JPH01721A - Manufacturing method of single crystal thin film - Google Patents

Manufacturing method of single crystal thin film

Info

Publication number
JPH01721A
JPH01721A JP62-154462A JP15446287A JPH01721A JP H01721 A JPH01721 A JP H01721A JP 15446287 A JP15446287 A JP 15446287A JP H01721 A JPH01721 A JP H01721A
Authority
JP
Japan
Prior art keywords
thin film
crystal
single crystal
crystal thin
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-154462A
Other languages
Japanese (ja)
Other versions
JPH0795526B2 (en
JPS64721A (en
Inventor
利明 宮嶋
木場 正義
Original Assignee
工業技術院長
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP62154462A priority Critical patent/JPH0795526B2/en
Priority claimed from JP62154462A external-priority patent/JPH0795526B2/en
Publication of JPS64721A publication Critical patent/JPS64721A/en
Publication of JPH01721A publication Critical patent/JPH01721A/en
Publication of JPH0795526B2 publication Critical patent/JPH0795526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は単結晶薄膜の製造方法に関し、さらに詳細には
非単結晶絶縁膜上ピ形成した非晶質あるいは多結晶等の
非単結晶薄膜にレーザビームや電子ビーム等の照射ある
いはランフ゛、ヒータ等による加熱等のエネルギービー
ム照射を行って、非単結晶薄膜を単結晶化する方法の改
良に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a single crystal thin film, and more particularly, to a method for manufacturing a single crystal thin film such as an amorphous or polycrystalline thin film formed on a non-single crystal insulating film. The present invention relates to an improvement in a method for converting a non-single crystal thin film into a single crystal by applying energy beam irradiation such as laser beam or electron beam irradiation or heating with a lamp, heater, etc.

〈従来の技術〉 従来より、単結晶基板上に形成した一部開口部を有する
絶縁膜の上に、非晶質あるいは多結晶等の非単結晶薄膜
を形成し、この非単結晶薄膜にレーザビームや電子ビー
ム等の照射あるいはランプ。
<Conventional technology> Conventionally, a non-single crystal thin film such as amorphous or polycrystalline is formed on an insulating film having a partial opening formed on a single crystal substrate, and a laser is applied to this non-single crystal thin film. Irradiation with beams, electron beams, etc. or lamps.

ヒータ等による加熱等のエネルギービーム照射ヲ行って
溶融再結晶化させることにより、単結晶基板と結晶方位
の一致した単結晶薄膜を作製する方法が提案されている
A method has been proposed in which a single-crystal thin film whose crystal orientation matches that of a single-crystal substrate is produced by applying energy beam irradiation such as heating with a heater or the like to melt and recrystallize the film.

この従来より提案されている方法は、通常第2図(at
及び(blに示すように単結晶基板21上に一部開口部
21aを有する絶縁膜22を形成し、さらにその上に単
結晶化すべき非晶質あるいは多結晶の非単結晶薄膜23
と表面保護膜24を形成した後、レーザビームや電子ビ
ーム等の照射あるいはランプ、ヒータ等による加熱等の
エネルギービーム照射25を非単結晶薄膜23が単結晶
基板21の露出部分21aと直接接した領域から行うこ
とにより、単結晶基板21を結晶成長の種として非単結
晶薄膜23を単結晶化して単結晶基板21と結晶方位の
一致した単結晶薄膜26にしている。
This conventionally proposed method is usually shown in Fig. 2 (at
(As shown in bl, an insulating film 22 having a partial opening 21a is formed on a single crystal substrate 21, and an amorphous or polycrystalline non-single crystal thin film 23 to be made into a single crystal is formed on the insulating film 22.
After forming the surface protective film 24, the non-single-crystal thin film 23 is directly contacted with the exposed portion 21a of the single-crystal substrate 21 using an energy beam irradiation 25 such as laser beam or electron beam irradiation or heating with a lamp, heater, etc. By performing this from the region, the non-single crystal thin film 23 is single crystallized using the single crystal substrate 21 as a seed for crystal growth to form a single crystal thin film 26 whose crystal orientation matches that of the single crystal substrate 21.

