JPH0547660A - Solid growth method for semiconductor thin film - Google Patents

Solid growth method for semiconductor thin film

Info

Publication number
JPH0547660A
JPH0547660A JP22214791A JP22214791A JPH0547660A JP H0547660 A JPH0547660 A JP H0547660A JP 22214791 A JP22214791 A JP 22214791A JP 22214791 A JP22214791 A JP 22214791A JP H0547660 A JPH0547660 A JP H0547660A
Authority
JP
Japan
Prior art keywords
film
nuclei
thin film
amorphous
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22214791A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okamoto
弘之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22214791A priority Critical patent/JPH0547660A/en
Publication of JPH0547660A publication Critical patent/JPH0547660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To shorten a forming time of an amorphous semiconductor layer having a low nucleus density and to obtain an SOI having excellent characteristics at a low temperature by heat treating an amorphous semiconductor film laminated on an insulating board to generate crystalline growing nuclei, then again heat treating it in a state that the density of the nuclei is reduced, and solid growing it. CONSTITUTION:An amoqhous silicon thin film 2 is deposited on an insulating board 1 under a condition having a low impurity concentration in a film, and further an amorphous silicon thin film 3 is deposited under a condition having a high impurity concentration. And, when it is heat treated at 600 deg.C in an N2 atmosphere, crystalline nuclei 4 are generated near a boundary between the surface and the amorphous silicon thin films 2 and 3. When Si ions are implanted in a region having high impurity concentration near the surface of the film in this state to be made amorphous, the density of the nuclei 4 is reduced, and an amorphous silicon layer 3' containing small amount of the impurity of the state that the nuclei partly remain is obtained. It is further heat treated at 600 deg.C in an N2 atmosphere in this state for about 24 hours to obtain a semiconductor layer having about 2.5mum of average crystalline grain size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、石英等の絶縁性基板上に大粒径
の結晶核をもつ半導体薄膜形成方法およびこの方法を使
用することにより作成した逆スタガー構成の薄膜半導体
素子に関する。
TECHNICAL FIELD The present invention relates to a method for forming a semiconductor thin film having large-sized crystal nuclei on an insulating substrate such as quartz and a thin film semiconductor device having an inverted stagger structure formed by using this method.

【0002】[0002]

