JPS62104117A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPS62104117A
JPS62104117A JP24289085A JP24289085A JPS62104117A JP S62104117 A JPS62104117 A JP S62104117A JP 24289085 A JP24289085 A JP 24289085A JP 24289085 A JP24289085 A JP 24289085A JP S62104117 A JPS62104117 A JP S62104117A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
film
amorphous
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24289085A
Other languages
Japanese (ja)
Other versions
JPH0810668B2 (en
Inventor
Masaki Yuki
結城 正記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60242890A priority Critical patent/JPH0810668B2/en
Publication of JPS62104117A publication Critical patent/JPS62104117A/en
Publication of JPH0810668B2 publication Critical patent/JPH0810668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the lowering of a process temperature by determining a scanning velocity at a beam spot diameter X 5,000/sec or above when an amorphous semiconductor thin film is irradiated with laser beams such as Cw Ar laser beams by scanning. CONSTITUTION:On a substrate 4 made of soda-lime glass, a silicon oxide film 3 is deposited to 2,000Angstrom at 350 deg.C of substrate temperature by plasma CVD technique using SiH4 and N2O as material gases. Subsequently, an amorphous silicon film 2 is deposited to 3,000Angstrom at the same substrate temperature 350 deg.C by using SiH4 as a material gas. Next,this amorphous silicon film is irradiated with CW Ar laser beams 1 by scanning. The diameter of a beam spot is 100mum and the scanning velocity 1.2m/sec (beam spot diameter X 12,000/sec) and laser power 9W. The diameter of a crystal grain of the obtained polysilicon film 5 is 0.2-3.0mum and the amorphous silicon film which is dark red and almost opaque at that time becomes to show a light yellow color and an almost transparent state by the scanning irradiation with the laser beams.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は絶縁性基板上の薄膜トランジスタ等の製造に用
いられる半導体薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor thin film used for manufacturing thin film transistors and the like on an insulating substrate.

[従来の技術] ガラス基板等の絶縁性基板上に形成された薄膜トランジ
スタ(TPT)は、液晶やエレクトロルミネッセンス等
を用いた平面ディスプレイ装置に望まれているアクティ
ブマトリクスとして有望視されている。この薄膜トラン
ジスタを形成する為の絶縁性基板上の半導体薄膜として
、従来、非晶質シリコン膜を用いる方法、及び多結晶シ
リコン膜を用いる方法が提案されている。
[Prior Art] A thin film transistor (TPT) formed on an insulating substrate such as a glass substrate is seen as a promising active matrix for flat display devices using liquid crystals, electroluminescence, or the like. Conventionally, a method using an amorphous silicon film and a method using a polycrystalline silicon film have been proposed as a semiconductor thin film on an insulating substrate for forming this thin film transistor.

第1の非晶質シリコン膜を用いる方法では、プラズマC
VD法等によって、膜の堆積温度が一般に300 ”O
以下で行われ、トランジスタ形成のプロセス全般の温度
も含めて低温プロセスであることによって、耐熱温度の
高くない安価なガラス基板が使え、さらに堆積装置も大
型化し易いので、アクティブマトリクスとしての基板の
大型化が容易であるとして、有力な方法とされている。
In the method using the first amorphous silicon film, plasma C
By VD method etc., the film deposition temperature is generally 300"O
The low-temperature process, including the overall temperature of the transistor formation process, allows the use of inexpensive glass substrates that do not have high heat resistance, and also allows for the deposition equipment to be easily enlarged, making it possible to use large substrates as active matrices. It is considered to be a promising method because it is easy to implement.

しかし、非晶質シリコン膜では膜の導電率が小さいので
アクティブマトリクスとして充分なトランジスタのオン
電流を得る為に、トランジスタ寸法を大きくする必要が
あり、信頼性や画素の開口率の低下を招くという欠点を
有するし、又キャリア移動度が低い為に、トランジスタ
の動作速度が遅く、アクティブマトリクスとして制御画
素数に限界があること及びアクティブマトリクスの周辺
走査回路を同一基板上に形成できないという欠点を有し
ている。さらに、非晶質シリコン膜では光導電性が大き
し・為に、トランジスタのオフ時に光電流が発生し、光
照射下では電流のオン・オフ比が著しく低下するという
欠点も存在している。
However, since the conductivity of the amorphous silicon film is low, it is necessary to increase the size of the transistor in order to obtain sufficient on-current for the transistor as an active matrix, resulting in a decrease in reliability and the aperture ratio of the pixel. Furthermore, due to low carrier mobility, the operating speed of the transistor is slow, there is a limit to the number of pixels that can be controlled as an active matrix, and the peripheral scanning circuit of an active matrix cannot be formed on the same substrate. are doing. Furthermore, since the amorphous silicon film has high photoconductivity, a photocurrent is generated when the transistor is turned off, and the on/off ratio of the current is significantly reduced under light irradiation.

これらの欠点に対して、第2の多結晶シリコン1漠を用
いる方法が提案されている。多結晶シリコン膜は通常減
圧CVD法により形成され、膜物性として、非晶質シリ
コン膜と比較して導電率、キャリア移動度は1桁以上大
きく、光導電性が小さいので、より高性能で高信頼のア
クティブマトリクスの形成が可能で、前記の非晶質シリ
コン膜を用いた場合の欠点を解決する方法として精力的
に検討がなされている。
To address these drawbacks, a method using a second polycrystalline silicon material has been proposed. Polycrystalline silicon films are usually formed by low-pressure CVD, and their physical properties include electrical conductivity and carrier mobility that are more than an order of magnitude higher than that of amorphous silicon films, and their photoconductivity is lower, resulting in higher performance and higher performance. It is possible to form a reliable active matrix and is being actively investigated as a method to solve the drawbacks of using an amorphous silicon film.

[発明の解決しようとする問題点] 従来、ガラス基板上への多結晶シリコン膜形成法は、減
圧CVD法やプラズマCVD法が用いられている。
[Problems to be Solved by the Invention] Conventionally, a low pressure CVD method or a plasma CVD method has been used to form a polycrystalline silicon film on a glass substrate.