また、単結晶薄膜を2層以上形成しようとする場合は、
第3図(aJ及び(blに示すように、単結晶基板21
を直接種とする方法や、第4図fal乃至(eltc示
すように単結晶基板21と結晶方位が一致するように形
成された単結晶薄膜26を種とする方法がある。単結晶
薄膜を3層以上形成する場合も同様である。
In addition, when trying to form two or more layers of single crystal thin film,
As shown in FIG. 3 (aJ and (bl), the single crystal substrate 21
There is a method in which the seed is directly used as a seed, and a method in which the single crystal thin film 26 formed so that the crystal orientation matches that of the single crystal substrate 21 is used as the seed, as shown in FIGS. The same applies when forming more than one layer.

〈発明が解決しようとする問題点〉 しかし、第3図に示した単結晶基板21を種として2層
以上単結晶薄膜を形成する方法では、種部(単結晶基板
21の露出部分21b)での段差が大きくなるため、良
好な結晶方位制御が困難である。種部なあらかじめ単結
晶化したい薄膜23と同じ材料で埋め込んで段差をなく
す方法もあるが、単結晶化したい薄膜23と層間の絶縁
膜22゜27との熱伝導率の差が大きいと種部と、それ
以外での温度差が大きくなり過ぎ、両部の単結晶化した
い薄膜23を未溶融部や飛散なく良好に溶融させること
ができない。
<Problems to be Solved by the Invention> However, in the method of forming two or more single crystal thin films using the single crystal substrate 21 as a seed shown in FIG. Since the step difference becomes large, it is difficult to control the crystal orientation well. There is a method to eliminate the difference in level by filling the seed part with the same material as the thin film 23 to be made into a single crystal in advance, but if there is a large difference in thermal conductivity between the thin film 23 to be made into a single crystal and the interlayer insulating film 22. The temperature difference between the two parts becomes too large, and the thin film 23 in both parts, which is desired to be made into a single crystal, cannot be well melted without any unmelted parts or scattering.

この問題を避けるため、第4図に示した単結晶基板21
と結晶方位が一致するように形成した下層の単結晶薄膜
26のパターニングされた薄膜29を種とする方法があ
るが、本方法ではエネルギービーム照射により単結晶化
したい薄膜28を溶融再結晶化させる時、単結晶薄膜2
9の露出部分29aの周辺の単結晶薄膜29も溶融する
。この溶融領域がパターニングされた種とする単結晶薄
膜29の全領域に渡るとせっかく結晶方位制御した単結
晶薄膜29を種にしようとしているのに、ランダムな結
晶方位をもった薄膜しか得られないという問題点があっ
た。
In order to avoid this problem, the single crystal substrate 21 shown in FIG.
There is a method in which the patterned thin film 29 of the lower single-crystal thin film 26, which is formed so that the crystal orientation matches that of When, single crystal thin film 2
The single-crystal thin film 29 around the exposed portion 29a of 9 is also melted. If this molten region spreads over the entire area of the single crystal thin film 29 that is to be the patterned seed, only a thin film with a random crystal orientation will be obtained, even though the single crystal thin film 29 whose crystal orientation has been controlled is intended to be used as a seed. There was a problem.

なお、第4図fal乃至(elcおイ(、第2図fat
 、 (bl及び第3図(al 、 fblと同一部分
は同一符号で示しており、21は単結晶基板、21aは
単結晶基板21の露出部、22及び27は非単結晶絶縁
膜、23及び28は単結晶化すべき非単結晶薄膜、24
及び30は表面保護膜、25及び31はレーザビームや
電子ビーム等の照射あるいはランプ、ヒータ等による加
熱等のエネルギービームJut、26及び33は単結晶
化薄膜、29はパターニングされた種とする単結晶薄膜
、29aは種とする単結晶薄膜29の露出部分、32は
溶融領域である。
In addition, Figure 4 fal to (elc oi (, Figure 2 fat
, (bl and FIG. 3 (al, fbl) The same parts are indicated by the same reference numerals, 21 is a single crystal substrate, 21a is an exposed part of the single crystal substrate 21, 22 and 27 are non-single crystal insulating films, 23 and 28 is a non-single crystal thin film to be made into a single crystal, 24
and 30 are surface protective films; 25 and 31 are energy beams Jut irradiated with laser beams, electron beams, etc. or heated by lamps, heaters, etc.; 26 and 33 are single crystal thin films; The crystal thin film 29a is an exposed portion of the single crystal thin film 29 serving as a seed, and 32 is a melted region.