【従来技術】絶縁性基板上や、Siウエハ上の絶縁膜上
に結晶性の良いシリコン薄膜を形成する方法はSOI技
術として知られている。SOI技術のうち再結晶化法と
呼ばれるものには多結晶や非晶質を一度溶融状態にし
て、その上で再結晶化させる方法と、溶融する温度まで
は昇温せずに、結晶の再配列を促進しながら結晶を成長
させる固相成長法がある。固相成長法では600℃以下
の低温で再結晶化ができるため、低温化という点ですぐ
れている。固相成長法では、まず結晶成長の基点となる
核が生成され、その後核のまわりに結晶が成長する。一
般的に核生成のための活性化エネルギーは、固相成長の
ための活性化エネルギーに比べ小さいことが知られてい
る。従って、より低温で熱処理することは、核の生成密
度を下げる効果が著しい。核の生成密度が下がることに
より、より大きな結晶粒径を持つ半導体膜が得られるよ
うになる。結晶の平均粒径は、核生成密度の1/2乗に逆
比例する関係にある。結局大きな粒径の結晶を得るには
核生成密度を低く抑える必要がある。550℃〜600
℃の低温で熱処理することは、前に述べたように核の生
成密度を減らすという点で好ましいが、核が生成される
までの時間(潜伏時間)が非常に長くなるため実用的で
ないのが欠点である。これに対して、特開平2−238
617号公報の技術では700〜800℃の高温短時間
熱処理工程につづいて第1のアニール工程および第1の
アニール工程より低温の第2のアニール工程を採用する
ことによる固相成長方法を提案している。一方、本発明
者は先に特願平3−14780号において、絶縁基板上
に不純物濃度の異なる非晶質半導体層を積層し熱アニー
ルによって結晶成長の核を生成した後、膜表面の核密度
の高い領域をエッチングによって除去し、再び熱アニー
ルにより固相成長を行う方法について提供しているが、
エッチング工程を必要とすること、さらにエッチングガ
ス(SF6,CF4,O2等)によるエッチング表面の汚
染(CやFの残留)のために、固相成長の熱アニールを
行う前に表面のクリーニング処理を施す等の手間が必要
であった。またエッチング除去する半導体層の膜厚分を
固相成長後必要とされる膜厚に付加してあらかじめ基板
上に堆積する必要があった。
2. Description of the Related Art A method of forming a silicon thin film having good crystallinity on an insulating substrate or an insulating film on a Si wafer is known as SOI technology. Among the SOI technologies, the so-called recrystallization method is a method in which a polycrystalline or amorphous material is once melted and then recrystallized, and a method of recrystallizing a crystal without raising it to a melting temperature. There is a solid phase growth method in which crystals are grown while promoting arraying. In the solid phase growth method, recrystallization can be performed at a low temperature of 600 ° C. or lower, which is excellent in terms of low temperature. In the solid-phase growth method, first, nuclei serving as a base point of crystal growth are generated, and then crystals grow around the nuclei. It is generally known that the activation energy for nucleation is smaller than the activation energy for solid phase growth. Therefore, the heat treatment at a lower temperature has a remarkable effect of lowering the nucleus generation density. By reducing the density of nucleation, a semiconductor film having a larger crystal grain size can be obtained. The average crystal grain size is inversely proportional to the 1/2 power of the nucleation density. After all, in order to obtain crystals with a large grain size, it is necessary to keep the nucleation density low. 550 ° C-600
Heat treatment at a low temperature of ℃ is preferable in that the density of nuclei formation is reduced as described above, but it is not practical because the time until the nuclei are formed (latency time) becomes extremely long. It is a drawback. On the other hand, JP-A-2-238
The technique of Japanese Patent No. 617 proposes a solid phase growth method by adopting a high temperature short time heat treatment process at 700 to 800 ° C., followed by a first annealing process and a second annealing process at a temperature lower than the first annealing process. ing. On the other hand, the present inventor previously disclosed, in Japanese Patent Application No. 3-14780, that amorphous semiconductor layers having different impurity concentrations are stacked on an insulating substrate, and nuclei for crystal growth are generated by thermal annealing, and then the nuclei density of the film surface is increased. We provide a method to remove the high temperature region by etching and perform solid phase growth again by thermal annealing.
Due to the necessity of an etching process and the contamination of the etching surface (remaining of C and F) by the etching gas (SF 6 , CF 4 , O 2 etc.), the surface of the surface before the thermal annealing of the solid phase growth is performed. There was a need for labor such as performing a cleaning process. Further, it is necessary to add the film thickness of the semiconductor layer to be removed by etching to the film thickness required after the solid phase growth and deposit it on the substrate in advance.

【0003】[0003]

【目的】本発明の目的は、さらに新しい固相成長法を提
案するものであって、具体的には、絶縁性基板上に堆積
された非晶質シリコン薄膜を固相成長させる工程におい
て、前に述べた長時間(数百時間)の熱処理を必要とす
る欠点を解決し、さらに核生成の密度を低く抑えた状態
で熱処理し、粒径の大きい結晶を有するシリコン薄膜を
固相成長させる方法を提供することである。本発明の他
の目的は、特願平3−14780号のようなエッチング
工程を使用しない方法を提供する点にある。
[Objective] The object of the present invention is to propose a new solid phase growth method, specifically, in the step of solid phase growing an amorphous silicon thin film deposited on an insulating substrate, A method for solving the drawback of requiring a long time (hundreds of hours) heat treatment described in 1., and further performing heat treatment in a state in which the density of nucleation is suppressed to a low level to perform solid phase growth of a silicon thin film having crystals with large grain size. Is to provide. Another object of the present invention is to provide a method which does not use an etching process as in Japanese Patent Application No. 3-14780.