しかし、これらの形成法では形成時の基板温度が600
℃以上必要であり、それより低温度では非晶質シリコン
膜しか得られない、従って用いるガラス基板は、通常の
ソーダライムガラスより耐熱温度の高い石英ガラス等の
高価なガラス基板材料を必要とする。又、この温度域で
の減圧CVD法やプラズマCVD法の膜形成装置は、よ
り低温度域での非晶質シリコン膜用のプラズマCVD装
置等に比較して大型化が難しく基板サイズの大型化への
対応が非常に困難である。又別の多結晶シリコン膜形成
法として分子線蒸着法も提案されているが、550℃程
度のや−低い基板温度が可能であるが、基板サイズの大
型化への対応の点では前述の形成法よりもさらに困難と
なり、又より高価な装置となる。
However, with these formation methods, the substrate temperature during formation is 600°C.
℃ or higher, and only an amorphous silicon film can be obtained at lower temperatures. Therefore, the glass substrate used must be an expensive glass substrate material such as quartz glass, which has a higher heat resistance than ordinary soda lime glass. . In addition, film forming equipment using low pressure CVD or plasma CVD in this temperature range is difficult to increase in size compared to plasma CVD equipment for forming amorphous silicon films in a lower temperature range, making it difficult to increase the size of the substrate. It is extremely difficult to respond to Molecular beam evaporation has also been proposed as another polycrystalline silicon film formation method, but it allows for a slightly lower substrate temperature of around 550°C. This method is more difficult and requires more expensive equipment.

以上の様に従来の多結晶シリコン膜形成法では形成温度
と使えるガラス基板の耐熱温度及び基板サイズの大型化
への対応の可能性の面で大きな欠点を有していた。
As described above, the conventional polycrystalline silicon film forming method has major drawbacks in terms of the formation temperature, the heat resistance temperature of the glass substrate that can be used, and the possibility of adapting to larger substrate sizes.

又、前述の如き欠点を解決する方法として絶縁膜上に形
成した非晶質シリコン膜にCW Arレーザービームを
照射し、多結晶シリコン膜となす方法が提案されている
。(Applied PhysicsLetters、
vol、38  (1981)、No、8.pp 81
3−fl15)この場合でも前記非晶質シリコン膜の形
成温度を500℃以上とする必要があり、プロセス温度
として500℃以上を必要とするという大きな欠点を有
していた。
Furthermore, as a method for solving the above-mentioned drawbacks, a method has been proposed in which an amorphous silicon film formed on an insulating film is irradiated with a CW Ar laser beam to form a polycrystalline silicon film. (Applied Physics Letters,
vol. 38 (1981), No. 8. pp 81
3-fl15) Even in this case, the formation temperature of the amorphous silicon film needs to be 500° C. or higher, and the process temperature has to be 500° C. or higher, which is a major drawback.

[問題を解決するための手段] 本発明は、従来の絶縁性基板への多結晶半導体薄膜形成
法が持つ前述の問題点を解決すべくなされたものであり
、絶縁性基板上に非晶質半導体薄膜を形成し、レーザー
ど−ムを走査照射することにより、該非晶質半導体薄膜
を多結晶半導体膜となす半導体薄膜の製造方法において
、レーザービームの走査速度をビームスポット径X 5
000/秒以上として完全な溶融状態に至らしめること
なく結晶化させることを特徴とする半導体薄膜の製造方
法である。
[Means for Solving the Problem] The present invention has been made to solve the aforementioned problems of the conventional method of forming a polycrystalline semiconductor thin film on an insulating substrate. In a method for manufacturing a semiconductor thin film in which a semiconductor thin film is formed and a laser beam is scanned and irradiated to convert the amorphous semiconductor thin film into a polycrystalline semiconductor film, the scanning speed of the laser beam is adjusted to the beam spot diameter x 5.
000/sec or more to crystallize without reaching a complete molten state.

本発明の構成においては、まず、ガラス基板、セラミッ
ク基板等の絶縁性基板上にプラズマCVD法或は光CV
D法、減圧CVD法、電子ビーム蒸着法等の方法によっ
て、非晶質シリコン膜に代表される非晶質半導体薄膜を
堆積する。この時の堆積膜厚は4000人〜 100人
とすることが好ましい、一般に、Sih、S i2 H
6等の水素化物を原料ガスとしたプラズマCVD法や光
CVD法による非晶質半導体薄膜の形成においては基板
温度が低い場合、著しく多量の水素が非晶質半導体薄膜
中に取り込まれるが、レーザービームの照射によって該
非晶質半導体薄膜が結晶化する際この水素がガス化して
噴出し、安定な結晶化を妨げるので、基板温度は300
℃以上とする代りに、非晶質シリコン膜を形成後350
℃程度の温度で不活性ガス雰囲気中又は真空中で保持す
ること等により、脱水素処理を行ってもよい。
In the configuration of the present invention, first, a plasma CVD method or a photo CVD method is applied to an insulating substrate such as a glass substrate or a ceramic substrate.
An amorphous semiconductor thin film typified by an amorphous silicon film is deposited by a method such as the D method, low pressure CVD method, or electron beam evaporation method. The thickness of the deposited film at this time is preferably 4000 to 100. Generally, Sih, Si2H
When forming an amorphous semiconductor thin film by plasma CVD or photoCVD using a hydride such as 6 as a raw material gas, when the substrate temperature is low, a significantly large amount of hydrogen is incorporated into the amorphous semiconductor thin film. When the amorphous semiconductor thin film is crystallized by beam irradiation, this hydrogen gasifies and blows out, preventing stable crystallization, so the substrate temperature is kept at 300℃.
350℃ after forming an amorphous silicon film instead of
Dehydrogenation treatment may be carried out by maintaining the material at a temperature of approximately .degree. C. in an inert gas atmosphere or in vacuum.

このとき、非晶質シリコン膜等の非晶質半導体薄膜の堆
積膜厚を4000Å以下とすることが好ましい理由を説
明する。 4000人を超える膜厚では、後に行うレー
ザービーム照射の際、膜中に含まれていた水素のガス状
噴出の影響が強く。
At this time, the reason why it is preferable to set the deposited film thickness of the amorphous semiconductor thin film such as the amorphous silicon film to 4000 Å or less will be explained. When the film is thicker than 4,000 people, the effect of the gaseous ejection of hydrogen contained in the film during the subsequent laser beam irradiation is strong.

得られる多結晶半導体薄膜に、キレツ、ボイド、さらに
剥離等が発生しやすいので堆積温度を500″C以りと
することでこれを防ぐ必要がある。これに対し膜厚40
00Å以下では、堆積温度を500″C以りとする必要
はなく、かつレーザーのパワーの許容範囲が広くなるか
らである。なお、この非晶質半導体薄膜は 100人未
満ではTFT化が困難であり、 100人以トの厚膜と
することが好ましい。
Since cracks, voids, and peeling are likely to occur in the obtained polycrystalline semiconductor thin film, it is necessary to prevent this by setting the deposition temperature to 500"C or higher.
00 Å or less, the deposition temperature does not need to be higher than 500"C, and the laser power tolerance range becomes wider. Note that this amorphous semiconductor thin film is difficult to convert into a TFT by less than 100 people. It is preferable to use a thick film of 100 or more.