本発明は上記の点に鑑みて創案されたものであり、単結
晶基板を被覆する非単結晶絶縁膜上に、基板の結晶方位
と一致した単結晶薄膜を2層以上安定して得ることが可
能な単結晶薄膜の製造方法を提供することを目的として
いる。
The present invention was devised in view of the above points, and it is possible to stably obtain two or more layers of single crystal thin films that match the crystal orientation of the substrate on a non-single crystal insulating film covering a single crystal substrate. The purpose of the present invention is to provide a method for manufacturing single-crystal thin films that is possible.

く問題点を解決するための手段〉 上記の目的を達成するため、本発明は、非単結晶絶縁膜
で被覆された単結晶基板上に形成された非単結晶薄膜を
エネルギービーム照射で溶融再結晶化させることにより
、単結晶基板と結晶方位の一致した単結晶薄膜を2層以
上形成する方法において、単結晶化したい非単結晶薄膜
より下層にある、既に単結晶基板と結晶方位が一致する
ように形成された単結晶薄膜を種として単結晶化したい
非単結晶薄膜の結晶方位を制御する方法であって、種と
する単結晶薄膜をパターニングする際に、単結晶化した
い非単結晶薄膜の単結晶基板と結晶方位が一致するよう
に形成された下層の単結晶薄膜と直接接する領域が上記
のエネルギービーム照射により、この接する領域及びそ
の周囲の単結晶薄膜を溶融する溶融領域よりも種とする
単結晶薄膜のパターンを大きく形成することにより、単
結晶基板と結晶方位の一致した単結晶薄膜を得るように
構成している。
Means for Solving the Problems In order to achieve the above object, the present invention melts and remelts a non-single crystal thin film formed on a single crystal substrate covered with a non-single crystal insulating film by energy beam irradiation. In a method of forming two or more layers of single-crystal thin films whose crystal orientation matches that of a single-crystal substrate by crystallization, a layer that is lower than the non-single-crystal thin film that is desired to be single-crystal and whose crystal orientation already matches that of the single-crystal substrate A method for controlling the crystal orientation of a non-single-crystalline thin film that is desired to be single-crystalized using a single-crystalline thin film formed as a seed. The region directly in contact with the underlying single crystal thin film, which is formed so that the crystal orientation matches that of the single crystal substrate, is irradiated with the energy beam, and the melting region melts the contact region and the surrounding single crystal thin film. By forming a large pattern of the single crystal thin film, a single crystal thin film whose crystal orientation matches that of the single crystal substrate is obtained.

く作用〉 単結晶基板と結晶方位が一致するように形成された単結
晶薄膜を種とする方法においては、単結晶化したい非単
結晶薄膜の、単結晶基板と結晶方位が一致するように形
成された下層の単結晶薄膜と直接接する領域がエネルギ
ービーム照射により溶融する時、この接する領域及びそ
の周囲の単結晶薄膜も溶融する。この種としたい単結晶
薄膜の溶融する領域がパターニングされた単結晶薄膜全
体に渡ると、次に固化する時結晶方位を制御する種がな
くなってしまうので結晶方位の制御ができない。それに
対し、本発明のように種としたい単結晶薄膜の溶融する
領域が、この単結晶薄膜のパターンより小さくなるよう
に構成することにより、必ず基板と結晶方位の一致した
領域が残り、この部分を種として結晶成長するため、単
結晶基板と結晶方位の一致した単結晶薄膜が2層以上で
も安定して形成できるようになる。
In the method using a single-crystal thin film formed so that the crystal orientation matches that of a single-crystal substrate, the non-single-crystal thin film that is desired to be made into a single crystal is formed so that its crystal orientation matches that of the single-crystal substrate. When the area directly in contact with the lower single crystal thin film is melted by energy beam irradiation, this contact area and the surrounding single crystal thin film are also melted. If the melting region of the single-crystal thin film that is desired to be used as a seed spreads over the entire patterned single-crystal thin film, there will be no seed to control the crystal orientation when it solidifies next time, making it impossible to control the crystal orientation. On the other hand, by configuring the melting region of the single crystal thin film to be used as a seed to be smaller than the pattern of this single crystal thin film as in the present invention, there will always remain a region whose crystal orientation matches that of the substrate. Since the crystal grows using the crystal as a seed, it becomes possible to stably form a single-crystal thin film with two or more layers having the same crystal orientation as that of the single-crystal substrate.

