.1μmにイオン注入しておい
た。Next, the same process was performed using a pattern as shown in FIG. At this time, fast-diffusing boron ions were implanted in advance into the insulating film 3 and the wide opening 2 to a depth of 0.1 μm.
得られた試料表面は、前述の試料と同様に全域が良好な
単結晶になっていた。その方位は(111)に一致して
いた。次にSIMSによシ、ボロンの拡散を調べた所、
全く移動していないことが分った。The entire surface of the obtained sample was a good single crystal, similar to the sample described above. Its orientation coincided with (111). Next, we investigated the diffusion of boron using SIMS.
It turned out that it wasn't moving at all.
低温で行う同相エビの効果が確認された。The effectiveness of in-phase shrimp at low temperatures was confirmed.
次に同様に(111)シリコンを用い、1000℃で行
う減圧エビ成長を行った。その他処理条件は前述の通シ
である。この場合においても、(111)に結晶面を出
した良好な単結晶が全域に生じているのが認められた。Next, vacuum shrimp growth was performed at 1000° C. using (111) silicon in the same manner. Other processing conditions are as described above. In this case as well, it was observed that a good single crystal with a (111) crystal plane was formed over the entire area.
発明の効果
本発明の方法によって、方位の制御された良質の単結晶
が、基板全面にわたって、しかも絶縁膜。Effects of the Invention By the method of the present invention, a high-quality single crystal with a controlled orientation can be grown over the entire surface of the substrate, and even as an insulating film.
開口部を問わず、簡便に形成された。しかも固相エビの
ため低温で行うことができ、熱歪も少なく、又、消費エ
ネルギーも少ない。従って、あらかじめ導入した不純物
の拡散も生じないため、素子があらかじめ存在していて
も害を与えない長所がある。さらに開口部の基板界面は
エビ成長したままであシ、必らずしも非晶質化させない
ので、あらかじめこの開口部に素子が存在しても、イオ
ン注入などによる損傷を受けることもなく、又、欠陥が
生ずることがない。以上のように、本発明の方法は、半
導体装置用基板の製造にとって種々の優れた特長を有し
ている。It can be easily formed regardless of the opening. Moreover, since the shrimp is in a solid phase, it can be carried out at low temperatures, with little thermal distortion and low energy consumption. Therefore, there is no diffusion of impurities introduced in advance, so there is an advantage that even if the element is present in advance, it will not cause any harm. Furthermore, the substrate interface at the opening remains overgrown and does not necessarily become amorphous, so even if an element exists in the opening, it will not be damaged by ion implantation, etc. Moreover, no defects occur. As described above, the method of the present invention has various excellent features for manufacturing substrates for semiconductor devices.
第1図は従来の単結晶化方法を示す断面図、第2図は本
発明の単結晶化方法を示す断面図、第3図は本発明にお
ける単結晶化方法におけるエネルギー照射状態を示す平
面図、第4図は本発明における下地基板の一例を示す平
面図、第5図は本発明における下地基板の他の例を示す
部分平面図、第6図(a)〜(d)は本発明を用いた単
結晶化方法の具体例の工程断面図である。
1・・・・・半導体基板、2・・・・・・開口部、3・
・・・・・絶縁膜、7・・・・多結晶部、8,32・・
・・・・単結晶部、9・・・・・・注入イオン、30・
・・・・・非晶質部。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名F+
Qう綜
味
区 区
寸 0
味 味FIG. 1 is a cross-sectional view showing the conventional single crystallization method, FIG. 2 is a cross-sectional view showing the single crystallization method of the present invention, and FIG. 3 is a plan view showing the energy irradiation state in the single crystallization method of the present invention. , FIG. 4 is a plan view showing an example of the base substrate according to the present invention, FIG. 5 is a partial plan view showing another example of the base substrate according to the present invention, and FIGS. It is a process cross-sectional view of a specific example of the single crystallization method used. 1... Semiconductor substrate, 2... Opening, 3...
...Insulating film, 7... Polycrystalline part, 8, 32...
... Single crystal part, 9 ... Implanted ions, 30.