【0004】[0004]

【構成】本発明の第1は、(a)絶縁性基板上に不純物
濃度の低い非晶質半導体膜と不純物濃度の高い非晶質半
導体膜を順次堆積させる工程と、(b)前記積層された
非晶質半導体膜に熱処理をして結晶成長の核を生成させ
る熱アニール工程と、(c)前記核が生成された膜のう
ち膜表面付近の不純物濃度の高い領域にイオン注入を行
いアモルファス化することで核の密度を低減する工程
と、(d)前記核の密度が低減された膜を再び熱処理し
て固相成長を行う熱アニール工程を有することを特徴と
する半導体薄膜の固相成長方法に関する。本発明の第2
は、請求項1記載の固相成長方法により作成された半導
体薄膜をゲート電極とし、前記半導体層の熱酸化により
ゲート酸化膜が形成されていることを特徴とする逆スタ
ガー構成の薄膜半導体素子に関する。本発明の第3は、
チャンネル領域も請求項1記載の固相成長方法により形
成された半導体薄膜である請求項2記載の逆スタガー構
成の薄膜半導体素子に関する。
According to a first aspect of the present invention, (a) a step of sequentially depositing an amorphous semiconductor film having a low impurity concentration and an amorphous semiconductor film having a high impurity concentration on an insulating substrate; The amorphous semiconductor film is heat-treated to generate nuclei for crystal growth, and (c) ion-implantation is performed to a region of the film where the nuclei are formed, which has a high impurity concentration near the film surface. Solid phase of a semiconductor thin film, which comprises: a step of reducing the density of nuclei by solidification, and (d) a thermal annealing step of performing heat treatment again on the film having the reduced density of nuclei to perform solid phase growth. Regarding the growth method. Second of the present invention
Relates to a thin film semiconductor device having an inverted staggered structure, wherein a semiconductor thin film formed by the solid phase growth method according to claim 1 is used as a gate electrode, and a gate oxide film is formed by thermal oxidation of the semiconductor layer. .. The third aspect of the present invention is
A thin film semiconductor device having an inverted stagger structure according to claim 2, wherein the channel region is also a semiconductor thin film formed by the solid phase growth method according to claim 1.

【0005】前記不純物濃度の低い場合の目安は、通常
不純物濃度が1×1016〜1×1017(atom/cc)含ま
れている場合であり、とくに好ましくは1×1016〜5
×1016(atom/cc)含まれている場合である。前記不
純物濃度の高い場合の目安は、通常不純物濃度が1×1
20〜1×1021(atom/cc)含まれている場合であ
り、とくに好ましくは2×1020〜5×1020(atom/
cc)含まれている場合である。
When the impurity concentration is low, the standard is that the impurity concentration is usually 1 × 10 16 to 1 × 10 17 (atom / cc), and particularly preferably 1 × 10 16 to 5.
× 10 16 (atom / cc) is included. When the impurity concentration is high, the standard is that the impurity concentration is usually 1 × 1.
It is a case where it is contained in an amount of 0 20 to 1 × 10 21 (atom / cc), and particularly preferably 2 × 10 20 to 5 × 10 20 (atom / cc).
cc) If included.