よって、非晶質半導体薄膜の膜厚は4000Å以下で適
宜定めることが好ましいが、通常2000〜3000人
程度とされればよい。
Therefore, it is preferable that the thickness of the amorphous semiconductor thin film is appropriately determined to be 4000 Å or less, but it is usually about 2000 to 3000 people.

又、該非晶質半導体薄膜を形成する際、前もって絶縁性
基板上に酸化シリコン膜や窒化シリコン膜等の絶縁膜を
、堆積しておいてもよい。
Further, when forming the amorphous semiconductor thin film, an insulating film such as a silicon oxide film or a silicon nitride film may be deposited on the insulating substrate in advance.

又、非晶質半導体薄膜は、予め島状にパターニングして
あってもよい0次いで、この非晶質半導体S膜にレーザ
ービームを走査照射する。
The amorphous semiconductor thin film may be patterned in advance into an island shape.Then, the amorphous semiconductor S film is scanned and irradiated with a laser beam.

レーザービームのスポット径は、適宜定めれば良いが、
後に形成するトランジスタの短辺寸法より充分大きくし
ておくことが好ましいが、大きくするにつれ必要なレー
ザー光源のパワーも増大する為2通常は30〜20G 
4 taが選ばれる。
The spot diameter of the laser beam can be determined as appropriate, but
It is preferable to make it sufficiently larger than the short side dimension of the transistor to be formed later, but as the size increases, the power of the laser light source required also increases.2 Usually, it is 30 to 20G.
4 ta is selected.

本発明では、レーザービームの走査速度をビームスポッ
ト径X 5000/秒以Eに選ぶ、これにより非晶質半
導体薄膜は、完全な溶融状態に至ることなく結晶化し、
多結晶半導体薄膜とすることができる。
In the present invention, the scanning speed of the laser beam is selected to be less than or equal to the beam spot diameter x 5000/sec, so that the amorphous semiconductor thin film is crystallized without reaching a completely melted state.
It can be a polycrystalline semiconductor thin film.

本発明で使用されるレーザービームは波長20000人
〜1000人程度の連続発振レーザーによるものがあり
、例えばYAGレーザ−、He−Meレーザー、アレキ
サンドライトレーザー、 Atレーザー、Krレーザー
及びこれらの高周波レーザー、色素レーザー、エキシマ
−レーザー等が使用できる。中でも可視光域から紫外域
のレーザーが好ましい。
The laser beam used in the present invention is a continuous wave laser with a wavelength of about 20,000 to 1,000 wavelengths, such as YAG laser, He-Me laser, alexandrite laser, At laser, Kr laser and their high frequency lasers, dyes, etc. Lasers, excimer lasers, etc. can be used. Among these, lasers in the visible light range to the ultraviolet range are preferred.

このレーザービームの走査速度は前述の如くビームスポ
ット径X 5000/秒以Eとされ1通常最大でもビー
ムスポット径X 5000007秒以下とされる。なお
、具体的には40m/秒以下とされることが好ましい、
これにより、非晶質半導体薄膜は完全な溶融状態に至る
ことなく結晶化し、多結晶半導体薄膜とすることができ
る。
As mentioned above, the scanning speed of this laser beam is set to be less than the beam spot diameter x 5,000/second, and usually at the maximum it is less than the beam spot diameter x 5,000,007 seconds. In addition, specifically, it is preferable to set it as 40 m/sec or less,
Thereby, the amorphous semiconductor thin film can be crystallized without reaching a completely molten state, and can be made into a polycrystalline semiconductor thin film.

以下、その理由をレーザービームを走査照射するときの
非晶質半導体薄膜の変化とその時のレーザーパワーとの
関係から説明する。まず、成る走査速度において照射レ
ーザーパワーを充分に小さい値から増加させるとき、非
晶質半導体薄膜が結晶化を示し始めて多結晶半導体薄膜
となる第1のレーザーパワー閾値が現わる。この完全な
溶融状態を経ないでの結晶化については後で詳しく説明
する。さらにレーザーパワーを増加させると、ついに半
導体薄膜が溶融状態に至り、第2のレーザーパワー閾値
が見い出される。安定して多結晶半導体薄膜とする為に
、この第1、第2の両し−ザーパワーvA値の間で照射
レーザーパワーを選択する必要がある。しかし、走査速
度が遅い場合、この両レーザーパワー閾値の間隔が小さ
くなり、さらに遅くした場合ついには両閑値間に、安定
して多結晶半導体薄膜となすのに適したレーザーパワー
の設定マージンが存在しなくなる。これに対し、走査速
度が速い場合、遅い場合に比較してレーザーパワーの闇
値は共に増加し同時に間隔は開き、レーサーパワーの設
定マージンが拡がる。ここで、走査速度の望ましい範囲
がビームスポット径との関係で存在する理由は、ビーム
スポット径より充分に小さい被照射部分について見ると
、成る走査速度の場合照射時間がビームスポット径に゛
比例し、照射エネルギーがこの照射時間には(比例する
という関係にあるからである。以上の理由から、走査速
度は、ビームスポット径X 5000/秒とされる。
The reason for this will be explained below from the relationship between changes in the amorphous semiconductor thin film when scanned and irradiated with a laser beam and the laser power at that time. First, when the irradiation laser power is increased from a sufficiently low value at a scanning speed of 1, a first laser power threshold appears where the amorphous semiconductor thin film begins to show crystallization and becomes a polycrystalline semiconductor thin film. Crystallization without going through a completely molten state will be explained in detail later. When the laser power is further increased, the semiconductor thin film finally reaches a molten state and a second laser power threshold is found. In order to stably form a polycrystalline semiconductor thin film, it is necessary to select the irradiation laser power between the first and second laser power vA values. However, when the scanning speed is slow, the interval between the two laser power thresholds becomes smaller, and when the scanning speed is made even slower, there is finally a laser power setting margin suitable for stably forming a polycrystalline semiconductor thin film between the two idle values. cease to exist. On the other hand, when the scanning speed is fast, the dark value of the laser power both increases and at the same time the interval widens, as compared to when the scanning speed is slow, and the setting margin for the laser power increases. Here, the reason why a desirable range of scanning speed exists in relation to the beam spot diameter is that when looking at an irradiated area that is sufficiently smaller than the beam spot diameter, the irradiation time is proportional to the beam spot diameter at a scanning speed of This is because the irradiation energy is proportional to the irradiation time.For the above reasons, the scanning speed is set to the beam spot diameter x 5000/sec.