...Amorphous part. Name of agent: Patent attorney Toshio Nakao and one other person F+
Q
taste ward ward size 0 taste taste
Claims (4)
工程と、エピタキシャル成長によシ少なくとう虱 も開口部に単結晶部を成長させ前記絶縁膜上に非単結晶
部を形成する工程と、イオン注入によシ、少なくとも前
記開口部以外の絶縁膜上の多結晶部を非晶質化する工程
と、エネルギー照射を一端から移動せしめて、非晶質層
を熔融せず単結晶化する工程とを含むことを特徴とした
半導体装置用基板の製造方法。(1) A step of providing a continuous opening in an insulating film on a semiconductor substrate, and a step of growing at least a single crystal part in the opening by epitaxial growth to form a non-single crystal part on the insulating film. , a process of amorphizing at least the polycrystalline part on the insulating film other than the opening by ion implantation, and moving the energy irradiation from one end to make the amorphous layer into a single crystal without melting it. A method of manufacturing a substrate for a semiconductor device, the method comprising:
蒸着することによって行うことを特徴とする特許請求の
範囲第1項に記載の半導体装置用基板の製造方法。(2) The method for manufacturing a substrate for a semiconductor device according to claim 1, wherein the epitaxial growth is performed by depositing accelerated charged particles.
沿って開口部が連続していることを特徴とする特許請求
の範j」第1項に記載の半導体装置用基板の製造方法。(3) The method for manufacturing a substrate for a semiconductor device according to claim 1, wherein the opening is continuous along the moving direction when linear energy irradiation is performed.
とする特許請求の範囲第1項に記載の半導体装置用基板
の製造方法。(4) The method for manufacturing a substrate for a semiconductor device according to claim 1, wherein the continuous openings are arranged in a lattice shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57212219A JPS59101822A (en) | 1982-12-02 | 1982-12-02 | Manufacture of substrate for semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57212219A JPS59101822A (en) | 1982-12-02 | 1982-12-02 | Manufacture of substrate for semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59101822A true JPS59101822A (en) | 1984-06-12 |
Family
ID=16618909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57212219A Pending JPS59101822A (en) | 1982-12-02 | 1982-12-02 | Manufacture of substrate for semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59101822A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61245517A (en) * | 1985-04-23 | 1986-10-31 | Agency Of Ind Science & Technol | Formation of soi crystal |
-
1982
- 1982-12-02 JP JP57212219A patent/JPS59101822A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61245517A (en) * | 1985-04-23 | 1986-10-31 | Agency Of Ind Science & Technol | Formation of soi crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5918196A (en) | Preparation of thin film of single crystal | |
JPS59101822A (en) | Manufacture of substrate for semiconductor device | |
JP2743370B2 (en) | Method of forming polycrystalline film | |
JPS621220A (en) | Manufacture of defect localized orientation silicon monocrystalline film on insulation support | |
JPH0810669B2 (en) | Method of forming SOI film | |
JPH02188499A (en) | Production of polycrystal silicon film having large crystal grain diameter | |
JPS63283013A (en) | Forming method for polycrystalline silicon thin film | |
JPH11251241A (en) | Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor | |
JPS58132919A (en) | Manufacture of semiconductor device | |
JPS5880831A (en) | Manufacture of substrate for semiconductor device | |
JPS60164316A (en) | Formation of semiconductor thin film | |
JPS58180019A (en) | Semiconductor base body and its manufacture | |
JPH02105517A (en) | Manufacture of semiconductor device | |
JPS63278217A (en) | Manufacture of semiconductor substrate | |
JPH04373171A (en) | Forming method of semiconductor crystal article | |
JPS61201414A (en) | Manufacture of semiconductor single crystal layer | |
JP2793241B2 (en) | SOI formation method | |
JPH03284831A (en) | Forming method for semiconductor thin-film | |
JPH02143414A (en) | Formation of single crystal film | |
JPS61116821A (en) | Formation of single crystal thin film | |
JPS59203791A (en) | Formation of single crystalline silicon film | |
JPS59228713A (en) | Manufacture of semiconductor device | |
JPS61212012A (en) | Method for forming soi structure | |
JPS59181609A (en) | Manufacture of semiconductor device | |
JPS62297289A (en) | Formation of single crystal thin film |