【0006】つぎに、本発明を具体的に説明する。ま
ず、図1(a)に示すように、絶縁性基板1上に、膜中の
不純物濃度の低い条件で非晶質シリコン薄膜2を堆積す
る。ここではLPCVD法及びプラズマCVD法の場合
の条件を記述する。〔 〕内は好ましい範囲を示す。 (1) LPCVD法の場合の1例 原料ガス Si26 (純度99.999%) 圧力 0.2Torr 〔0.1〜0.5Torr〕 基板温度 500℃ 〔470〜530℃〕 膜厚 1500Å〔1000〜3000Å〕 (2) プラズマCVD法の場合 原料ガス 10%SiH4 (純度99.999%)+H2(純度99.9999
9%) 圧力 0.6 Torr 〔0.1〜0.8Torr〕 基板温度 100℃ 〔70〜150℃〕 RFパワー 30W 〔20〜100W〕 膜厚 1500Å〔1000〜3000Å〕 さらに、不純物濃度の高い条件で非晶質シリコン薄膜3
を堆積する。(1)のLPCVD法の場合は、Si26
PH3を流量比で1/103程度〔1/104〜1/103
混入(高濃度の場合に相当)させて堆積を行う。(2)の
プラズマCVD法ではSiH4にPH3を同程度混入させ
て堆積を行う。この他不純物としてC,N,Oを導入す
るためにはCH4,N2O,CO2,NH3等を混入させ
る。3の膜厚としては500Å〔300〜700Å〕とした。
図1(b)は図1(a)の状態のものをN2雰囲気中で600℃の
温度で12時間熱処理した後の状態を示す図で、4は表面
及び2と3の層の界面付近に生成した結晶核を表わして
いる。非晶質シリコン中の不純物P,N,C,O等は核
生成までの潜伏時間を短くし、核生成速度を大きくする
効果があるが、2の層はこれらの不純物濃度が低いた
め、この程度の時間の熱処理では2の膜中には核生成が
ほとんど見られない。次に、図1(b)の状態から膜表
面近傍にSiイオン注入を行い、アモルファス化した状
態を示したのが図1(c)である。3′は先に生成され
た結晶核が少し部分的に残っている状態の不純物の少な
い非晶質シリコン層である。Siイオン注入条件は、4
0KeV,2×1015cm-2である。この条件で表面から
500〜700Åの深さまでアモルファス化される。図
1(c)の状態からN2雰囲気中600℃の温度で約2
4時間のアニールを行い、平均結晶粒径約2.5μmの結
晶粒径を持つ半導体層が得られた。図2は前記具体例に
おける核生成速度及び潜伏時間のPH3/SiH4濃度依
存性を示すグラフである。また、図3は第2、第3の本
発明の具体例である。すなわち、本発明の固相成長方法
によって作成された大粒径のSi層23をゲート電極と
して形成した後、温度900℃で熱酸化膜27を形成
し、さらにその上に本発明の固相成長方法をくり返し用
い、チャンネル領域24、ソース領域26、ドレイン領
域25を形成したものである。
Next, the present invention will be specifically described. First, as shown in FIG. 1A, an amorphous silicon thin film 2 is deposited on an insulating substrate 1 under the condition that the impurity concentration in the film is low. Here, the conditions for the LPCVD method and the plasma CVD method will be described. [] Shows a preferable range. (1) Example of LPCVD method Raw material gas Si 2 H 6 (purity 99.999%) Pressure 0.2 Torr [0.1 to 0.5 Torr] Substrate temperature 500 ° C [470 to 530 ° C] Film thickness 1500Å [1000 to 3000Å] ( 2) In case of plasma CVD method Raw material gas 10% SiH 4 (Purity 99.999%) + H 2 (Purity 99.9999
9%) Pressure 0.6 Torr [0.1 to 0.8 Torr] Substrate temperature 100 ℃ [70 to 150 ℃] RF power 30 W [20 to 100 W] Film thickness 1500 Å [1000 to 3000 Å] Amorphous under high impurity concentration conditions Quality thin silicon film 3
Deposit. In the case of the LPCVD method (1), PH 3 is added to Si 2 H 6 at a flow rate ratio of about 1/10 3 [1/10 4 to 1/10 3 ].
Deposition is performed by mixing (corresponding to the case of high concentration). Performing deposition by mixing the same degree of PH 3 to SiH 4 in plasma CVD method (2). In addition, in order to introduce C, N, O as impurities, CH 4 , N 2 O, CO 2 , NH 3, etc. are mixed. The film thickness of 3 was 500 Å [300 to 700 Å].
FIG. 1 (b) shows the state of FIG. 1 (a) after being heat-treated in an N 2 atmosphere at a temperature of 600 ° C. for 12 hours, and 4 is near the surface and the interface between the layers 2 and 3. It represents the crystal nuclei formed in. Impurities P, N, C, O, etc. in amorphous silicon have the effect of shortening the latent time until nucleation and increasing the nucleation rate, but since the layer 2 has a low concentration of these impurities, this After the heat treatment for about a time, almost no nucleation is observed in the film of No.2. Next, FIG. 1C shows a state in which Si ions are implanted in the vicinity of the film surface from the state of FIG. 1B to make it amorphous. Reference numeral 3'denotes an amorphous silicon layer having a small amount of impurities in a state where the crystal nuclei previously produced are partially left. Si ion implantation condition is 4
It is 0 KeV and 2 × 10 15 cm -2 . Under this condition, it is amorphized to a depth of 500 to 700 Å from the surface. Approximately 2 at 600 ° C. in N 2 atmosphere from the state shown in FIG.
After annealing for 4 hours, a semiconductor layer having a crystal grain size of about 2.5 μm was obtained. FIG. 2 is a graph showing the PH 3 / SiH 4 concentration dependence of the nucleation rate and the incubation time in the above specific example. Further, FIG. 3 shows a concrete example of the second and third aspects of the present invention. That is, after forming the large grain size Si layer 23 formed by the solid phase growth method of the present invention as a gate electrode, a thermal oxide film 27 is formed at a temperature of 900 ° C., and the solid phase growth of the present invention is further formed thereon. The channel region 24, the source region 26, and the drain region 25 are formed by repeatedly using the method.