これによって、非晶質半導体薄膜は完全な溶融状態に至
ることなく結晶化し、極く短時間のうちに、多結晶半導
体薄膜となることが出来、耐熱温度の低い安価なガラス
基板の使用が可能であり、かつ、基板サイズの大型化も
容易に対応F=f能となる。
This allows the amorphous semiconductor thin film to crystallize without reaching a completely molten state and becomes a polycrystalline semiconductor thin film in a very short time, making it possible to use inexpensive glass substrates with low heat resistance. Moreover, it is possible to easily cope with an increase in the substrate size (F=f).

なお、非晶質シリコン膜にレーザービームを走査照射す
る際、非晶質半導体′fJj膜上に予め酸化シリコン膜
や窒化シリコン膜等の絶縁膜を形成し、レーザービーム
の反射防止膜或は表面保護膜として用いても良い。
Note that when scanning and irradiating an amorphous silicon film with a laser beam, an insulating film such as a silicon oxide film or a silicon nitride film is formed on the amorphous semiconductor film in advance to prevent the reflection of the laser beam or the surface. It may also be used as a protective film.

本発明でいう非晶質半導体薄膜とは狭義の意味で、完全
な非晶質構造を有するものだけではなく1粒径が50n
−未満の微細な結晶粒子が含まれるいわゆる微結晶半導
体薄膜をも含むものである6本発明の非晶質半導体薄膜
としては非晶質シリコン膜が最適なものであるが非晶質
ゲルマニウム等の他の非晶質半導体薄膜にも適用できる
。又、本発明でい−うビームスポット径は。
In the present invention, the amorphous semiconductor thin film means not only one having a completely amorphous structure but also one having a grain size of 50 nm.
The most suitable amorphous semiconductor thin film of the present invention is an amorphous silicon film, but other films such as amorphous germanium etc. It can also be applied to amorphous semiconductor thin films. Also, what is the beam spot diameter referred to in the present invention?

照射面においてレーザーパワーの約87%以上が内包さ
れる径をさす。
Refers to the diameter that contains approximately 87% or more of the laser power on the irradiated surface.

前述の非晶質半導体薄膜が、完全な溶融状態を経ないで
結晶化することについて説明する。
A description will be given of how the amorphous semiconductor thin film described above crystallizes without going through a complete melting state.

一般にエネルギーを与えて結晶化又は結晶粒成長を起さ
せる場合、溶融させた後再固化させる方法又は、融点以
下の高温で非常に長時間保持する方法等が行われている
。前者は、再固化の速度が速くても10cm/秒以下と
一般に遅く限られ、かつ、融点以上の高温度を要する。
Generally, when energy is applied to cause crystallization or crystal grain growth, a method is used in which the material is melted and then re-solidified, or it is held at a high temperature below the melting point for a very long time. In the former case, the re-solidification speed is generally limited to 10 cm/sec or less at best, and requires a high temperature above the melting point.

後者の方法では、保持温度が融点より下がるにつれ、非
常な長時間の処理例えば100時間以上を要する。
The latter method requires very long processing times, for example over 100 hours, as the holding temperature falls below the melting point.

これに対し、非晶質半導体薄膜にレーザー光を照射する
場合、非晶質半導体薄膜に特有な光1誘起構造変化及び
固相での結晶化及びこの時の結晶化熱の発生等の現象が
存在し、これ等の結果、完全な溶融状態を経ることなく
、高速度での結晶化が可能となるものであり、本発明で
はこの現象を利用して低温高速の結晶化を可能としてい
る。
On the other hand, when an amorphous semiconductor thin film is irradiated with laser light, phenomena such as light 1-induced structural change, crystallization in the solid phase, and generation of crystallization heat, which are unique to amorphous semiconductor thin films, occur. As a result, high-speed crystallization is possible without going through a completely molten state, and the present invention utilizes this phenomenon to enable low-temperature, high-speed crystallization.

【作用] 本発明は、ガラyL基板等の絶縁性基板上に形成した非
晶質シリコン膜等の非晶質半導体薄膜へCWArレーザ
ービーム等のレーザービームを走査照射することにより
、完全な溶融状態を経ることなく多品質シリコン膜等の
多結晶半導体薄膜とすることが可能であり、その時の絶
縁性基板温度は平均的にはほとんど上昇せず、部分的か
つ瞬間的にも半導体材料の溶融温度よりはるかに低く、
さらに物性値として定義されている非晶質半導体薄膜い
わゆる結晶化温度よりも充分低い温度に止まるため耐熱
性の低い絶縁性基板が使用できる。
[Operation] The present invention achieves a complete melting state by scanning and irradiating a laser beam such as a CWAr laser beam onto an amorphous semiconductor thin film such as an amorphous silicon film formed on an insulating substrate such as a GalaYL substrate. It is possible to form a polycrystalline semiconductor thin film such as a high-quality silicon film without undergoing any process, and the temperature of the insulating substrate at that time hardly increases on average, and even partially and instantaneously increases the melting temperature of the semiconductor material. much lower than
Furthermore, since the temperature remains sufficiently lower than the so-called crystallization temperature of an amorphous semiconductor thin film defined as a physical property value, an insulating substrate with low heat resistance can be used.

さらに前記非晶質半導体薄膜の膜厚を4000Å以下と
しておくことにより、堆積温度が500℃未満であって
も、レーザービーム照射時の水素のガス状噴出によるキ
レン、ボイド、剥離等の欠陥の発生を容易に防ぐことが
出来る。
Furthermore, by setting the thickness of the amorphous semiconductor thin film to 4000 Å or less, defects such as cracks, voids, and peeling occur due to the gaseous ejection of hydrogen during laser beam irradiation even if the deposition temperature is less than 500°C. can be easily prevented.

又、本発明における非晶質半導体薄膜の結晶化速度は、
一般にレーザーアニール法と呼ばれる方法に見られる溶
融状態から固化再結晶化する場合に比較して非常に速く
、レーザービームを走査照射する・走査速度をビームス
ポット径×50007秒以とにしても結晶化させること
が可能であり、低温でかつ高速で結晶化させることがで
きる。又、この様な走査速度において、安定に多結語学
導体薄膜とすることができるレーザーパワーの設定マー
ジンが充分広く取れるという利点も有する。
Furthermore, the crystallization rate of the amorphous semiconductor thin film in the present invention is
Scanning laser beam irradiation is much faster than solidification and recrystallization from a molten state, which is generally seen in the method called laser annealing method. Crystallization occurs even when the scanning speed is set to beam spot diameter x 50007 seconds or more. It can be crystallized at low temperatures and at high speeds. Furthermore, at such a scanning speed, there is also the advantage that there is a sufficiently wide setting margin for the laser power that can be used to stably form a multilingual conductor thin film.