〈実施例〉 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図(al乃至(flはそれぞれ本発明の一実施例を
説明するための工程図である。
FIG. 1 (al to (fl) are process diagrams for explaining one embodiment of the present invention, respectively.

まず第1図(alに示すように単結晶シリコン基板1上
に常圧CVD法によりS+02膜2を2μm形成し、単
結晶シリコン基板1を露出すべき部分のミラ通常のホト
リソグラフィ法によりパターニングし、2μm角の開口
部1aを形成する。次に減圧CVD法により多結晶シリ
コン膜3を0.5μm形成し、さらに常圧CVD法によ
り5102膜4を0.26μm形成した後、第1図(b
lに示すように溶融幅60μm 、レーザパワーLOW
のTルゴンレーザビーム5を走査速度100W11/s
ec で、多結晶シリコン膜3が単結晶シリコン基板1
の露出部分1aに直接接した領域から走査し、基板lの
露出部分1aを種として多結晶シリコン膜3を単結晶化
して、単結晶シリコン基板1と結晶方位の一致した単結
晶シリコン膜6を得る。
First, as shown in FIG. 1 (al), an S+02 film 2 of 2 μm thickness is formed on a single crystal silicon substrate 1 by atmospheric pressure CVD, and the exposed portion of the single crystal silicon substrate 1 is patterned by a normal photolithography method. , a 2 μm square opening 1a is formed.Next, a 0.5 μm thick polycrystalline silicon film 3 is formed by low pressure CVD method, and a 0.26 μm thick 5102 film 4 is further formed by normal pressure CVD method. b
As shown in l, melting width 60 μm, laser power LOW
The T urgon laser beam 5 is scanned at a scanning speed of 100W11/s.
ec, the polycrystalline silicon film 3 is attached to the single crystal silicon substrate 1
The polycrystalline silicon film 3 is single-crystallized using the exposed portion 1a of the substrate 1 as a seed to form a single-crystalline silicon film 6 whose crystal orientation matches that of the single-crystal silicon substrate 1. obtain.

次1c S i 02膜4を全面エツチングした後、第
1図(C)に示すように通常のホトリソグラフィ法によ
り単結晶シリコン膜6をパターニングし、種とする単結
晶シリコン膜7を形成する。この種とする単結晶シリコ
ン膜7の大きさは50μm角にしである。次にこの上に
常圧CVD法により5102膜8を2μm形成し、種と
する単結晶シリコン膜7を露出すべき部分のみを通常の
ホトリソグラフィ法によりパターニングし、2μm角の
開口部7aを形成する。
Next, after etching the entire surface of the 1c Si 02 film 4, the single crystal silicon film 6 is patterned by a normal photolithography method to form a single crystal silicon film 7 as a seed, as shown in FIG. 1(C). The size of this seed single crystal silicon film 7 is 50 μm square. Next, a 5102 film 8 with a thickness of 2 μm is formed thereon by atmospheric pressure CVD, and only the portion where the single crystal silicon film 7 to be used as a seed is to be exposed is patterned by normal photolithography to form a 2 μm square opening 7a. do.

次に第1図(dlに示すように、減圧CVD法により多
結晶シリコン膜9を0.5μm形成し、さらに常圧CV
D法により5i02膜10を0.26pm形成した後、
第1図(e+に示すように多結晶シリコン9のS 融1
i 60μm 、レーザパワー8Wのアルゴンレーザビ
ーム12を走査速度100W/secで多結晶シリコン
膜9が種とする単結晶シリコン膜7の露出部分に直接接
した領域から走査し、単結晶シリコン膜7を種として多
結晶シリコン膜9を単結晶化して単結晶シリコン基板1
と結晶方位の一致した単結晶シリコン膜13を得る。こ
の時、種とする単結晶シリコン膜7の溶融幅は30μm
で、種とする単結晶シリコン膜7の全領域は溶融してい
ないことは、単結晶シリコン膜7の替わりに多結晶シリ
コン膜を用いた試料で別途確認した。
Next, as shown in FIG.
After forming a 5i02 film 10 with a thickness of 0.26 pm by method D,
Fig. 1 (S melt 1 of polycrystalline silicon 9 as shown in e+)
An argon laser beam 12 of i 60 μm and a laser power of 8 W is scanned at a scanning speed of 100 W/sec from a region directly in contact with the exposed portion of the single crystal silicon film 7 which is seeded by the polycrystalline silicon film 9 to form the single crystal silicon film 7. A single crystal silicon substrate 1 is formed by monocrystalizing a polycrystalline silicon film 9 as a seed.
A single crystal silicon film 13 having the same crystal orientation is obtained. At this time, the melting width of the single crystal silicon film 7 used as a seed is 30 μm.
It was separately confirmed using a sample in which a polycrystalline silicon film was used instead of the single crystal silicon film 7 that the entire region of the single crystal silicon film 7 used as a seed was not melted.

〈発明の効果〉 以上のように、本発明によれば、単結晶基板と結晶方位
の一致した単結晶薄膜を2層以上形成する際、2層目以
上の薄膜の種も単結晶基板からとする場合のような大き
な段差の影響もなく、また種とする単結晶薄膜の全領域
が、上層多結晶シリコンにエネルギービームを照射した
時溶融してしまい、ランダムな核発生が起こることもな
く、必ず単結晶薄膜の溶融しない領域を種として結晶成
長するため、安定して単結晶基板と結晶方位の一致した
単結晶薄膜を形成することができる。
<Effects of the Invention> As described above, according to the present invention, when forming two or more layers of single crystal thin films having the same crystal orientation as that of a single crystal substrate, the seeds for the second and higher layers of thin films can also be sourced from the single crystal substrate. There is no effect of large steps that would otherwise occur, and the entire region of the single crystal thin film used as a seed melts when the energy beam is irradiated to the upper layer polycrystalline silicon, and random nucleation does not occur. Since crystal growth always uses the unmelted region of the single crystal thin film as a seed, it is possible to stably form a single crystal thin film whose crystal orientation matches that of the single crystal substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al乃至(flはそれぞれ本発明の一実施例を
説明するための試料断面を示した工程図、第2図fal
及び[b)は単結晶基板を種として1層の薄膜の結晶方
位を制御する方法を説明するための試料断面を示した工
程図、第3図(al及び[blと第4図(al乃至[e
lはそれぞれ2層以上のR膜の結晶方位を制御するため
の従来法を説明するための試料断面を示した工程図であ
る。 1・・・単結晶シリコン基板、la・・・単結晶シリコ
ン基板の露出部分、2,4,8.10・・・5i02膜
、3.9・・・多結晶シリコン膜、5,12・・・アル
ゴンレーザビーム照射、6.13・・・単結晶シリコン
膜。 7・・・種とする単結晶シリコン膜、7a・・・種とす
る単結晶シリコン膜の露出部分、11・・・溶融領域。
Figure 1 (al to (fl) are process diagrams each showing a cross section of a sample for explaining one embodiment of the present invention, Figure 2 fal
and [b) are process diagrams showing sample cross sections to explain the method of controlling the crystal orientation of one layer of thin film using a single-crystal substrate as a seed, and Fig. 3 (al and [bl) and Fig. 4 (al to [e
1 is a process diagram showing a cross section of a sample for explaining a conventional method for controlling the crystal orientation of two or more layers of R films. 1... Single crystal silicon substrate, la... Exposed portion of single crystal silicon substrate, 2, 4, 8.10... 5i02 film, 3.9... Polycrystalline silicon film, 5, 12...・Argon laser beam irradiation, 6.13...Single crystal silicon film. 7... Single crystal silicon film used as a seed, 7a... Exposed portion of the single crystal silicon film used as a seed, 11... Melted region.

Claims (1)

【特許請求の範囲】 1、非単結晶絶縁膜で被覆された単結晶基板上に形成さ
れた非単結晶薄膜をエネルギービーム照射で溶融再結晶
化させることにより、単結晶基板と結晶方位の一致した
単結晶薄膜を2層以上形成する方法において、 単結晶化したい非単結晶薄膜より下層にある、既に単結
晶基板と結晶方位が一致するように形成された単結晶薄
膜を種として単結晶化したい非単結晶薄膜の結晶方位を
制御する方法であって、 種とする単結晶薄膜をパターニングする際に、単結晶化
したい非単結晶薄膜の、単結晶基板と結晶方位が一致す
るように形成された下層の単結晶薄膜と直接接する領域
が上記エネルギービーム照射により該接する領域及びそ
の周囲の単結晶薄膜を溶融する溶融領域よりも種とする
単結晶薄膜のパターンを大きく形成するようになしたこ
とを特徴とする単結晶薄膜の製造方法。 2、前記単結晶基板がシリコンであることを特徴とする
特許請求の範囲第1項記載の単結晶薄膜の製造方法。 3、前記単結晶化したい非単結晶薄膜がシリコンである
ことを特徴とする特許請求の範囲第1項または第2項記
載の単結晶薄膜の製造方法。
[Claims] 1. By melting and recrystallizing a non-single-crystal thin film formed on a single-crystal substrate covered with a non-single-crystal insulating film by energy beam irradiation, the crystal orientation can be made to match that of the single-crystal substrate. In the method of forming two or more layers of single-crystalline thin films, single-crystalization is performed using a single-crystalline thin film, which is already formed in a layer below the non-single-crystalline thin film to be single-crystalized, and whose crystal orientation matches that of the single-crystal substrate, as a seed. A method for controlling the crystal orientation of a non-single-crystal thin film that is desired to be made into a single crystal, in which the crystal orientation of the non-single-crystal thin film that is desired to be made into a single crystal coincides with that of a single-crystal substrate when patterning a single-crystal thin film that is used as a seed. The area directly in contact with the lower layer single crystal thin film formed by the above-mentioned energy beam irradiation forms a pattern of the seed single crystal thin film larger than the melting area where the contact area and the surrounding single crystal thin film are melted. A method for producing a single crystal thin film, characterized by: 2. The method for manufacturing a single crystal thin film according to claim 1, wherein the single crystal substrate is silicon. 3. The method for producing a single crystal thin film according to claim 1 or 2, wherein the non-single crystal thin film to be made into a single crystal is silicon.
JP62154462A 1987-06-23 1987-06-23 Method for manufacturing single crystal thin film Expired - Lifetime JPH0795526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154462A JPH0795526B2 (en) 1987-06-23 1987-06-23 Method for manufacturing single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154462A JPH0795526B2 (en) 1987-06-23 1987-06-23 Method for manufacturing single crystal thin film

Publications (3)

Publication Number Publication Date
JPS64721A JPS64721A (en) 1989-01-05
JPH01721A true JPH01721A (en) 1989-01-05
JPH0795526B2 JPH0795526B2 (en) 1995-10-11

Family

ID=15584770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154462A Expired - Lifetime JPH0795526B2 (en) 1987-06-23 1987-06-23 Method for manufacturing single crystal thin film

Country Status (1)

Country Link
JP (1) JPH0795526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078940A1 (en) * 2007-09-26 2009-03-26 Sharp Laboratories Of America, Inc. Location-controlled crystal seeding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853821A (en) * 1981-09-25 1983-03-30 Toshiba Corp Preparation of laminated semiconductor device

Similar Documents

Publication Publication Date Title
JPH0588544B2 (en)
JPS5939790A (en) Production of single crystal
JPH01721A (en) Manufacturing method of single crystal thin film
JPS6119116A (en) Manufacture of semiconductor device
JPH0795525B2 (en) Method for manufacturing single crystal thin film
JPH0795526B2 (en) Method for manufacturing single crystal thin film
JPH01720A (en) Method for manufacturing single crystal thin film
JPS6347256B2 (en)
JPH0236052B2 (en)
JPH0519976B2 (en)
JPS6265410A (en) Formation of single crystal thin film
JPS5978999A (en) Manufacture of semiconductor single crystal film
JP2745055B2 (en) Method for manufacturing single crystal semiconductor thin film
JPS62145721A (en) Manufacture of single crystal thin film
JPH0410214B2 (en)
JPH03280418A (en) Manufacture of semiconductor film
JPS6265411A (en) Formation of single crystal thin film
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPH0410213B2 (en)
JPS5919311A (en) Manufacture of semiconductor device
JP2566663B2 (en) Method for manufacturing semiconductor single crystal film
JPS60191090A (en) Manufacture of semiconductor device
JPS62145722A (en) Manufacture of single crystal thin film
JPS6379953A (en) Production of thin single crystal film
JPS6352407A (en) Manufacture of semiconductor substrate