【0007】[0007]

【効果】 低密度の核生成までの時間が大巾に短縮で
きた。 低核生成密度下で結晶粒径の大きな多結晶シリコン
が得られた。 低温で、特性の優れたSOIを提供することができ
る。 大粒径のシリコン薄膜からゲート絶縁膜を作成する
ので絶縁膜はより平坦化され、その上に形成されるシリ
コン薄膜はさらに特性が向上する。
[Effect] The time required to generate low-density nuclei was greatly shortened. Polycrystalline silicon with large grain size was obtained under low nucleation density. It is possible to provide an SOI with excellent characteristics at low temperatures. Since the gate insulating film is formed from a silicon thin film having a large grain size, the insulating film is flattened and the characteristics of the silicon thin film formed thereon are further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b)、(c)により第1の本発明の製造工程
例を示す。
1A to 1C show an example of a manufacturing process according to the first aspect of the present invention with reference to (a), (b), and (c).

【図2】本発明の具体例における核生成速度および潜伏
時間のPH3/SiH4の濃度依存性を示すグラフであ
り、△−△はアニール開始から核が発生するまでの時
間、すなわち潜伏時間をしめし、○…○は核が発生する
割合を表わすもので核生成速度に相当する。
FIG. 2 is a graph showing the PH 3 / SiH 4 concentration dependence of nucleation rate and latency in specific examples of the present invention, where Δ-Δ is the time from the start of annealing to the generation of nuclei, that is, the latency. .. indicates the rate at which nuclei are generated and corresponds to the nucleation rate.

【図3】本発明の逆スタガ型薄膜半導体素子の一例を示
す説明図である。
FIG. 3 is an explanatory diagram showing an example of an inverted stagger type thin film semiconductor element of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁性基板 2 不純物濃度を低い条件で堆積した非晶質シリコン薄
膜 3 不純物濃度を高い条件で堆積した非晶質シリコン薄
膜 3′ 結晶核が少し部分的に残っている状態の不純物の
少ない非晶質シリコン薄膜 4 結晶核 23 ゲート電極 24 チャンネル領域 25 ドレイン領域 26 ソース領域 27 熱酸化膜
1 Insulating substrate 2 Amorphous silicon thin film deposited under conditions of low impurity concentration 3 Amorphous silicon thin film deposited under conditions of high impurity concentration 3 ' Amorphous silicon thin film 4 Crystal nucleus 23 Gate electrode 24 Channel region 25 Drain region 26 Source region 27 Thermal oxide film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/40 A 7738−4M 29/784 // H01L 21/265 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01L 29/40 A 7738-4M 29/784 // H01L 21/265