本発明は非晶質半導体薄膜として非晶質シリコン膜への
適用が最も適しているが、非晶質ゲルマニウム膜等の他
の非晶質半導体薄膜に適用してもよいことはもちろんで
ある。
Although the present invention is most suitable for application to an amorphous silicon film as an amorphous semiconductor thin film, it is of course applicable to other amorphous semiconductor thin films such as an amorphous germanium film.

[実施例] 実施例1 ソーダライムガラスからなる基板上に、Sih及び82
0の原料ガスを用いてプラズマCVD法により、基板温
度350℃で酸化シリコン膜(SiOz)を2000人
堆積し、これに連続してS iHmガスを原料として同
じく基板温度350℃にて非晶質シリゴ7p4を3(1
00A堆積した0次に、この非晶質シリコン膜に、C−
ムtレーザービームを走査照射する。ビームスポット径
は100 g m走査速度は1.2m/秒(ビームスポ
ット径×12.000/秒)、レーザーパワー9Wとし
た。
[Example] Example 1 Sih and 82
2,000 silicon oxide films (SiOz) were deposited by the plasma CVD method at a substrate temperature of 350°C using a raw material gas of 0.0°C, and then an amorphous silicon oxide film (SiOz) was deposited using SiHm gas as a raw material at a substrate temperature of 350°C. Siligo 7p4 3 (1
After 00A deposited, C-
A laser beam is scanned and irradiated. The beam spot diameter was 100 gm, the scanning speed was 1.2 m/sec (beam spot diameter x 12.000/sec), and the laser power was 9 W.

得られた多結晶シリコン膜の結晶粒子径は0.2〜3.
0鉢履であった。このとき、暗赤色で不透明に近い非晶
質シリコン膜は、レーザービームの走査照射により、淡
黄色で透明に近い状態を呈した。
The crystal grain size of the obtained polycrystalline silicon film is 0.2 to 3.
It was 0 bowls. At this time, the dark red and nearly opaque amorphous silicon film became pale yellow and nearly transparent due to the scanning irradiation of the laser beam.

第1図はこの走査状態を示す断面図であり、1はCWA
rレーザービーム、2は非晶質シリコン膜、3は絶縁膜
、4はガラス基板を示しており、図の前後方向に走査す
ることにより、非晶質シリコン膜の部分が多結晶シリコ
ン膜5に結晶化しているところを示している。
FIG. 1 is a cross-sectional view showing this scanning state, and 1 is a CWA
r laser beam, 2 is an amorphous silicon film, 3 is an insulating film, and 4 is a glass substrate; by scanning in the front and back direction of the figure, the amorphous silicon film portion becomes a polycrystalline silicon film 5. It shows crystallization.

比較例1〜7 これに対しレーザーパワーをlIWに増加させた場合(
比較例1)、非晶質シリコン膜は照射後透明に近いがガ
ラス基板上で凝集状態を示して荒れており、均質な膜状
を呈していなかった。これは、溶融状態に至ったことを
示す。
Comparative Examples 1 to 7 On the other hand, when the laser power was increased to lIW (
In Comparative Example 1), the amorphous silicon film was nearly transparent after irradiation, but showed an agglomerated state and was rough on the glass substrate, and did not exhibit a homogeneous film shape. This indicates that a molten state has been reached.

又、レーザーパワーを7Wとした場合(比較例2)、非
晶質シリコン膜は照射後、照射前に比較してわずかに透
光性が減少したのみで多結晶シリコン膜にはなっていな
かった。
Furthermore, when the laser power was 7W (Comparative Example 2), the amorphous silicon film had only a slight decrease in light transmittance after irradiation compared to before irradiation, and did not become a polycrystalline silicon film. .

実施例1と同じに形成した非晶質シリコン11々に、−
CWArレーザービームを実施例1と同じ<100終I
、走査速度を比較例として0.20m/秒(ビームスポ
ット径2000倍/秒)で走査照射した場合、レーザー
パワーが2.8Wのとき(比較例3)、非晶質シリコン
膜は照射前より透光性が少し減少したのみで多結晶化は
認められなかったがレーザーパワーが3.1Wのとき(
比較例4)は、照射表面から凝集状に変形して荒れて、
透明に近く変化し、溶融状態に至ったことを示し、第2
図に示すようにさらにガラス基板表面も凹凸状に変形を
呈し、かつ部分的にはマイクロクランク6の発生も認め
られた。
Each amorphous silicon 11 formed in the same manner as in Example 1, -
The CWAr laser beam was
As a comparative example, when scanning irradiation is carried out at a scanning speed of 0.20 m/sec (beam spot diameter 2000 times/sec), when the laser power is 2.8 W (Comparative Example 3), the amorphous silicon film becomes smaller than before irradiation. When the laser power was 3.1 W (
In Comparative Example 4), the irradiated surface was deformed into aggregates and became rough.
It changed to almost transparent, indicating that it had reached a molten state, and the second
As shown in the figure, the surface of the glass substrate was also deformed in an uneven manner, and microcranks 6 were also observed to occur in some areas.

該非晶質シリコン膜の膜厚を5000人とした場合、C
WArレーザービームを実施例1と同じ条件(ビームス
ポットfliloOs鵬、走査速度1.2m/秒、レー
4j’−ハワー9W)で照射したところ(比較例5)、
第3図に示す如く、多結晶シリコン膜に多数のボイド7
及びボイドを連接する様なキレンの発生がみられた。こ
のとき。
When the thickness of the amorphous silicon film is 5000, C
When irradiated with a WAr laser beam under the same conditions as in Example 1 (beam spot flilo Os Peng, scanning speed 1.2 m/sec, Ray 4j'-Hower 9W) (Comparative Example 5),
As shown in Figure 3, there are many voids 7 in the polycrystalline silicon film.
The occurrence of cracks that seemed to connect voids was also observed. At this time.

