JPS60164316A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPS60164316A
JPS60164316A JP59018480A JP1848084A JPS60164316A JP S60164316 A JPS60164316 A JP S60164316A JP 59018480 A JP59018480 A JP 59018480A JP 1848084 A JP1848084 A JP 1848084A JP S60164316 A JPS60164316 A JP S60164316A
Authority
JP
Japan
Prior art keywords
amorphous
polycrystalline silicon
region
silicon layer
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59018480A
Other languages
Japanese (ja)
Inventor
Hisao Hayashi
久雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59018480A priority Critical patent/JPS60164316A/en
Publication of JPS60164316A publication Critical patent/JPS60164316A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To enable the formation of a semiconductor layer with excellent reproducibility and uniformity and with a simple structure and sufficient properties for practical use, by implanting ions into at least a part of polycrystalline silicon formed on the substrate for rendering it amorphous. CONSTITUTION:Poly-Si is adhered by CVD or the like on an amorphous insulation substrate 1 such as a quartz plate or the like consisting of SiO2, and then pattern etched to form a polycrystalline silicon layer 2. Thereafter, ions of Si<+> for example are implanted into at least a part of polycrystalline silicon layer 2 to form an amorphous region 3. This amorphous region 3 is formed only in the central portion of the polycrystalline silicon layer 2, while both sides thereof are left as polycrystalline regions 2a and 2b. The polycrystalline silicon layer 2 thus partially rendered amorphous is heat treated so as to cause the amorphous region 3 to crystal grow in solid phase and to form a solid-phase growth region 4. When said heat treatment is effected at a temperature within the range from 600 deg.C-700 deg.C, approximately cylindrical large crystal grains H are formed throughout the width of the amorphous region, and thus the solid-phase growth region 4 having good reproducibility can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、5LO2(二酸化シリコン)等の非晶質基板
上に半導体薄膜を形成するための半導体薄膜の形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a semiconductor thin film on an amorphous substrate such as 5LO2 (silicon dioxide).

〔背は技術とその問題点〕[Background is technology and its problems]

一1it″ジに、TFT(薄膜トランジスタ)等の薄膜
半導体素子を製造する際においては、5bO2(二酸化
シリコン)等の非晶質絶縁基板上に、シリコン単結晶あ
るいは1.INqIi晶に近い半導体層を形成すること
が8襞とされる。
When manufacturing thin film semiconductor devices such as TFTs (thin film transistors), a semiconductor layer close to single crystal silicon or 1.INqIi crystal is formed on an amorphous insulating substrate such as 5bO2 (silicon dioxide). Eight folds are formed.

このように、非晶質基板−ヒに弔結晶に近い半導体層を
形成するには、従来に2いて、予め上記基板上に例えば
CVD(化学気相成長)法等によりPo1y SL(多
結晶シリコン)を被層してpき、この身結晶シリコンを
、レーザアニール、電子ビームアニール、あるいはグラ
ファイトヒータ゛アニール等の加熱処理によシ部分的に
溶融し固化してrT3結晶させている。
As described above, in order to form a semiconductor layer close to a crystalline layer on an amorphous substrate, conventionally, polysilicon (PolySL) is deposited on the substrate in advance by, for example, CVD (chemical vapor deposition). ), and this crystalline silicon is partially melted and solidified by heat treatment such as laser annealing, electron beam annealing, or graphite heater annealing to form rT3 crystals.

ところが、このような従来の方法にあ・いては、再結晶
する際の核のばらつき等のため再現性が悪く、順次部分
的に高温加熱処理して溶融固化しているため全面を処理
するのに要する時間が長くかかり、この間の加熱条件の
変化、例えばレーザ出力の変動や基板の温度変化等によ
って均一性がNil;化し、また、溶融温度近傍の高温
で処理するため固化するときの熱応力により欠陥が生じ
易り、IX)結晶化を良好に保つような温度環境を実現
するノζめの基板表面上の放熱パターン等の構造が複雑
になるという欠点がめる。さらに、加熱処理装置に特殊
なものを要する。
However, in such conventional methods, reproducibility is poor due to variations in the nuclei during recrystallization, and it is difficult to treat the entire surface because it is sequentially heated at high temperatures to melt and solidify. It takes a long time to process, and changes in heating conditions during this time, such as fluctuations in laser output and changes in substrate temperature, can cause uniformity to deteriorate.Also, since the process is performed at a high temperature close to the melting temperature, thermal stress during solidification may occur. IX) Achieving a temperature environment conducive to maintaining good crystallization The structure of the heat dissipation pattern on the surface of the substrate becomes complicated. Furthermore, a special heat treatment device is required.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の点に鑑みて、再現性、均一性に優れ、
溶融湿層のような高温で熱処理する必要がなく、単純な
構造で、実用上充分な特性を有する半導体層を形成可能
な半導体湖膜の形成方法の提供を目的とする。
In view of the above points, the present invention has excellent reproducibility and uniformity,
The object of the present invention is to provide a method for forming a semiconductor layer that does not require heat treatment at a high temperature as in the case of a molten wet layer, has a simple structure, and can form a semiconductor layer having practically sufficient characteristics.

〔発明の概要〕[Summary of the invention]

すなわち、本発明に係る半導体薄膜の形成方法は、石英
板等の基板−ヒに多結晶シリコンをCVD法あるいは後
述するイオン注入後の固相成長等によシ形成する工程と
、この多結晶シリコンの少なくとも−?111分Ks=
+6るいばGe十等をイオン注入して非晶ノfへ化する
工程と、例えば550℃〜1000℃程度の比較的低温
の熱処理によってこの非晶質化した部分を同相状態で結
晶成長させる工程とを有することを特徴としている。し
たがって、出現性、均一性に(177t 、従来に比べ
−C低温プロセスであること、よシ、熱応力による欠陥
の発生がなく、基板上に複雑な放熱パターン等を形成す
る必要がなく、さらに、従来のように部分的に順次溶融
同化して再結晶させる必要がないため処理時間が短かく
て渣むという利点がある。
That is, the method for forming a semiconductor thin film according to the present invention includes a step of forming polycrystalline silicon on a substrate such as a quartz plate by CVD or solid phase growth after ion implantation, which will be described later. At least -? 111 minutes Ks=
A process of ion-implanting +6 ion-implanted Ge to make it amorphous, and a process of growing crystals in the amorphous part in the same phase by heat treatment at a relatively low temperature, for example, about 550°C to 1000°C. It is characterized by having the following. Therefore, it has improved appearance and uniformity (177t), is a low-temperature process compared to conventional processes, does not generate defects due to thermal stress, eliminates the need to form complex heat dissipation patterns on the substrate, and Since there is no need to sequentially melt assimilate and recrystallize parts as in the conventional method, there is an advantage that the processing time is short and there is no residue.

〔実施例〕〔Example〕

以下、本発明の好ましい実施例について、図面を参照し
ながら説明する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

先ず第1図において、5bO2(光酸化シリコン)より
成る石英板等の非晶質絶縁基板1上に、CVD(化学気
相成長)法等によシPo1y−S=(多結晶シリコン)
を被着しパターンエツチング処理することに19、多結
晶シリコン層2を形成する。この多結晶シリコン層2の
厚みは例えば約1000X程度で7うり、内部の結晶粒
(いわゆるグレイン)の粒径は、上記CVD工程(′コ
おける条件によっても異なるが、約xooL以上とする
First, in FIG. 1, Po1y-S=(polycrystalline silicon) is deposited on an amorphous insulating substrate 1 such as a quartz plate made of 5bO2 (photooxidized silicon) by CVD (chemical vapor deposition) or the like.
A polycrystalline silicon layer 2 is formed by depositing and pattern etching 19. The thickness of this polycrystalline silicon layer 2 is, for example, approximately 1000X, and the grain size of the internal crystal grains (so-called grains) is approximately equal to or greater than xooL, although this varies depending on the conditions of the CVD process.

次に、第2図に示すよう(に、多結晶シリコン層2の少
なくとも一部分に対して例えばS、+ (シリコンイオ
ン)をイオン注入して、非晶質化領域3を形成する。本
実施例においては、第3図の概略平面図にも示すように
、多結晶シリコン層2のうち両側部を多結晶領域2ay
2bとして残して中央部にのみ、例えば幅2μ〜lOμ
の非晶質化領域3を形成している。このときのイオン注
入の条件としては、1″」込み深さの分布のピーク、い
わゆる投射飛程(プロジエクテソド・レンジ) Rp 
カ多結晶シリコン層2の厚みの1/2となるようなエイ
、ルギでイオンを打ち込み、注入イオンがSL+の場合
のヂ]込みドーズ量を約I X 1015/r:n1以
上とすることによって、多結晶シリコン内部の結晶粒の
境界(グレイン・バウンダリ)が略完全に破壊さねて非
晶質構造となるようにする。なお、上記注入イオンとし
ては、S−の他にGe”4のような半導体に対して悪影
響を及ぼさないイオンを用いることができる。
Next, as shown in FIG. 2, for example, S,+ (silicon ions) are ion-implanted into at least a portion of the polycrystalline silicon layer 2 to form an amorphous region 3. As shown in the schematic plan view of FIG. 3, both sides of polycrystalline silicon layer 2 are formed into polycrystalline regions 2ay.
2b and only in the center, for example, a width of 2μ to lOμ
The amorphous region 3 is formed. The conditions for ion implantation at this time are the peak of the distribution at a depth of 1", the so-called projection range Rp
By implanting ions with a laser beam so as to have a thickness of 1/2 of the thickness of the polycrystalline silicon layer 2, and setting the implanted dose to approximately I x 1015/r:n1 or more when the implanted ions are SL+. , so that grain boundaries within the polycrystalline silicon are not substantially completely destroyed, resulting in an amorphous structure. Note that, as the implanted ions, other than S-, ions such as Ge''4 that do not have an adverse effect on semiconductors can be used.

このように、一部が非晶質化された多結晶シリコン層2
を例えば約600℃程度で熱処理することによシ、上記
非晶質化領域3を固相状態で結晶成長させ、第4図や第
5図に示すような固相成長領域4を形成する。このとき
の固相成長は、非晶質化領域3と多結晶残存領域2a 
、2bとの界面B、、B2から図中横方向(水平方向)
に成長する速度の方が、非晶’J 2ifi板1の表聞
かし;I54図中上方にランダム成長する速度よりも庫
く、固相成長領域4内部では、第4図や第5図に模式的
に小すように、各多s−i品残存′1追域2 a 、2
 b内の界1川131、B2に存在する結晶粒G等を核
として図中111”I方向に向かって1111に棒状の
大結晶粒■■等が成長1′ることになる。この場合の上
記横方向の結晶成長と、基板表面からのランダム核成長
との各成長j441D4は、上記熱処理の温度によって
異なり、約550℃〜1000℃の範囲で上記横方向成
長による上記イ・]ソ状犬結晶粒の成長形成が可能であ
る。ただし、r+、?を度が高い」、H4合には、」二
記ランダム核成長の速度も速くなp、同相j成長領域4
の幅をあまり広くと7’Lず、温度が低い」場合には同
相成長が極めてλ、く慢となシ処理時間を長く要すため
、(500℃〜700℃の範囲が好ましい。この600
℃〜700℃の範囲内の温度で上記熱処理を崗しiこ場
合には、上記横方向の結晶成長が上記ランダム核成長よ
りも充分速くなシ、上記非晶質化領域3の幅が10μm
程度と広くとも、上記略棒状の大結晶粒Hmpがこの申
1゛シ全体にわたるように形成され、再現性の良い固相
成長領域4を得ることができる。なお、元の非晶質化1
111域3の幅が狭い場合等に、550℃〜1000℃
の範囲内の温度で熱処理を施して固相成長領域4を得る
ことができることは勿論である。
In this way, a partially amorphous polycrystalline silicon layer 2 is formed.
By heat-treating the amorphous region 3 at, for example, about 600° C., the amorphous region 3 is crystal-grown in a solid phase state, thereby forming a solid-phase growth region 4 as shown in FIGS. 4 and 5. At this time, the solid phase growth consists of the amorphous region 3 and the polycrystalline remaining region 2a.
, 2b in the lateral direction (horizontal direction) from interface B, , B2 with
The growth rate is higher than the random growth rate upward in the surface of the amorphous 'J 2ifi plate 1 in Figure I54, and inside the solid phase growth region 4, As shown schematically, each multi-s-i item remaining '1 tracking area 2 a, 2
Large rod-shaped crystal grains 1' will grow at 1111 in the direction 111''I in the figure using the crystal grains G, etc. existing in B2 as the nucleus. The growth j441D4 of the above-mentioned lateral crystal growth and random nucleus growth from the substrate surface varies depending on the temperature of the above-mentioned heat treatment. It is possible to grow and form crystal grains.However, when r+, ?
If the width of
When the heat treatment is carried out at a temperature within the range of 700°C to 700°C, the lateral crystal growth is sufficiently faster than the random nucleus growth, and the width of the amorphous region 3 is 10 μm.
Although it is quite wide, the substantially rod-shaped large crystal grains Hmp are formed so as to cover the entire area, and a solid phase growth region 4 with good reproducibility can be obtained. In addition, the original amorphization 1
550℃~1000℃ when the width of 111 area 3 is narrow etc.
Of course, the solid phase growth region 4 can be obtained by performing heat treatment at a temperature within the range of .

ところで、第2図および第3図のイオン注入工程におい
て、多結晶シリコン層2の両端部(図中左右端部)を多
結晶シリコンのまま残し、中央部にのみイオン注入を行
なっているが、例えば領域2bにもイオンを打ち込合よ
うにして、多結晶シリコン層2の片側(図中右411+
1 )全部を非晶質化してもよい。この場合には、非晶
質化領域と多結晶残存領域との間に一つの界面B0のみ
が存在し、この界面B7 から一方向にのみ上記横方向
同相成長が行なわハるため、上述の例のように二つの界
面B1.B2からの横方向成長が中間部で衝突するよう
なことがなく、結晶粒境界(グレイン・バウンダリ)を
より少なくすることができる。なお、このような多結晶
シリコン層2の片側全部にイオン注入を行なう場合には
、上記界面B1からイオン注入された1killの多結
晶シリコン層2の端辺までの距離を例えば2μm−1o
μmとなるように設定することは勿’j6fiである。
By the way, in the ion implantation process shown in FIGS. 2 and 3, both ends (left and right ends in the figure) of the polycrystalline silicon layer 2 are left as polycrystalline silicon, and ions are implanted only in the center. For example, by implanting ions into the region 2b, one side of the polycrystalline silicon layer 2 (411 +
1) The whole may be made amorphous. In this case, only one interface B0 exists between the amorphous region and the remaining polycrystalline region, and the above-mentioned lateral in-phase growth is performed only in one direction from this interface B7. Two interfaces B1. The lateral growth from B2 does not collide in the middle, and the number of grain boundaries can be further reduced. Note that when ion implantation is performed on the entire one side of such polycrystalline silicon layer 2, the distance from the interface B1 to the edge of 1 kill of ion-implanted polycrystalline silicon layer 2 is, for example, 2 μm-1o.
Of course, it is j6fi to set it so that it is μm.

−1:た、同相成長のための熱処理工程は上述の例と同
様である。
-1: The heat treatment process for in-phase growth is the same as in the above example.

このようにして形成された同相成長領域4は、一般の多
結晶シリコンに比べて境界(バランクー))が非常人少
なくなり、この境界部分表面に生じていた未結合手(ダ
ングリング・ボンド)を少なくすることができるため、
単結晶半導体に近い良好な特性(例えばμ(移動度)が
i怖い等)を再現性よく得ることができ、この領域4を
例えばMOSトランジスタの活性領域として用いること
ができる。
The in-phase growth region 4 formed in this way has significantly fewer boundaries (baranku) than general polycrystalline silicon, and eliminates dangling bonds that have occurred on the surface of these boundary areas. Because it is possible to reduce
Good characteristics close to those of a single crystal semiconductor (for example, μ (mobility) is low) can be obtained with good reproducibility, and this region 4 can be used, for example, as an active region of a MOS transistor.

ここで、上記熱処理は、従来の半導体ンi、j71漢を
形成するときのようなレーザアニール装置、電子ビーム
アニール装置、あるいはグラファイトヒータ装置等の特
殊な装置を必要とせず、例えば一般の拡散炉を用いるこ
とができ、また、従来のような溶融固化による再結晶を
行なって葬らず、低温プロセスの固相成長を利用してい
るため、基板表面上の放熱パターン等が不要になるとと
もに、熱応力による歪の発生等も生じない。また、高密
度集積回路を製造するにあたシ、非晶質基板上に被着形
成さムた多結晶シリコン層に多数の活性領域を形成する
場合には、これらの活性領域に対応する非晶質化領域を
それぞれ形成した後、1回の上記熱処理を行なうことに
よって全ての非晶質化領域を同時に固相成長させること
ができ、従来のように部分的な加熱処理を順次行なう必
要がなく、均一性に優れ、処理効率が高いのみならず、
通常の拡散工程と同様に複数枚のウェハを拡散炉等の加
熱炉に導入してこれら複数ウェハに対して同時に上記熱
処理な施すことができるため、量産性が大幅に向上する
Here, the above heat treatment does not require any special equipment such as a laser annealing device, an electron beam annealing device, or a graphite heater device, which is required when forming conventional semiconductor devices, and can be performed using, for example, a general diffusion furnace. In addition, since it uses solid-phase growth in a low-temperature process instead of recrystallizing by melting and solidifying as in conventional methods, it eliminates the need for heat dissipation patterns on the substrate surface, and There is no occurrence of distortion due to stress. In addition, when manufacturing high-density integrated circuits, when a large number of active regions are formed in a polycrystalline silicon layer deposited on an amorphous substrate, non-active regions corresponding to these active regions are required. After each crystallized region is formed, by performing the above heat treatment once, all the amorphous regions can be grown in a solid phase at the same time, and there is no need to sequentially perform partial heat treatment as in the conventional method. Not only does it have excellent uniformity and high processing efficiency, but also
As in a normal diffusion process, a plurality of wafers can be introduced into a heating furnace such as a diffusion furnace and the above-mentioned heat treatment can be performed on the plurality of wafers at the same time, thereby greatly improving mass productivity.

次に、上述した実施例(に於いては、基板1の平面−ヒ
で一方向(例えば第5図の左右方向)についてのみ同相
成長を行なわせているが、さらに、棒状大結晶粒多結晶
シリコン領域である固相成長領域4の少なくとも一部分
に対してイオン注入による非晶質化処理を再度施し、基
板平面上で上記一方向と略直交する方向(第5図の上下
方向)(/?−固相成長を行なわせてもよい。
Next, in the above-mentioned embodiment, in-phase growth is performed only in one direction (for example, the left-right direction in FIG. At least a portion of the solid-phase growth region 4, which is a silicon region, is again subjected to an amorphous treatment by ion implantation in a direction substantially perpendicular to the above-mentioned direction on the substrate plane (the vertical direction in FIG. 5) (/? - Solid phase growth may be performed.

すなわち、第6図に2いて、非晶質基板1の多結晶シリ
コン層2には、上述の実施例の方法によシ固相成長領域
、すなわち棒状大結晶粒の多結晶シリコンよ構成る領域
4が形成さilており、この′領域4の上記固相成長方
向とは略直交する方向(図中へ方向)の両端部以外の部
分、例えば図中の仮想線で囲んだ領域5に対して、イオ
ン注入による非晶質化処理をIJ[1す。このイオン注
入(d1土述した実施例と同様に 5L−1−あるいは
01等のような半導体多結晶層に対して悪影響を与えな
いイオンを、多結晶層(この場合は上記同相成長領域4
)のイオン注入領域が全体的に略非晶′1!を化さノす
る程度のドーズ爪ア・よびエネルギの”Thflで打ち
込む。
That is, in the polycrystalline silicon layer 2 of the amorphous substrate 1, as shown in FIG. 4 is formed, and a portion other than both ends of this region 4 in a direction substantially perpendicular to the solid-phase growth direction (in the direction in the figure), for example, a region 5 surrounded by imaginary lines in the figure. Then, IJ[1] is subjected to amorphous treatment by ion implantation. This ion implantation (d1) As in the embodiment described above, ions that have no adverse effect on the semiconductor polycrystalline layer such as 5L-1- or 01 are implanted into the polycrystalline layer (in this case, the in-phase growth region 4).
) The ion-implanted region is generally amorphous '1! Drive with a dose of nail a and a sufficient amount of energy to turn into a ``Thfl''.

次に、上述の実施例と同様に例えば600℃程度で熱処
理を施して同相成長を行なわせる。このときの固相成長
は、上記棒状大結晶粒が形成されていた領域4の上記両
端部を核として図中上下方向に進行するから、平面状あ
るいは薄板状の大結晶粒が領域呑内の上記イオン注入部
分(図中斜線部参照)に形成されることになシ、結晶粒
境界(グレイン・バウンダリ)カさらに減少し、特性が
向上する。原理的には、CVD法等によシ被着形成した
多結晶シリコン層に対して、イオン注入および固相成長
のゾヒめの熱処理を、3回縁シ返して行なうことによシ
、横、縦ぐ゛厚さの3次元方向に所望の寸法を有する単
結晶体が得られる。
Next, as in the above-described embodiment, heat treatment is performed at, for example, about 600° C. to perform in-phase growth. At this time, the solid phase growth proceeds in the vertical direction in the figure with the two ends of the region 4 where the rod-shaped large crystal grains were formed as nuclei, so that the planar or thin plate-like large crystal grains grow within the region. By forming the ion-implanted portion (see the shaded area in the figure), the number of grain boundaries is further reduced, and the characteristics are improved. In principle, a polycrystalline silicon layer deposited by a CVD method or the like is subjected to intensive heat treatment for ion implantation and solid phase growth by turning the edges three times. , a single crystal having desired dimensions in the three-dimensional direction of length and thickness is obtained.

なお、本発明は上記実施例のみに限定されるものではな
く、例えば多結晶シリコン層2やイオン注入によシ非晶
質化した領域3等の平面形状は、図示のもの以外にも榎
々の形状が考えられ、同一基板上に多数の多結晶シリコ
ン層や非晶質化領域を形成してもよいことは勿論である
Note that the present invention is not limited to the above-mentioned embodiments, and the planar shapes of the polycrystalline silicon layer 2, the region 3 made amorphous by ion implantation, etc. may be varied in addition to those shown in the drawings. Of course, a large number of polycrystalline silicon layers and amorphous regions may be formed on the same substrate.

〔発明の効果〕〔Effect of the invention〕

本発明に係る半導体薄膜の形成方法によれば、多結晶シ
リコンの一部にイオン注入を施して非晶質化し、その界
面からの固相成長によシ結晶粒境界(グレイン・バウン
ダリ)の非常に少ない半導体層を得χいるため、従来に
比べて、再現性、均一性に侵れ、また比較的低温でj1
1常の拡散炉を用いて処理できるため、多数の素子や複
数のウェハを同時に処理でき、処理効率が向上するとと
もに、熱応力による欠陥等もなく、基板表面上の複式1
な放熱パターン等も不敬でβる。
According to the method for forming a semiconductor thin film according to the present invention, ions are implanted into a part of polycrystalline silicon to make it amorphous, and solid phase growth from the interface is performed to form an extremely large grain boundary. Since less semiconductor layers are obtained in the
1. Because the process can be performed using a regular diffusion furnace, a large number of devices and multiple wafers can be processed simultaneously, improving processing efficiency and eliminating defects caused by thermal stress.
The heat dissipation pattern etc. are also disrespectful and β.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は本発明の一実施例全説明するため
のもので、第1図は処理前の状態を示す概略断面図、第
2図はイオン注入後の状態を示す概略断面図、第3図は
第2図の多結晶シリコン層のみを塩9出して示す概略平
面図、第4図は同相成長後の状態を示す概略断面図、第
5図は第4図の多結晶シリコン層のみを取シ出して示す
概略平面図であり、第6図は本発明の他の実施例の要部
を示す概略芹面図である。 1・・・非晶質絶縁基板 2・・・多結晶シリコン層3
・・・非晶質化領域 4・・・固相成長領域1町 1)
 何 栄 − 第1図 第2図 第3図 第4図 第5図 第6図
Figures 1 to 5 are for explaining one embodiment of the present invention. Figure 1 is a schematic sectional view showing the state before processing, and Figure 2 is a schematic sectional view showing the state after ion implantation. , FIG. 3 is a schematic plan view showing only the polycrystalline silicon layer in FIG. 2 with salt removed, FIG. 4 is a schematic cross-sectional view showing the state after in-phase growth, and FIG. 5 is a schematic plan view showing the polycrystalline silicon layer in FIG. FIG. 6 is a schematic plan view showing only the layers taken out, and FIG. 6 is a schematic plan view showing main parts of another embodiment of the present invention. 1... Amorphous insulating substrate 2... Polycrystalline silicon layer 3
...Amorphous region 4...Solid phase growth region 1 town 1)
He Rong - Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 基板上に多結晶シリコンを形成する工程と、この多結晶
シリコンの少なくとも一部分にイオン注入して非晶質化
する工程と、この非晶質化した部分を同相状態で結晶成
長させる工程とを有する半導体薄膜の形成力法。
The method includes a step of forming polycrystalline silicon on a substrate, a step of implanting ions into at least a portion of this polycrystalline silicon to make it amorphous, and a step of growing crystals in this amorphous portion in an in-phase state. Formation force method for semiconductor thin films.
JP59018480A 1984-02-06 1984-02-06 Formation of semiconductor thin film Pending JPS60164316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018480A JPS60164316A (en) 1984-02-06 1984-02-06 Formation of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018480A JPS60164316A (en) 1984-02-06 1984-02-06 Formation of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS60164316A true JPS60164316A (en) 1985-08-27

Family

ID=11972796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018480A Pending JPS60164316A (en) 1984-02-06 1984-02-06 Formation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS60164316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288365A (en) * 1985-10-15 1987-04-22 Sony Corp Manufacture of thin film transistor
JPS63136510A (en) * 1986-11-27 1988-06-08 Sharp Corp Formation of polycrystalline silicon thin film
FR2661779A1 (en) * 1990-05-02 1991-11-08 Nippon Sheet Glass Co Ltd PROCESS FOR PRODUCING A POLYCRYSTALLINE SEMICONDUCTOR FILM.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288365A (en) * 1985-10-15 1987-04-22 Sony Corp Manufacture of thin film transistor
JPS63136510A (en) * 1986-11-27 1988-06-08 Sharp Corp Formation of polycrystalline silicon thin film
FR2661779A1 (en) * 1990-05-02 1991-11-08 Nippon Sheet Glass Co Ltd PROCESS FOR PRODUCING A POLYCRYSTALLINE SEMICONDUCTOR FILM.

Similar Documents

Publication Publication Date Title
JP3182893B2 (en) Method for manufacturing thin film transistor
JPH0492413A (en) Growth of crystal thin film
JPS60164316A (en) Formation of semiconductor thin film
JPH0824184B2 (en) Method for manufacturing thin film transistor
JPH0329316A (en) Formation of semiconductor thin film
JPH03159116A (en) Method for thermally treating thin polycrystal semiconductor film
JPH0810669B2 (en) Method of forming SOI film
JPH059099A (en) Method for growing crystal
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JP3141909B2 (en) Semiconductor device manufacturing method
JPS61116821A (en) Formation of single crystal thin film
JPH02143414A (en) Formation of single crystal film
JPH0236052B2 (en)
JPS5856408A (en) Method of growing single crystal silicon film
JP3216318B2 (en) Semiconductor crystal growth method
KR960004903B1 (en) Preparing method of semiconductor devices
JP3332645B2 (en) Method for manufacturing polycrystalline semiconductor
JPH0547660A (en) Solid growth method for semiconductor thin film
JPS63196032A (en) Crystallization of semiconductor thin film
JPH04196411A (en) Formation of polycrystalline silicon film
JPH03284831A (en) Forming method for semiconductor thin-film
JPH03280418A (en) Manufacture of semiconductor film
JPS59228713A (en) Manufacture of semiconductor device
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JPS6265409A (en) Formation of semiconductor thin film