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (a)絶縁性基板上に不純物濃度の低い
非晶質半導体膜と不純物濃度の高い非晶質半導体膜を順
次堆積させる工程と、(b)前記積層された非晶質半導
体膜に熱処理をして結晶成長の核を生成させる熱アニー
ル工程と、(c)前記核が生成された膜のうち膜表面付
近の不純物濃度の高い領域にイオン注入を行いアモルフ
ァス化することで核の密度を低減する工程と、(d)前
記核の密度が低減された膜を再び熱処理して固相成長を
行う熱アニール工程を有することを特徴とする半導体薄
膜の固相成長方法。
1. A step of sequentially depositing an amorphous semiconductor film having a low impurity concentration and an amorphous semiconductor film having a high impurity concentration on an insulating substrate, and (b) the stacked amorphous semiconductors. A thermal annealing process in which a film is heat-treated to generate nuclei for crystal growth, and (c) nuclei are formed by ion-implanting a region of the film in which the nuclei are generated near the film surface with a high impurity concentration to make it amorphous. And (d) a thermal annealing step of performing heat treatment again on the film having the reduced density of nuclei to perform solid phase growth, the solid phase growth method for a semiconductor thin film.
【請求項2】 請求項1記載の固相成長方法により作成
された半導体薄膜をゲート電極とし、前記半導体層の熱
酸化によりゲート酸化膜が形成されていることを特徴と
する逆スタガー構成の薄膜半導体素子。
2. A thin film having an inverted staggered structure, wherein the semiconductor thin film formed by the solid phase growth method according to claim 1 is used as a gate electrode, and the gate oxide film is formed by thermal oxidation of the semiconductor layer. Semiconductor device.
【請求項3】 チャンネル領域も請求項1記載の固相成
長方法により形成された半導体薄膜である請求項2記載
の逆スタガー構成の薄膜半導体素子。
3. A thin film semiconductor device having an inverted staggered structure according to claim 2, wherein the channel region is also a semiconductor thin film formed by the solid phase growth method according to claim 1.
JP22214791A 1991-08-07 1991-08-07 Solid growth method for semiconductor thin film Pending JPH0547660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22214791A JPH0547660A (en) 1991-08-07 1991-08-07 Solid growth method for semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22214791A JPH0547660A (en) 1991-08-07 1991-08-07 Solid growth method for semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0547660A true JPH0547660A (en) 1993-02-26

Family

ID=16777920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22214791A Pending JPH0547660A (en) 1991-08-07 1991-08-07 Solid growth method for semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0547660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766989A (en) * 1994-12-27 1998-06-16 Matsushita Electric Industrial Co., Ltd. Method for forming polycrystalline thin film and method for fabricating thin-film transistor
US6383899B1 (en) * 1996-04-05 2002-05-07 Sharp Laboratories Of America, Inc. Method of forming polycrystalline semiconductor film from amorphous deposit by modulating crystallization with a combination of pre-annealing and ion implantation
US7845367B2 (en) * 2006-07-28 2010-12-07 Hitachi Construction Machinery Co., Ltd. Lock device for operation pattern selecting valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766989A (en) * 1994-12-27 1998-06-16 Matsushita Electric Industrial Co., Ltd. Method for forming polycrystalline thin film and method for fabricating thin-film transistor
US6383899B1 (en) * 1996-04-05 2002-05-07 Sharp Laboratories Of America, Inc. Method of forming polycrystalline semiconductor film from amorphous deposit by modulating crystallization with a combination of pre-annealing and ion implantation
US7845367B2 (en) * 2006-07-28 2010-12-07 Hitachi Construction Machinery Co., Ltd. Lock device for operation pattern selecting valve

Similar Documents

Publication Publication Date Title
US5531182A (en) Method of making a semiconductor thin-film
EP0608503B1 (en) A semiconductor device and its manufacturing method
US4808546A (en) SOI process for forming a thin film transistor using solid phase epitaxy
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
JPH06177036A (en) Semiconductor thin film crystal growth method
JPH08102543A (en) Crystallization method and manufacture of thin film transistor using its method
JPH0824184B2 (en) Method for manufacturing thin film transistor
JPH0547660A (en) Solid growth method for semiconductor thin film
JPH04286336A (en) Manufacture of semiconductor device
US5821157A (en) Argon amorphizing polysilicon layer fabrication
JPH0738118A (en) Manufacture of thin film transistor
JPH0252419A (en) Manufacture of semiconductor substrate
JPH0329316A (en) Formation of semiconductor thin film
EP0390607B1 (en) Process for forming crystalline semiconductor film
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JPH04348021A (en) Solid phase growth of semiconductor thin film
JP3216318B2 (en) Semiconductor crystal growth method
JPH05217891A (en) Manufacture of semiconductor device
JP2592984B2 (en) Manufacturing method of silicon thin film
JPH03200319A (en) Formation of poly-crystalline silicon
JP2993665B2 (en) Wiring formation method
JPH08107211A (en) Manufacture of semiconductor device
JPS60164316A (en) Formation of semiconductor thin film
JP2833878B2 (en) Method of forming semiconductor thin film