レーザーパワーを7Wとした場合(比較例6)は比較例
2と同様に透光性の減少の変化を示したのみで、多結晶
シリコン膜が形成されなく、11Wとした場合(比較例
7)は、比較例1と同様の凝集状態で荒れていることに
加え1部分的には、膜の飛散も認められた。
When the laser power was set to 7 W (Comparative Example 6), the same change as in Comparative Example 2 was observed, such as a decrease in light transmittance, but no polycrystalline silicon film was formed, and when the laser power was set to 11 W (Comparative Example 7) In addition to being rough in the same agglomerated state as in Comparative Example 1, scattering of the film was also observed in one part.

実施例2 このとき、非晶質シリコン1漠を基板温度500℃と高
くして膜厚を同様に5000人として、C讐Atレーザ
ービームをL記条件と同様のビームスポット径1004
m 、走査速度1.2m/秒で照射したところ、レーザ
ーパワー9Wのとき、実施例1における9W熱照射と同
等の多結晶シリコン膜が得られたが、8Wのとき比較例
2と同様に透光性の減少の変化に止まり、IOWのとき
は、第3図に示す如く、多結晶シリコン膜に多数のボイ
ド及びボイドを連接するキレンの発生がみられ、結果と
して多結晶シリコンj模を得られたが、実施例1に示し
た場合に比較して、レーザーパワーの設定マージンは小
さく、かつ温度も高くする必要があった。
Example 2 At this time, the substrate temperature of the amorphous silicon was raised to 500°C, the film thickness was similarly set to 5000° C., and the At laser beam was heated to a beam spot diameter of 1004° C. under the same conditions as described in L.
When irradiated at a scanning speed of 1.2 m/sec, when the laser power was 9W, a polycrystalline silicon film equivalent to the 9W thermal irradiation in Example 1 was obtained, but when the laser power was 8W, as in Comparative Example 2, a polycrystalline silicon film was obtained. When the change is limited to a decrease in optical properties, and IOW occurs, as shown in Figure 3, a large number of voids and cracks connecting the voids are observed in the polycrystalline silicon film, and as a result, a polycrystalline silicon film is obtained. However, compared to the case shown in Example 1, the margin for setting the laser power was smaller and the temperature also needed to be higher.

[発明の効果] 以上の如く本発明は、ガラス基板等の絶縁性基板Eの非
晶質シリコン膜等の非晶質半導体薄膜にGWArレーザ
ービーム等のレーザービームを走査照射する際、走査速
度をビームスポット径X 5000/秒以りとすること
により、非晶質半導体薄膜が完全な溶融状態に至ること
なく結晶化して、安定して多結晶半導体薄1漠となる様
にしたこと、さらに、前記非晶質半導体薄膜の堆積膜厚
を4000人以Fとすることにより、使用可能な非晶質
半導体薄膜の堆積温度として500℃未満に低温化でき
るため、多結晶半導体薄膜を形成する基板温度として従
来法に比して500℃未満のプロセス温度として低温化
でき、絶縁性基板材料として通常のガラス基板が使え、
又、基板サイズの大型化にも充分対応可能となり、平面
ディスプレイ装置用のアクティブマトリクスの製造方法
において、従来の多結晶半導体薄膜形成法によるものよ
り、非常に優れて有用なものである。
[Effects of the Invention] As described above, the present invention improves the scanning speed when scanning and irradiating a laser beam such as a GWAr laser beam onto an amorphous semiconductor thin film such as an amorphous silicon film of an insulating substrate E such as a glass substrate. By setting the beam spot diameter X to 5000/sec or more, the amorphous semiconductor thin film is crystallized without reaching a completely molten state and stably becomes a polycrystalline semiconductor thin film; By setting the deposited film thickness of the amorphous semiconductor thin film to 4000 F or more, the deposition temperature of the usable amorphous semiconductor thin film can be lowered to less than 500°C, so that the substrate temperature on which the polycrystalline semiconductor thin film is formed can be lowered. As a result, the process temperature can be lowered to less than 500℃ compared to the conventional method, and a normal glass substrate can be used as the insulating substrate material.
In addition, the present invention can sufficiently cope with an increase in substrate size, and is extremely superior and useful as a method for manufacturing an active matrix for a flat display device over a conventional method for forming a polycrystalline semiconductor thin film.

又、本発明による方法によれば、絶縁性基板上の非晶質
半導体薄膜の特定の部分のみを選択的に多結晶半導体薄
膜とすることが可能で、同一絶縁性基板上で非晶質半導
体薄膜として用いる部分と多結晶半導体薄膜として用い
る部分とを膜形成工程及びフォトリソグラフィーによる
バターニング工程とを別途に付は加えることなく、容易
に製造可能となる。
Furthermore, according to the method of the present invention, it is possible to selectively form only a specific portion of an amorphous semiconductor thin film on an insulating substrate into a polycrystalline semiconductor thin film, and to It becomes possible to easily manufacture a portion to be used as a thin film and a portion to be used as a polycrystalline semiconductor thin film without adding a separate film forming process and a patterning process by photolithography.

さらに本発明による方法は、多層構造の半導体装置の製
造にも適用でき、既に素子や回路を形成した半導体装置
上の絶縁膜上に低温度で形成した非晶質半導体薄膜に適
用し、既に形成し−である下層の素子・回路に熱的なダ
メージを与えることなく、多結晶半導体薄膜を形成し、
素子化することが可能となる。
Furthermore, the method according to the present invention can also be applied to the manufacture of multilayered semiconductor devices, and can be applied to an amorphous semiconductor thin film formed at low temperature on an insulating film on a semiconductor device on which elements and circuits have already been formed. Forming polycrystalline semiconductor thin films without causing thermal damage to underlying elements and circuits,
It becomes possible to make it into an element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例において非晶質シリコン膜が安
定して多結晶シリコン膜となることを示す断面図。 第2図及び第3図は比較例における多結晶シリコン11
りの状態を示す断面図。 1−−−− CW Arレザービーム 2−一−−非晶質シリコン膜 3−−m−絶縁膜 4−一一一ガラス基板 5−−−一多結晶シリコン膜 6−−−−マイクロクラック 7−−−−ポイド
FIG. 1 is a cross-sectional view showing that an amorphous silicon film stably becomes a polycrystalline silicon film in an example of the present invention. Figures 2 and 3 show polycrystalline silicon 11 in a comparative example.
FIG. 1---- CW Ar laser beam 2--1--Amorphous silicon film 3--M-Insulating film 4--1 Glass substrate 5---1 Polycrystalline silicon film 6----Micro crack 7 -----Poid

Claims (6)

【特許請求の範囲】[Claims] (1)絶縁性基板上に非晶質半導体薄膜を形成し、レー
ザービームを走査照射することにより、該非晶質半導体
薄膜を多結晶半導体膜となす半導体薄膜の製造方法にお
いて、レー ザービームの走査速度をビームスポット径×5000/
秒以上として完全な溶融状態に至らしめることなく結晶
化させることを特徴とする半導体薄膜の製造方法。
(1) In a method for manufacturing a semiconductor thin film in which an amorphous semiconductor thin film is formed on an insulating substrate and a laser beam is scanned and irradiated to form the amorphous semiconductor thin film into a polycrystalline semiconductor film, the scanning speed of the laser beam is Beam spot diameter x 5000/
1. A method for producing a semiconductor thin film, characterized in that crystallization is carried out without reaching a complete molten state for more than a second.
(2)非晶質半導体薄膜が非晶質シリコン薄膜である特
許請求の範囲第1項記載の半導体薄膜の製造方法。
(2) The method for manufacturing a semiconductor thin film according to claim 1, wherein the amorphous semiconductor thin film is an amorphous silicon thin film.
(3)非晶質半導体薄膜の膜厚を4000Å以下とする
特許請求の範囲第1項又は第2項記載の半導体薄膜の製
造方法。
(3) The method for manufacturing a semiconductor thin film according to claim 1 or 2, wherein the thickness of the amorphous semiconductor thin film is 4000 Å or less.
(4)レーザービームの波長が20000〜1000Å
である特許請求の範囲第1項又は第2項記載の半導体薄
膜の製造方法。
(4) Laser beam wavelength is 20,000 to 1,000 Å
A method for manufacturing a semiconductor thin film according to claim 1 or 2.
(5)レーザービームがCWArレーザーである特許請
求の範囲第4項記載の半導体薄膜製造方法。
(5) The semiconductor thin film manufacturing method according to claim 4, wherein the laser beam is a CWAr laser.
(6)絶縁性基板がガラス基板である特許請求の範囲第
1項記載の半導体薄膜製造方法。
(6) The semiconductor thin film manufacturing method according to claim 1, wherein the insulating substrate is a glass substrate.
JP60242890A 1985-10-31 1985-10-31 Method for manufacturing polycrystalline silicon film Expired - Fee Related JPH0810668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242890A JPH0810668B2 (en) 1985-10-31 1985-10-31 Method for manufacturing polycrystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242890A JPH0810668B2 (en) 1985-10-31 1985-10-31 Method for manufacturing polycrystalline silicon film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12858295A Division JPH07326769A (en) 1995-05-26 1995-05-26 Plane display use thin film transistor

Publications (2)

Publication Number Publication Date
JPS62104117A true JPS62104117A (en) 1987-05-14
JPH0810668B2 JPH0810668B2 (en) 1996-01-31

Family

ID=17095748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242890A Expired - Fee Related JPH0810668B2 (en) 1985-10-31 1985-10-31 Method for manufacturing polycrystalline silicon film

Country Status (1)

Country Link
JP (1) JPH0810668B2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480914A (en) * 1990-07-24 1992-03-13 Semiconductor Energy Lab Co Ltd Semiconductor manufacturing method
US5306651A (en) * 1990-05-11 1994-04-26 Asahi Glass Company Ltd. Process for preparing a polycrystalline semiconductor thin film transistor
JPH07326769A (en) * 1995-05-26 1995-12-12 Asahi Glass Co Ltd Plane display use thin film transistor
JPH0851218A (en) * 1995-06-23 1996-02-20 Asahi Glass Co Ltd Method of forming thin film transistor
US5612251A (en) * 1993-05-27 1997-03-18 Samsung Electronics Co., Ltd. Manufacturing method and device for a polycrystalline silicon
US5716857A (en) * 1990-07-24 1998-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5861337A (en) * 1991-05-28 1999-01-19 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US6008078A (en) * 1990-07-24 1999-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6271066B1 (en) 1991-03-18 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6391690B2 (en) 1995-12-14 2002-05-21 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
US6429483B1 (en) 1994-06-09 2002-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6500704B1 (en) 1995-07-03 2002-12-31 Sanyo Electric Co., Ltd Semiconductor device, display device and method of fabricating the same
JP2003059831A (en) * 2001-08-17 2003-02-28 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US6562672B2 (en) 1991-03-18 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US6576534B1 (en) 1991-09-21 2003-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US6709905B2 (en) 1995-02-21 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method for producing insulated gate thin film semiconductor device
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6808969B2 (en) 2001-10-30 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6897889B2 (en) 2001-11-30 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
US6930326B2 (en) 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
US7084052B2 (en) 1995-07-03 2006-08-01 Sanyo Electric Co., Ltd. Semiconductor device, display device and method of fabricating the same
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
US7105048B2 (en) 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7105392B2 (en) 2002-01-28 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7132375B2 (en) 2001-08-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate
US7138306B2 (en) 2001-09-25 2006-11-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7148507B2 (en) 2002-01-17 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having thin film transistor with position controlled channel formation region
US7148092B2 (en) 2002-01-28 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7226817B2 (en) 2001-12-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing
US7312473B2 (en) 2001-12-28 2007-12-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
JP2008034809A (en) * 2006-07-27 2008-02-14 Samsung Electronics Co Ltd Forming method for polysilicon pattern, diode including polysilicon pattern, multi-layer cross point resistive memory element including polysilicon pattern, and manufacturing method for diode and memory element
US7355202B2 (en) 1990-05-29 2008-04-08 Semiconductor Energy Co., Ltd. Thin-film transistor
US7468312B2 (en) 2001-11-09 2008-12-23 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
US7507615B2 (en) 1990-11-09 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
JP2009111206A (en) * 2007-10-31 2009-05-21 Fujifilm Corp Laser annealing method
US7705357B2 (en) 2002-03-05 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with channel region in recess
US7709895B2 (en) 2002-02-08 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having insulating stripe patterns
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083321A (en) * 1983-10-14 1985-05-11 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083321A (en) * 1983-10-14 1985-05-11 Hitachi Ltd Manufacture of semiconductor device

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306651A (en) * 1990-05-11 1994-04-26 Asahi Glass Company Ltd. Process for preparing a polycrystalline semiconductor thin film transistor
US7355202B2 (en) 1990-05-29 2008-04-08 Semiconductor Energy Co., Ltd. Thin-film transistor
JPH0480914A (en) * 1990-07-24 1992-03-13 Semiconductor Energy Lab Co Ltd Semiconductor manufacturing method
US6486495B2 (en) 1990-07-24 2002-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7026200B2 (en) 1990-07-24 2006-04-11 Semiconductor Energy Laboratory Co. Ltd. Method for manufacturing a semiconductor device
US5716857A (en) * 1990-07-24 1998-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6008078A (en) * 1990-07-24 1999-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7507615B2 (en) 1990-11-09 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US6271066B1 (en) 1991-03-18 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US6562672B2 (en) 1991-03-18 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US6494162B1 (en) 1991-05-28 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US6174374B1 (en) 1991-05-28 2001-01-16 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US5861337A (en) * 1991-05-28 1999-01-19 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US6770143B2 (en) 1991-05-28 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US6576534B1 (en) 1991-09-21 2003-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US7368367B2 (en) 1991-09-21 2008-05-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US6924212B2 (en) 1991-09-21 2005-08-02 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
US5612251A (en) * 1993-05-27 1997-03-18 Samsung Electronics Co., Ltd. Manufacturing method and device for a polycrystalline silicon
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6429483B1 (en) 1994-06-09 2002-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7547915B2 (en) 1994-06-09 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having SiOxNy film
US8330165B2 (en) 1994-06-09 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6921686B2 (en) 1995-02-21 2005-07-26 Semiconductor Energy Laboratory Co., Ltd. Method for producing insulated gate thin film semiconductor device
US7615423B2 (en) 1995-02-21 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing insulated gate thin film semiconductor device
US6709905B2 (en) 1995-02-21 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method for producing insulated gate thin film semiconductor device
US7045403B2 (en) 1995-02-21 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method for producing insulated gate thin film semiconductor device
JPH07326769A (en) * 1995-05-26 1995-12-12 Asahi Glass Co Ltd Plane display use thin film transistor
JPH0851218A (en) * 1995-06-23 1996-02-20 Asahi Glass Co Ltd Method of forming thin film transistor
US6500704B1 (en) 1995-07-03 2002-12-31 Sanyo Electric Co., Ltd Semiconductor device, display device and method of fabricating the same
US7084052B2 (en) 1995-07-03 2006-08-01 Sanyo Electric Co., Ltd. Semiconductor device, display device and method of fabricating the same
US6660572B2 (en) 1995-12-14 2003-12-09 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
US6391690B2 (en) 1995-12-14 2002-05-21 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
US7218431B2 (en) 2001-07-30 2007-05-15 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US7679800B2 (en) 2001-07-30 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US8035877B2 (en) 2001-07-30 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7393729B2 (en) 2001-08-17 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
JP2003059831A (en) * 2001-08-17 2003-02-28 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7422987B2 (en) 2001-08-30 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7132375B2 (en) 2001-08-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US7682949B2 (en) 2001-09-10 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US10910219B2 (en) 2001-09-25 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US10366885B2 (en) 2001-09-25 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7138306B2 (en) 2001-09-25 2006-11-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US9748099B2 (en) 2001-09-25 2017-08-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US8686315B2 (en) 2001-09-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7943885B2 (en) 2001-09-25 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing semiconductor device
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US7300516B2 (en) 2001-10-30 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US7037809B2 (en) 2001-10-30 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device using a laser irradiation process
US7892952B2 (en) 2001-10-30 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US6808969B2 (en) 2001-10-30 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7468312B2 (en) 2001-11-09 2008-12-23 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US8696808B2 (en) 2001-11-27 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US6897889B2 (en) 2001-11-30 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
US7105048B2 (en) 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7445974B2 (en) 2001-11-30 2008-11-04 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8093593B2 (en) 2001-12-21 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multichannel transistor
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US7312473B2 (en) 2001-12-28 2007-12-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US7226817B2 (en) 2001-12-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing
US10879272B2 (en) 2002-01-17 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US10515983B2 (en) 2002-01-17 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US10361222B2 (en) 2002-01-17 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US9899419B2 (en) 2002-01-17 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US7148507B2 (en) 2002-01-17 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having thin film transistor with position controlled channel formation region
US7795734B2 (en) 2002-01-28 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7737506B2 (en) 2002-01-28 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7105392B2 (en) 2002-01-28 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7148092B2 (en) 2002-01-28 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7709895B2 (en) 2002-02-08 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having insulating stripe patterns
US7705357B2 (en) 2002-03-05 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with channel region in recess
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US7179699B2 (en) 2002-03-26 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US7145175B2 (en) 2002-03-26 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6930326B2 (en) 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US7547593B2 (en) 2002-03-26 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US7704812B2 (en) 2002-03-26 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
US7560660B2 (en) 2002-06-14 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP2008034809A (en) * 2006-07-27 2008-02-14 Samsung Electronics Co Ltd Forming method for polysilicon pattern, diode including polysilicon pattern, multi-layer cross point resistive memory element including polysilicon pattern, and manufacturing method for diode and memory element
JP2009111206A (en) * 2007-10-31 2009-05-21 Fujifilm Corp Laser annealing method

Also Published As

Publication number Publication date
JPH0810668B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPS62104117A (en) Manufacture of semiconductor thin film
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
JP3254072B2 (en) Method for manufacturing semiconductor device
JP3306258B2 (en) Method for manufacturing semiconductor device
JPH07221017A (en) Semiconductor device and manufacturing method
JP2005197656A (en) Method for forming polycrystalline silicon film
JPH0794756A (en) Method of fabricating semiconductor device
JPH0343769B2 (en)
JPH07326769A (en) Plane display use thin film transistor
US4536251A (en) Method for eliminating laser-induced substrate fissures associated with crystallized silicon areas
JP2004063478A (en) Thin film transistor and its manufacturing method
JP2004039660A (en) Method for manufacturing polycrystalline semiconductor film, method for manufacturing thin film transistor, display device, and pulse laser annealing apparatus
JPS63299322A (en) Formation of single crystal silicon film
JP2809152B2 (en) Method for manufacturing thin film transistor
JPH0851218A (en) Method of forming thin film transistor
JP3202687B2 (en) Method for manufacturing semiconductor device
JP2817613B2 (en) Method for forming crystalline silicon film
JP2001057432A (en) Method for transferring thin film element
JP3202688B2 (en) Method for manufacturing semiconductor device
JPH0574704A (en) Semiconductor layer forming method
JPH0945926A (en) Formation of polycrystalline semiconductor thin film, thin film transistor and its manufacture
JP3408242B2 (en) Method for manufacturing semiconductor device
JPH03284831A (en) Forming method for semiconductor thin-film
JP3393857B2 (en) Method for manufacturing semiconductor device
JPH10312962A (en) Formation of polycrystalline silicon thin film and polycrystalline silicon thin-film transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees