JPH0810668B2 - Method for manufacturing polycrystalline silicon film - Google Patents

Method for manufacturing polycrystalline silicon film

Info

Publication number
JPH0810668B2
JPH0810668B2 JP60242890A JP24289085A JPH0810668B2 JP H0810668 B2 JPH0810668 B2 JP H0810668B2 JP 60242890 A JP60242890 A JP 60242890A JP 24289085 A JP24289085 A JP 24289085A JP H0810668 B2 JPH0810668 B2 JP H0810668B2
Authority
JP
Japan
Prior art keywords
silicon film
film
amorphous silicon
thin film
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60242890A
Other languages
Japanese (ja)
Other versions
JPS62104117A (en
Inventor
正記 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60242890A priority Critical patent/JPH0810668B2/en
Publication of JPS62104117A publication Critical patent/JPS62104117A/en
Publication of JPH0810668B2 publication Critical patent/JPH0810668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は絶縁性基板上の薄膜トランジスタ等の製造に
用いられる半導体薄膜の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a semiconductor thin film used for producing a thin film transistor or the like on an insulating substrate.

[従来の技術] ガラス基板等の絶縁性基板上に形成された薄膜トラン
ジスタ(TFT)は、液晶やエレクトロルミネッセンス等
を用いた平面ディスプレイ装置に望まれているアクティ
ブマトリクスとして有望視されている。この薄膜トラン
ジスタを形成する為の絶縁性基板上の半導体薄膜とし
て、従来、非晶質シリコン膜を用いる方法、及び多結晶
シリコン膜を用いる方法が提案されている。
[Prior Art] A thin film transistor (TFT) formed on an insulating substrate such as a glass substrate is promising as an active matrix desired for a flat display device using liquid crystal, electroluminescence, or the like. As a semiconductor thin film on an insulating substrate for forming this thin film transistor, conventionally, a method using an amorphous silicon film and a method using a polycrystalline silicon film have been proposed.

第1の非晶質シリコン膜を用いる方法では、プラズマ
CVD法等によって、膜の堆積温度が一般に300℃以下で行
われ、トランジスタ形成のプロセス全般の温度も含めて
低温プロセスであることによって、耐熱温度の高くない
安価なガラス基板が使え、さらに堆積装置も大型化し易
いので、アクティブマトリクスとしての基板の大型化が
容易であるとして、有力な方法とされている。しかし、
非晶質シリコン膜では膜の導電率が小さいのでアクティ
ブマトリクスとして充分なトランジスタのオン電流を得
る為に、トランジスタ寸法を大きくする必要があり、信
頼性や画素の開口率の低下を招くという欠点を有する
し、又キャリア移動度が低い為に、トランジスタの動作
速度が遅く、アクティブマトリクスとして制御画素数に
限界があること及びアクティブマトリクスの周辺走査回
路を同一基板上に形成できないという欠点を有してい
る。さらに、非晶質シリコン膜では光導電性が大きい為
に、トランジスタのオフ時に光電流が発生し、光照射下
では電流のオン・オフ比が著しく低下するという欠点も
存在している。
In the method using the first amorphous silicon film, plasma is used.
The film deposition temperature is generally 300 ° C. or less by the CVD method, etc., and because it is a low-temperature process including the temperature of the entire transistor formation process, an inexpensive glass substrate that does not have a high heat resistance temperature can be used Since it is easy to increase the size, it is considered to be a promising method because it is easy to increase the size of a substrate as an active matrix. But,
Since the film conductivity of an amorphous silicon film is small, it is necessary to increase the transistor size in order to obtain a sufficient on-current of the transistor as an active matrix, which results in a decrease in reliability and pixel aperture ratio. In addition, since the carrier mobility is low, the operation speed of the transistor is slow, and the number of control pixels for the active matrix is limited and the peripheral scanning circuit of the active matrix cannot be formed on the same substrate. There is. Further, since the amorphous silicon film has a large photoconductivity, a photocurrent is generated when the transistor is turned off, and the on / off ratio of the current is significantly reduced under the light irradiation.

これらの欠点に対して、第2の多結晶シリコン膜を用
いる方法が提案されている。多結晶シリコン膜は通常減
圧CVD法により形成され、膜物性として、非晶質シリコ
ン膜と比較して導電率、キャリア移動度は1桁以上大き
く、光導電性が小さいので、より高性能で高信頼のアク
ティブマトリクスの形成が可能で、前記の非晶質シリコ
ン膜を用いた場合の欠点を解決する方法として精力的に
検討がなされている。
A method using a second polycrystalline silicon film has been proposed for these drawbacks. A polycrystalline silicon film is usually formed by a low pressure CVD method, and has physical properties such as conductivity and carrier mobility that are one digit or more higher than those of an amorphous silicon film, and low photoconductivity. A reliable active matrix can be formed, and vigorous studies have been made as a method for solving the drawbacks when the above-mentioned amorphous silicon film is used.

[発明が解決しようとする問題点] 従来、ガラス基板上への多結晶シリコン膜形成法は、
減圧CVD法やプラズマCVD法が用いられている。
[Problems to be Solved by the Invention] Conventionally, a method for forming a polycrystalline silicon film on a glass substrate is
The low pressure CVD method and the plasma CVD method are used.

しかし、これらの形成法では形成時の基板温度が600
℃以上必要であり、それより低温度では非晶質シリコン
膜しか得られない。従って用いるガラス基板は、通常の
ソーダライムガラスより耐熱温度の高い石英ガラス等の
高価なガラス基板材料を必要とする。また、この温度域
での減圧CVD法やプラズマCVD法の膜形成装置は、より低
温度域での非晶質シリコン膜用のプラズマCVD装置等に
比較して大型化が難しく基板サイズの大型化への対応が
非常に困難である。又別の多結晶シリコン膜形成法とし
て分子線蒸着法も提案されているが、550℃程度のやや
低い基板温度が可能であるが、基板サイズの大型化への
対応の点では前述の形成法よりもさらに困難となり、又
より高価な装置となる。
However, with these forming methods, the substrate temperature during formation is 600
It is necessary to be at least ℃, and at lower temperatures, only an amorphous silicon film can be obtained. Therefore, the glass substrate used requires an expensive glass substrate material such as quartz glass having a higher heat resistance temperature than ordinary soda lime glass. Also, it is difficult to increase the size of the film forming apparatus using the low pressure CVD method or the plasma CVD method in this temperature range as compared with the plasma CVD apparatus for the amorphous silicon film in the lower temperature range, etc. It is very difficult to deal with. A molecular beam evaporation method has also been proposed as another method for forming a polycrystalline silicon film, but a slightly lower substrate temperature of about 550 ° C is possible, but the above-mentioned forming method is applicable in terms of increasing the substrate size. More difficult and more expensive equipment.

以上の様に従来の多結晶シリコン膜形成法では形成温
度と使えるガラス基板の耐熱温度及び基板サイズの大型
化への対応の可能性の面で大きな欠点を有していた。
As described above, the conventional polycrystalline silicon film forming method has major drawbacks in terms of the forming temperature, the heat resistant temperature of a usable glass substrate, and the possibility of increasing the size of the substrate.

又、前述の如き欠点を解決する方法として絶縁膜上に
形成した非晶質シリコン膜にCW Arレーザービームを照
射し、多結晶シリコン膜となす方法が提案されている。
(Applied Physics Letters,vol.38(1981),No.8,pp61
3-615) この場合でも前述非晶質シリコン膜の形成温度を500
℃以上とする必要があり、プロセス温度として500℃以
上を必要とするという大きな欠点を有していた。
Further, as a method for solving the above-mentioned drawbacks, a method has been proposed in which an amorphous silicon film formed on an insulating film is irradiated with a CW Ar laser beam to form a polycrystalline silicon film.
(Applied Physics Letters, vol.38 (1981), No.8, pp61
3-615) Even in this case, the formation temperature of the amorphous silicon film is set to 500
However, it has a major drawback that the process temperature needs to be 500 ° C. or higher.

[問題点を解決するための手段] 本発明は、従来の絶縁性基板への多結晶半導体薄膜形
成法が持つ前述の問題点を解決すべくなされたものであ
り、ガラス基板上に水素化物を原料ガスとして非晶質シ
リコン膜をプラズマCVDによって形成し、レーザービー
ムの走査速度をビームスポット径(μm)×(5000〜50
0000)/秒の或る速度とし、該非晶質シリコン膜にレー
ザービームを走査照射し、該非晶質シリコン膜が結晶化
を示し始める第1のレーザーパワー閾値と、該非晶質シ
リコン膜が溶融状態に至る第2のレーザーパワー閾値と
の間に照射レーザーパワーを設定し、該非晶質シリコン
膜を完全な溶融状態に至らしめることなく多結晶シリコ
ン膜に結晶化せしめる、平面ディスプレイ用薄膜トラン
ジスタに用いる多結晶シリコン膜の製造方法において、
該非晶質シリコン薄膜を略350℃以下の基板温度で100〜
3000Åの膜厚に堆積し、レーザービームのビームスポッ
ト径と照射レーザーパワーと走査速度との関係から、ビ
ームスポット径が30〜200μmの範囲に対して、走査速
度と、照射レーザーパワーとを選択し、レーザービーム
を該非晶質シリコン膜に走査照射して該非晶質シリコン
膜の多結晶化を行うことを特徴とする多結晶シリコン膜
の製造方法である。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems of the conventional method of forming a polycrystalline semiconductor thin film on an insulating substrate, and is intended to eliminate hydrides on a glass substrate. An amorphous silicon film is formed as a source gas by plasma CVD, and the scanning speed of the laser beam is set to beam spot diameter (μm) × (5000 to 50
0000) / second at a certain speed, the amorphous silicon film is scanned and irradiated with a laser beam, the first laser power threshold value at which the amorphous silicon film starts to show crystallization, and the amorphous silicon film is in a molten state. The irradiation laser power is set between the second laser power threshold value and the second laser power threshold value, and the amorphous silicon film is crystallized into a polycrystalline silicon film without reaching a completely melted state. In the method of manufacturing a crystalline silicon film,
The amorphous silicon thin film at a substrate temperature of approximately 350 ° C. or less
From the relationship between the beam spot diameter of the laser beam, the irradiation laser power and the scanning speed, the scanning speed and the irradiation laser power are selected for the range of the beam spot diameter of 30 to 200 μm. A method for producing a polycrystalline silicon film is characterized in that the amorphous silicon film is scanned and irradiated with a laser beam to polycrystallize the amorphous silicon film.

本発明の構成においては、まず、ガラス基板、ガラス
基板たる絶縁性基板上にプラズマCVD法或は光CVD法等の
方法によって、非晶質シリコン膜に代表される非晶質半
導体薄膜を堆積する。この時の堆積膜厚は3000Å〜100
Åとする。
In the structure of the present invention, first, an amorphous semiconductor thin film typified by an amorphous silicon film is deposited on a glass substrate or an insulating substrate which is a glass substrate by a method such as a plasma CVD method or an optical CVD method. . At this time, the deposited film thickness is 3000Å-100
Å.

一般に、SiH4、SiH2H6等の水素化物を原料ガスとした
プラズマCVD法や光CVD法による非晶質半導体薄膜の形成
においては基板温度が低い場合、著しく多量の水素が非
晶質半導体薄膜中に取り込まれるが、レーザービームの
照射によって該非晶質半導体薄膜が結晶化する際この水
素がガス化して噴出し、安定な結晶化を妨げるので、基
板温度は300℃以上とする。300℃以下の基板温度で堆積
したときには、非晶質シリコン膜を形成後350℃程度の
温度で不活性ガス雰囲気中又は真空中で保持すること等
により、脱水素処理を行う。
Generally, in the formation of amorphous semiconductor thin film by plasma CVD method or optical CVD method using a hydride such as SiH 4 or SiH 2 H 6 as a source gas, when the substrate temperature is low, a significantly large amount of hydrogen is contained in the amorphous semiconductor. The hydrogen is taken into the thin film, but when the amorphous semiconductor thin film is crystallized by the irradiation of the laser beam, this hydrogen is gasified and ejected, which hinders stable crystallization. Therefore, the substrate temperature is set to 300 ° C. or higher. When deposited at a substrate temperature of 300 ° C. or lower, dehydrogenation treatment is performed by holding the amorphous silicon film at a temperature of about 350 ° C. in an inert gas atmosphere or in a vacuum after forming the amorphous silicon film.

このとき、非晶質シリコン膜等の非晶質半導体薄膜の
堆積膜厚を3000Å以下とすることが好ましく理由を説明
する。3000Åを超える膜厚では、後に行うレーザービー
ム照射の際、膜中に含まれていた水素のガス状噴出の影
響が強く、得られる多結晶半導体薄膜に、キレツ、ボイ
ド、さらに剥離等が発生しやすいので堆積温度を500℃
以上とすることでこれを妨ぐ必要がある。これに対し薄
膜3000Å以下では、堆積温度を500℃以上とする必要は
なく、かつレーザーのパワーの許容範囲が広くなるから
である。なお、この非晶質半導体薄膜は100Å未満ではT
FT化が困難であり、100Å以上の厚膜とすることが好ま
しい。
At this time, the reason why it is preferable to set the deposited film thickness of the amorphous semiconductor thin film such as the amorphous silicon film to 3000 Å or less will be described. When the film thickness exceeds 3000 Å, the effect of gaseous ejection of hydrogen contained in the film is strong during the subsequent laser beam irradiation, and the resulting polycrystalline semiconductor thin film suffers from crevices, voids, and peeling. Easy to set the deposition temperature to 500 ℃
It is necessary to prevent this by doing the above. On the other hand, when the thin film is 3000 Å or less, it is not necessary to set the deposition temperature to 500 ° C. or higher, and the allowable range of the laser power becomes wide. Note that this amorphous semiconductor thin film has a T
Since it is difficult to form FT, it is preferable to use a thick film of 100 Å or more.

よって、非晶質半導体薄膜の膜厚は3000Å以下とする
ことが好ましい。
Therefore, it is preferable that the thickness of the amorphous semiconductor thin film is 3000 Å or less.

又、該非晶質半導体薄膜を形成する際、前もって絶縁
性基板上に酸化シリコン膜や窒化シリコン膜等の絶縁膜
を、堆積しておいてもよい。
When forming the amorphous semiconductor thin film, an insulating film such as a silicon oxide film or a silicon nitride film may be deposited in advance on the insulating substrate.

又、非晶質半導体薄膜は、予め島状にパターニングし
てあってもよい。次いで、この非晶質半導体薄膜にレー
ザービームを走査照射して、完全な溶融状態に至ること
なく、多結晶化する。レーザービームのスポット径は、
適宜定めれば良いが、後に形成するトランジスタの短辺
寸法より充分大きくしておくことが好ましいが、大きく
するにつれ必要なレーザー光源のパワーも増大する為、
通常は30〜200μmが選ばれる。
Further, the amorphous semiconductor thin film may be patterned in an island shape in advance. Then, the amorphous semiconductor thin film is irradiated with a scanning laser beam to be polycrystallized without reaching a completely molten state. The spot diameter of the laser beam is
Although it may be appropriately determined, it is preferable to make it sufficiently larger than the short side dimension of a transistor to be formed later, but as the size increases, the power of the laser light source required also increases,
Usually, 30 to 200 μm is selected.

本発明では、レーザービームの走査速度をビームスポ
ット径×5000/秒以上に選ぶ。これにより後述するよう
に広いレーザーパワーのマージンで非晶質半導体薄膜
は、完全な溶融状態に至ることなく結晶化し、多結晶半
導体薄膜とすることができる。
In the present invention, the scanning speed of the laser beam is selected to be the beam spot diameter × 5000 / sec or more. As a result, as will be described later, the amorphous semiconductor thin film can be crystallized with a wide laser power margin without reaching a completely melted state to form a polycrystalline semiconductor thin film.

本発明では使用されるレーザービームは波長20000Å
〜1000Å程度の連続発振レーザーによるものがあり、例
えばYAGレーザー、He−Neレーザー、アレキサンドライ
トレーザー、Arレーザー、Krレーザー及びこれらの高周
波レーザー、色素レーザー、エキシマーレーザー等が使
用できる。なかでも可視光域から紫外域のレーザーが好
ましい。
The laser beam used in the present invention has a wavelength of 20000Å
There are lasers using a continuous wave laser of about 1000 Å, and for example, YAG laser, He-Ne laser, alexandrite laser, Ar laser, Kr laser and their high frequency lasers, dye lasers, excimer lasers, etc. can be used. Of these, a laser in the visible light region to the ultraviolet region is preferable.

このレーザービームの走査速度は前述の如くビームス
ポット径×5000/秒以上とされ、通常最大でもビームス
ポット径×500000/秒以下とされる。なお、具体的には4
0m/秒以下とされることが好ましい。これにより、非晶
質半導体薄膜は完全な溶融状態に至ることなく結晶化
し、多結晶半導体薄膜とすることができる。
The scanning speed of the laser beam is, as described above, the beam spot diameter × 5000 / sec or more, and usually the maximum is the beam spot diameter × 500000 / sec or less. In addition, specifically 4
It is preferably 0 m / sec or less. As a result, the amorphous semiconductor thin film can be crystallized without reaching a completely melted state to form a polycrystalline semiconductor thin film.

以下、その理由をレーザービームの走査照射するとき
の非晶質半導体薄膜の変化とその時のレーザーパワーと
の関係から説明する。まず、或る走査速度において照射
レーザーパワーを充分に小さい値から増加させるとき、
非晶質半導体薄膜が結晶化を示し始めて多結晶半導体薄
膜となる第1のレーザーパワー閾値が現れる。この完全
な溶融状態を経ないでの結晶化については後で詳しく説
明する。さらにレーザーパワーを増加させると、ついに
半導体薄膜が溶融状態に至り、第2のレーザーパワー閾
値が見い出される。安定して多結晶半導体薄膜とする為
に、この第1、第2の両レーザーパワー閾値の間で照射
レーザーパワーを選択する必要がある。しかし、走査速
度が遅い場合、この両レーザーパワー閾値の間隔が小さ
くなり、さらに遅くした場合については両閾値間に、安
定して多結晶半導体薄膜となすのに適したレーザーパワ
ーの設定マージンが存在しなくなる。これに対し、走査
速度が速い場合、遅い場合に比較してレーザーパワーの
閾値は共に増加し同時に間隔は開き、レーザーパワーの
設定マージンが拡がる。本発明では、この走査速度をビ
ームスポット径×5000/秒以上とする。ここで、走査速
度の望ましい範囲がビームスポット径との関係で存在す
る理由は、ビームスポット径より充分に小さい被照射部
分について見ると、或る走査速度の場合照射時間がビー
ムスポット径に比例し、照射エネルギーがこの照射時間
にほぼ比例するという関係にあるからである。以上に理
由から、走査速度は、ビームスポット径×5000/秒以上
とされる。
Hereinafter, the reason will be described from the relationship between the change in the amorphous semiconductor thin film when scanning and irradiating the laser beam and the laser power at that time. First, when increasing the irradiation laser power from a sufficiently small value at a certain scanning speed,
A first laser power threshold appears at which the amorphous semiconductor thin film starts to show crystallization and becomes a polycrystalline semiconductor thin film. Crystallization without going through this completely molten state will be described later in detail. When the laser power is further increased, the semiconductor thin film finally reaches a molten state, and the second laser power threshold value is found. In order to stably form a polycrystalline semiconductor thin film, it is necessary to select the irradiation laser power between the first and second laser power thresholds. However, when the scanning speed is slow, the interval between the two laser power thresholds becomes small, and when the scanning speed is slower, there is a laser power setting margin suitable for forming a polycrystalline semiconductor thin film between the two thresholds. Will not do. On the other hand, when the scanning speed is high, the threshold values of the laser power are both increased and the intervals are increased at the same time as compared with the case where the scanning speed is low, and the setting margin of the laser power is expanded. In the present invention, this scanning speed is set to beam spot diameter × 5000 / sec or more. Here, the reason why the desirable range of the scanning speed exists in relation to the beam spot diameter is that when the irradiation target area is sufficiently smaller than the beam spot diameter, the irradiation time is proportional to the beam spot diameter at a certain scanning speed. This is because the irradiation energy is in proportion to this irradiation time. For the above reasons, the scanning speed is set to the beam spot diameter × 5000 / sec or more.

これによって、非晶質半導体薄膜は完全な溶融状態に
至ることなく結晶化し、極く短時間のうちに、多結晶半
導体薄膜となることが出来、耐熱温度の低い安価なガラ
ス基板の使用が可能であり、かつ、基板サイズの大型化
も容易に対応可能となる。さらに、レーザーパワーの設
定マージンが広くなるので、制御が容易となり、かつ走
査速度が速いので生産性も向上する。
As a result, the amorphous semiconductor thin film can be crystallized without reaching a completely molten state and become a polycrystalline semiconductor thin film in an extremely short time, and an inexpensive glass substrate with low heat resistance can be used. In addition, it is possible to easily cope with an increase in substrate size. Further, since the laser power setting margin is widened, the control is facilitated, and the scanning speed is high, so that the productivity is also improved.

なお、非晶質シリコン膜にレーザービームを走査照射
する際、非晶質半導体薄膜上に予め酸化シリコン膜や窒
化シリコン膜等の絶縁膜を形成し、レーザービームの反
射防止膜或は表面保護膜として用いても良い。
When the amorphous silicon film is scanned and irradiated with a laser beam, an insulating film such as a silicon oxide film or a silicon nitride film is previously formed on the amorphous semiconductor thin film to prevent the laser beam from being reflected or a surface protective film. You may use as.

本発明でいう非晶質半導体薄膜とは狭義の意味で、完
全な非晶質構造を有するものだけではなく、粒径が50nm
未満の微細な結晶粒子が含まれるいわゆる微結晶半導体
薄膜をも含むものである。本発明の非晶質半導体薄膜と
しては非晶質シリコン膜が最適なものであるが非晶質ゲ
ルマニウム等の他の非晶質半導体薄膜にも適用できる。
又、本発明でいうビームスポット径は、照射面において
レーザーパワーの約87%以上が内包される径をさす。
In the narrow sense, the amorphous semiconductor thin film referred to in the present invention is not limited to a film having a completely amorphous structure, and has a particle size of 50 nm.
It also includes a so-called microcrystalline semiconductor thin film containing less than the fine crystal particles. An amorphous silicon film is most suitable as the amorphous semiconductor thin film of the present invention, but it can be applied to other amorphous semiconductor thin films such as amorphous germanium.
The beam spot diameter referred to in the present invention means a diameter at which about 87% or more of the laser power is included on the irradiation surface.

前述の非晶質半導体薄膜が、完全な溶融状態を経ない
で結晶化することについて説明する。一般にエネルギー
を与えて結晶化又は結晶粒成長を起させる場合、溶融さ
せた後再固化させる方法又は、融点以下の高温で非常に
長時間保持する方法等が行われている。前者は、再固化
の速度が速くても10cm/秒以下と一般に遅く限られ、か
つ、融点以上の高温度を要する。後者の方法では、保持
温度が融点より下がるにつれ、非常な長時間の処理例え
ば100時間以上を要する。
It will be described that the above-mentioned amorphous semiconductor thin film is crystallized without passing through a completely molten state. Generally, when energy is applied to cause crystallization or crystal grain growth, a method of melting and then re-solidifying, a method of holding at a temperature below the melting point for a very long time, and the like are performed. The former is limited to 10 cm / sec or less in general, even if the rate of re-solidification is fast, and requires a high temperature above the melting point. The latter method requires a very long treatment, for example 100 hours or more, as the holding temperature falls below the melting point.

これに対し、非晶質半導体薄膜にレーザー光を照射す
る場合、非晶質半導体薄膜に特有な光誘起構造変化及び
固相での結晶化及びこの時の結晶化熱の発生等の現象が
存在し、これ等の結果、完全な溶融状態を経ることな
く、高速度での結晶化が可能となるものであり、本発明
ではの現象を利用して低温高速の結晶化を可能としてい
る。
On the other hand, when the amorphous semiconductor thin film is irradiated with laser light, there are phenomena such as the photo-induced structural change peculiar to the amorphous semiconductor thin film, crystallization in the solid phase and generation of heat of crystallization at this time. However, as a result of these, crystallization can be performed at a high speed without passing through a completely molten state, and the phenomenon of the present invention enables low-temperature and high-speed crystallization.

[作用] 本発明は、ガラス基板上に形成した非晶質シリコン膜
等の非晶質半導体薄膜へCw Arレーザービーム等のレー
ザービームを走査照射することにより、完全な溶融状態
を経ることなく多結晶シリコン膜等の多結晶半導体薄膜
とすることが可能であり、その時の絶縁性基板温度は平
均的にはほとんど上昇せず、部分的かつ瞬間的にも半導
体材料の溶融温度よりはるかに低く、さらに物性値とし
て定義れている非晶質半導体薄膜いわゆる結晶化温度よ
りも充分低い温度に止まるため耐熱性の低いガラス基板
が使用できる。
[Operation] The present invention scans and irradiates an amorphous semiconductor thin film such as an amorphous silicon film formed on a glass substrate with a laser beam such as a Cw Ar laser beam, so that a multi-melt state can be obtained without a complete melting state. It is possible to use a polycrystalline semiconductor thin film such as a crystalline silicon film, the temperature of the insulating substrate at that time hardly rises on average, and it is much lower than the melting temperature of the semiconductor material partially and instantaneously, Furthermore, since the temperature of the amorphous semiconductor thin film, which is defined as a physical property value, is sufficiently lower than a so-called crystallization temperature, a glass substrate having low heat resistance can be used.

さらに前記非晶質半導体薄膜の膜厚を3000Å以下とし
ておくことにより、堆積温度が500℃未満であっても、
レーザービーム照射時の水素のガス状噴出によるキレ
ツ、ボイド、剥離等の欠陥の発生を容易に防ぐことが出
来る。
Furthermore, by setting the thickness of the amorphous semiconductor thin film to 3000 Å or less, even if the deposition temperature is less than 500 ° C,
It is possible to easily prevent the occurrence of defects such as cracks, voids, and peeling due to the gaseous ejection of hydrogen during laser beam irradiation.

又、本発明における非晶質半導体薄膜の結晶化速度
は、一般にレーザーアニール法と呼ばれる方法に見られ
る溶融状態から固化再結晶化する場合に比較して非常に
速く、レーザービームを走査照射する走査速度をビーム
スポット径×5000/秒以上にしても結晶化させるとが可
能であり、低温でかつ高速で結晶化させることができ
る。又、この様な走査速度において、全体に多結晶半導
体薄膜とすることができるレーザーパワーの設定マージ
ンが充分広く取れるという利点も有する。
Further, the crystallization rate of the amorphous semiconductor thin film in the present invention is much faster than the case of solidifying and recrystallizing from a molten state, which is generally found in a method called a laser annealing method. It is possible to crystallize even if the speed is a beam spot diameter x 5000 / sec or more, and it is possible to crystallize at a low temperature and at a high speed. Further, at such a scanning speed, there is also an advantage that the setting margin of the laser power which can be a polycrystalline semiconductor thin film as a whole can be sufficiently wide.

本発明は非晶質半導体薄膜として非晶質シリコン膜へ
の適用が最も適しているが、非晶質ゲルマニウム膜等の
他の非晶質半導体薄膜に適用してもよいことはもちろん
である。
The present invention is most suitably applied to an amorphous silicon film as an amorphous semiconductor thin film, but it goes without saying that it may be applied to other amorphous semiconductor thin films such as an amorphous germanium film.

[実施例] 実施例1 ソーダライムガラスからなる基板上に、SiH4及びN2O
の原料ガスを用いてプラズマCVD法により、基板温度350
℃で酸化シリコン膜(SiO2)を2000Å堆積し、これに連
続してSiH4ガスを原料として同じく基板温度350℃にて
非晶質シリコン膜を3000Å堆積した。次に、この非晶質
シリコン膜に、CW Arレーザービームを走査照射する。
ビームスポット径は100μm走査速度は1.2m/秒(ビーム
スポット径×12,000/秒)、レーザーパワー9Wとした。
[Example] Example 1 SiH 4 and N 2 O were formed on a substrate made of soda lime glass.
Substrate temperature of 350 by plasma CVD method using the source gas of
A silicon oxide film (SiO 2 ) was deposited at 2000 Å at ℃, and an amorphous silicon film was deposited at 3000 Å at the same substrate temperature of 350 ℃ using SiH 4 gas as a raw material. Next, this amorphous silicon film is scanned and irradiated with a CW Ar laser beam.
The beam spot diameter was 100 μm, the scanning speed was 1.2 m / sec (beam spot diameter × 12,000 / sec), and the laser power was 9 W.

得られた多結晶シリコン膜の結晶粒子径は0.2〜3.0μ
mであった。このとき、暗赤色で不透明に近い非晶質シ
リコン膜は、レーザービームの走査照射により、淡黄色
で透明に近い状態を呈した。
The crystal grain size of the obtained polycrystalline silicon film is 0.2 ~ 3.0μ
It was m. At this time, the amorphous silicon film that was dark red and nearly opaque was in a pale yellow and nearly transparent state by scanning irradiation with a laser beam.

第1図はこの走査状態を示す断面図であり、1はCW A
rレーザービーム、2は非晶質シリコン膜、3は絶縁
膜、4はガラス基板を示しており、図の前後方向に走査
することにより、非晶質シリコン膜の部分が多結晶シリ
コン膜5に結晶化しているところを示している。
FIG. 1 is a sectional view showing this scanning state, and 1 is CW A
r A laser beam, 2 is an amorphous silicon film, 3 is an insulating film, and 4 is a glass substrate. By scanning in the front-back direction in the figure, the amorphous silicon film part becomes a polycrystalline silicon film 5. It shows that it is crystallized.

比較例1〜7 これに対し、実施例1と同じ非晶質シリコン膜を用い
てレーザーパワーを11Wに増加させた場合(比較例
1)、非晶質シリコン膜は照射後透明に近いがガラス基
板上で凝集状態を示して荒れており、均質な膜状を呈し
ていなかった。これは、溶融状態に至ったことを示す。
Comparative Examples 1 to 7 In contrast, when the same amorphous silicon film as in Example 1 was used and the laser power was increased to 11 W (Comparative Example 1), the amorphous silicon film was almost transparent after irradiation, but glass. It was rough and showed an aggregated state on the substrate, and did not have a uniform film shape. This indicates that a molten state has been reached.

また、レーザーパワーを7Wとした場合(比較例2)、
非晶質シリコン膜は照射後、照射前に比較してわずかに
透光性が減少したのみで多結晶シリコン膜にはなってい
なかった。
When the laser power is 7 W (Comparative example 2),
After the irradiation, the amorphous silicon film was slightly reduced in translucency as compared with that before the irradiation and was not a polycrystalline silicon film.

実施例1と同じに形成した非晶質シリコン膜に、CW A
rレーザービームを実施例1と同じく100μm、走査速度
を比較例として0.20m/秒(ビームスポット径×2000倍/
秒)で走査照射した場合、レーザーパワーが2.8Wのとき
(比較例3)、非晶質シリコン膜は照射前より透光性が
少し減少したのみで多結晶化は認められなかったがレー
ザーパワーが3.1Wのとき(比較例4)は、照射表面から
凝集状に変形して荒れて、透明に近く変化し、溶融状態
に至ったことを示し、図2に示すようにさらにガラス基
板表面も凹凸状に変形を呈し、かつ部分的にはマイクロ
クラック6の発生も認められた。
The amorphous silicon film formed in the same manner as in Example 1 was coated with CW A
The r laser beam was 100 μm as in Example 1, and the scanning speed was 0.20 m / sec (beam spot diameter × 2000 times /
When the laser power was 2.8 W (Comparative Example 3), the amorphous silicon film had a slightly reduced translucency compared to before irradiation, and polycrystallization was not observed, but the laser power was Was 3.1 W (Comparative Example 4), the irradiation surface was deformed into agglomerates and roughened, and then changed to nearly transparent and reached a molten state. As shown in FIG. Deformation was exhibited in a concavo-convex shape, and microcracks 6 were partially generated.

該非晶質シリコン膜の膜厚を5000Åとする以外は実施
例1と同じ製造条件で堆積した場合、CW Arレーザービ
ームを実施例1と同じ条件(ビームスポット径100μ
m、走査速度1.2m/秒、レーザーパワー9W)で照射した
ところ(比較例5)、第3図に示す如く、多結晶シリコ
ン膜に多数のボイド7及びボイドを連接する様なキレツ
の発生がみられた。このとき、レーザーパワーを7Wとし
た場合(比較例6)は比較例2と同様に透光性の減少の
変化を示したのみで、多結晶シリコン膜が形成されな
く、11Wとした場合(比較例7)は、比較例1と同様の
凝集状態で荒れていることに加え、部分的には、膜の飛
散も認められた。
When the amorphous silicon film was deposited under the same manufacturing conditions as in Example 1 except that the film thickness was 5000 Å, a CW Ar laser beam was used under the same conditions as in Example 1 (beam spot diameter 100 μm).
m (scanning speed: 1.2 m / sec, laser power: 9 W) (Comparative Example 5), as shown in FIG. 3, a number of voids 7 and crevices connecting the voids were formed in the polycrystalline silicon film. It was seen. At this time, when the laser power was set to 7 W (Comparative Example 6), only a change in the decrease in translucency was shown as in Comparative Example 2, and when the polycrystalline silicon film was not formed and it was set to 11 W (Comparative Example). In Example 7), in addition to being rough in the same agglomerated state as in Comparative Example 1, film scattering was also observed partially.

比較例8 このとき、非晶質シリコン膜を基板温度500℃と高く
して膜厚を同様に5000Åとした以外は実施例1と同じ製
造条件で堆積し、CW Arレーザービームを上記条件と同
様のビームスポット径100μm、走査速度1.2m/秒で照射
したところ、レーザーパワー9Wのとき、実施例1におけ
る9W照射時と同等の多結晶シリコン膜が得られたが、8W
のとき比較例2と同様に透光性の減少の変化に止まり、
10Wのときは、第3図に示す如く、多結晶シリコン膜に
多数のボイド及びボイドを連接するキレツの発生がみら
れ、結果として多結晶シリコン膜を得られたが、実施例
1に示した場合に比較して、レーザーパワーの設定マー
ジンは小さく、かつ温度も高くする必要があった。
Comparative Example 8 At this time, the amorphous silicon film was deposited under the same manufacturing conditions as in Example 1 except that the substrate temperature was raised to 500 ° C. and the film thickness was also set to 5000 Å, and a CW Ar laser beam was used under the same conditions as above. When the beam spot diameter was 100 μm and the scanning speed was 1.2 m / sec, a polycrystalline silicon film equivalent to that of 9 W irradiation in Example 1 was obtained when the laser power was 9 W, but 8 W
At that time, as in Comparative Example 2, the change in the decrease in translucency was stopped,
At 10 W, as shown in FIG. 3, many voids and crevices connecting the voids were observed in the polycrystalline silicon film, and as a result, a polycrystalline silicon film was obtained. Compared with the case, the setting margin of the laser power needs to be small and the temperature needs to be high.

[発明の効果] 以上の如く本発明は、ガラス基板上の非晶質シリコン
膜等の非晶質半導体薄膜にCW Arレーザービーム等のレ
ーザービームを走査照射する際、走査速度をビームスポ
ット径×5000/秒以上とすることにより、制御しやすく
非晶質半導体薄膜が完全な溶融状態に至ることなく結晶
化して、安定して多結晶半導体薄膜となる様にしたこ
と、さらに、前記非晶質半導体薄膜の堆積膜厚を3000Å
以下とすることにより、使用可能な非晶質半導体薄膜の
堆積温度として略350℃以下に低温化できるため、多結
晶半導体薄膜を形成する基板温度として従来法に比して
略350℃以下のプロセス温度として低温化でき、絶縁性
基板材料として通常のガラス基板が使え、また、基板サ
イズの大型化にも充分対応可能となり、平面ディスプレ
イ装置用のアクティブマトリクスの製造方法において、
従来の多結晶半導体薄膜形成法によるものより、非常に
優れて有用なものである。
[Effects of the Invention] As described above, according to the present invention, when an amorphous semiconductor thin film such as an amorphous silicon film on a glass substrate is scanned and irradiated with a laser beam such as a CW Ar laser beam, the scanning speed is set to the beam spot diameter x By setting the rate to 5000 / sec or more, the amorphous semiconductor thin film is easily crystallized without reaching a completely melted state, and a polycrystalline semiconductor thin film is stably formed. The deposited film thickness of semiconductor thin film is 3000Å
The deposition temperature of the amorphous semiconductor thin film that can be used can be lowered to approximately 350 ° C. or less by setting the following, so that the substrate temperature for forming the polycrystalline semiconductor thin film is approximately 350 ° C. or less compared to the conventional method. The temperature can be lowered, a normal glass substrate can be used as an insulating substrate material, and it is also possible to sufficiently cope with an increase in substrate size. In the method of manufacturing an active matrix for a flat display device,
It is extremely superior and useful as compared with the conventional polycrystalline semiconductor thin film forming method.

又、本発明による方法によれば、絶縁性基板上の非晶
質半導体薄膜の特定の部分のみを選択的に多結晶半導体
薄膜とすることが可能で、同一絶縁性基板上で非晶質半
導体薄膜として用いる部分と多結晶半導体薄膜として用
いる部分とを膜形成工程及びフォトリソグラフィーによ
るパターニング工程とを別途に付け加えることなく、容
易に製造可能となる。
Further, according to the method of the present invention, it is possible to selectively make only a specific part of the amorphous semiconductor thin film on the insulating substrate into a polycrystalline semiconductor thin film, and the amorphous semiconductor thin film on the same insulating substrate can be selectively used. The part used as the thin film and the part used as the polycrystalline semiconductor thin film can be easily manufactured without separately adding a film forming step and a patterning step by photolithography.

さらに本発明による方法は、多層構造の半導体装置の
製造にも適用でき、既に素子や回路を形成した半導体装
置上の絶縁膜上に低温度で形成した非晶質半導体薄膜に
適用し、既に形成してある下層の素子・回路に熱的なダ
メージを与えることなく、多結晶半導体薄膜を形成し、
素子化することが可能となる。
Furthermore, the method according to the present invention can be applied to the manufacture of a semiconductor device having a multilayer structure, and can be applied to an amorphous semiconductor thin film formed at a low temperature on an insulating film on a semiconductor device on which elements and circuits have already been formed, and already formed. A polycrystalline semiconductor thin film is formed without causing thermal damage to the underlying devices and circuits.
It becomes possible to make it into an element.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例において非晶質シリコン膜が安
定して多結晶シリコン膜となることを示す断面図。 第2図及び第3図は比較例における多結晶シリコン膜の
状態を示す断面図。 1……CW Arレーザービーム 2……非晶質シリコン膜 3……絶縁膜 4……ガラス基板 5……多結晶シリコン膜 6……マイクロクラック 7……ボイド
FIG. 1 is a sectional view showing that an amorphous silicon film stably becomes a polycrystalline silicon film in an embodiment of the present invention. 2 and 3 are cross-sectional views showing the state of the polycrystalline silicon film in the comparative example. 1 …… CW Ar laser beam 2 …… Amorphous silicon film 3 …… Insulating film 4 …… Glass substrate 5 …… Polycrystalline silicon film 6 …… Microcrack 7 …… Void

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−83321(JP,A) 国体物理 16〔2〕(昭56−2)p.47 −53 Applied physics Le tters Vol.38,No.8, (1981)p.613−615 Applied physics Le tters Vol.35,No.9, (1979)p.686−687 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 60-83321 (JP, A) National physics 16 [2] (SHO 56-2) p. 47-53 Applied physics Letters Vol. 38, No. 8, (1981) p. 613-615 Applied physics Letters Vol. 35, No. 9, (1979) p. 686-687

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス基板上に水素化物を原料ガスとして
非晶質シリコン膜をプラズマCVDによって形成し、レー
ザービームの走査速度をビームスポット径(μm)×
(5000〜500000)/秒の或る速度とし、該非晶質シリコ
ン膜にレーザービームを走査照射し、該非晶質シリコン
膜が結晶化を示し始める第1のレーザーパワー閾値と、
該非晶質シリコン膜が溶融状態に至る第2のレーザーパ
ワー閾値との間に照射レーザーパワーを設定し、該非晶
質シリコン膜を完全な溶融状態に至らしめることなく多
結晶シリコン膜に結晶化せしめる、平面ディスプレイ用
薄膜トランジスタに用いる多結晶シリコン膜の製造方法
において、該非晶質シリコン薄膜を略350℃以下の基板
温度で100〜3000Åの膜厚に堆積し、レーザービームの
ビームスポット径と照射レーザーパワーと走査速度との
関係から、ビームスポット径が30〜200μmの範囲に対
して、走査速度と、照射レーザーパワーとを選択し、レ
ーザービームを該非晶質シリコン膜に走査照射して該非
晶質シリコン膜の多結晶化を行うことを特徴とする多結
晶シリコン膜の製造方法。
1. An amorphous silicon film is formed by plasma CVD using a hydride as a source gas on a glass substrate, and a scanning speed of a laser beam is a beam spot diameter (μm) ×.
A first laser power threshold value at which the amorphous silicon film is scanned and irradiated with a laser beam at a certain speed of (5000 to 500000) / second, and the amorphous silicon film starts to show crystallization;
The irradiation laser power is set between the amorphous silicon film and a second laser power threshold value to reach a molten state, and the amorphous silicon film is crystallized into a polycrystalline silicon film without reaching a completely molten state. In the method for producing a polycrystalline silicon film used for a thin film transistor for a flat display, the amorphous silicon thin film is deposited at a substrate temperature of about 350 ° C. or less to a film thickness of 100 to 3000 Å, and a beam spot diameter of a laser beam and an irradiation laser power are set. From the relationship between the scanning speed and the scanning speed, the scanning speed and the irradiation laser power are selected for the range of the beam spot diameter of 30 to 200 μm, and the amorphous silicon film is scanned and irradiated with the laser beam. A method for producing a polycrystalline silicon film, which comprises polycrystallizing the film.
【請求項2】該非晶質シリコン膜の上に絶縁膜をさらに
設け、その後にレーザービームを走査照射する特許請求
の範囲第1項記載の多結晶シリコン膜の製造方法。
2. The method for producing a polycrystalline silicon film according to claim 1, wherein an insulating film is further provided on the amorphous silicon film, and then a laser beam is scanned and irradiated.
JP60242890A 1985-10-31 1985-10-31 Method for manufacturing polycrystalline silicon film Expired - Fee Related JPH0810668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242890A JPH0810668B2 (en) 1985-10-31 1985-10-31 Method for manufacturing polycrystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242890A JPH0810668B2 (en) 1985-10-31 1985-10-31 Method for manufacturing polycrystalline silicon film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12858295A Division JPH07326769A (en) 1995-05-26 1995-05-26 Plane display use thin film transistor

Publications (2)

Publication Number Publication Date
JPS62104117A JPS62104117A (en) 1987-05-14
JPH0810668B2 true JPH0810668B2 (en) 1996-01-31

Family

ID=17095748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242890A Expired - Fee Related JPH0810668B2 (en) 1985-10-31 1985-10-31 Method for manufacturing polycrystalline silicon film

Country Status (1)

Country Link
JP (1) JPH0810668B2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69127395T2 (en) * 1990-05-11 1998-01-02 Asahi Glass Co Ltd Method of manufacturing a thin film transistor with polycrystalline semiconductor
DE69125886T2 (en) 1990-05-29 1997-11-20 Semiconductor Energy Lab Thin film transistors
US6008078A (en) 1990-07-24 1999-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5254208A (en) * 1990-07-24 1993-10-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP3125931B2 (en) * 1990-07-24 2001-01-22 株式会社半導体エネルギー研究所 Semiconductor fabrication method
TW237562B (en) 1990-11-09 1995-01-01 Semiconductor Energy Res Co Ltd
US6562672B2 (en) 1991-03-18 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
JPH0824104B2 (en) 1991-03-18 1996-03-06 株式会社半導体エネルギー研究所 Semiconductor material and manufacturing method thereof
US5578520A (en) 1991-05-28 1996-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US5766344A (en) 1991-09-21 1998-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
KR100255689B1 (en) * 1993-05-27 2000-05-01 윤종용 Semiconductor laser device and its manufacturing method
CN100367461C (en) 1993-11-05 2008-02-06 株式会社半导体能源研究所 Method of manufacturing thin film transistor and electronic device
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6867432B1 (en) 1994-06-09 2005-03-15 Semiconductor Energy Lab Semiconductor device having SiOxNy gate insulating film
JP3778456B2 (en) 1995-02-21 2006-05-24 株式会社半導体エネルギー研究所 Method for manufacturing insulated gate thin film semiconductor device
JPH07326769A (en) * 1995-05-26 1995-12-12 Asahi Glass Co Ltd Plane display use thin film transistor
JPH0851218A (en) * 1995-06-23 1996-02-20 Asahi Glass Co Ltd Method of forming thin film transistor
US6790714B2 (en) 1995-07-03 2004-09-14 Sanyo Electric Co., Ltd. Semiconductor device, display device and method of fabricating the same
US5771110A (en) 1995-07-03 1998-06-23 Sanyo Electric Co., Ltd. Thin film transistor device, display device and method of fabricating the same
US6391690B2 (en) 1995-12-14 2002-05-21 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP4209606B2 (en) * 2001-08-17 2009-01-14 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI282126B (en) 2001-08-30 2007-06-01 Semiconductor Energy Lab Method for manufacturing semiconductor device
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
JP4397571B2 (en) 2001-09-25 2010-01-13 株式会社半導体エネルギー研究所 Laser irradiation method, laser irradiation apparatus, and manufacturing method of semiconductor device
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
SG108878A1 (en) 2001-10-30 2005-02-28 Semiconductor Energy Lab Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
JP3980465B2 (en) 2001-11-09 2007-09-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI289896B (en) 2001-11-09 2007-11-11 Semiconductor Energy Lab Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7105048B2 (en) 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
JP3949564B2 (en) 2001-11-30 2007-07-25 株式会社半導体エネルギー研究所 Laser irradiation apparatus and method for manufacturing semiconductor device
JP4141138B2 (en) 2001-12-21 2008-08-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
JP4011344B2 (en) 2001-12-28 2007-11-21 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2003204067A (en) 2001-12-28 2003-07-18 Semiconductor Energy Lab Co Ltd Display device and electronic equipment using the same
US6841797B2 (en) 2002-01-17 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device formed over a surface with a drepession portion and a projection portion
TWI272666B (en) 2002-01-28 2007-02-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
TWI261358B (en) 2002-01-28 2006-09-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
JP4137460B2 (en) 2002-02-08 2008-08-20 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR100979926B1 (en) 2002-03-05 2010-09-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor element and semiconductor device using the same
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US6930326B2 (en) 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
KR101309111B1 (en) * 2006-07-27 2013-09-17 삼성전자주식회사 Method for forming of poly-Si pattern and multi-layer cross point resistive memory device comprising poly-Si pattern and method for manufacturing the same
JP5236929B2 (en) * 2007-10-31 2013-07-17 富士フイルム株式会社 Laser annealing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083321A (en) * 1983-10-14 1985-05-11 Hitachi Ltd Manufacture of semiconductor device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AppliedphysicsLettersVol.35,No.9,(1979)p.686−687
AppliedphysicsLettersVol.38,No.8,(1981)p.613−615
国体物理16〔2〕(昭56−2)p.47−53

Also Published As

Publication number Publication date
JPS62104117A (en) 1987-05-14

Similar Documents

Publication Publication Date Title
JPH0810668B2 (en) Method for manufacturing polycrystalline silicon film
JP3204986B2 (en) Crystallization of semiconductor film region on substrate and device manufactured by this method
JP4026182B2 (en) Semiconductor device manufacturing method and electronic device manufacturing method
JP4583004B2 (en) Manufacturing method of active matrix substrate
TW589667B (en) Crystalline semiconductor film and production method thereof, and semiconductor device and production method thereof
JPH07221017A (en) Semiconductor device and manufacturing method
JP2004087535A (en) Method for manufacturing crystalline semiconductor material and method for manufacturing semiconductor device
JP3389022B2 (en) Semiconductor device
JP2003332346A (en) Thin film transistor and manufacturing method thereof
JP3859978B2 (en) Device for forming a laterally extending crystal region in a semiconductor material film on a substrate
JP2005197656A (en) Method for forming polycrystalline silicon film
US7767558B2 (en) Method of crystallizing amorphous silicon and device fabricated using the same
JPH07326769A (en) Plane display use thin film transistor
JP2005064453A (en) Thin film transistor and its manufacturing method
JP2000260709A (en) Method of crystallizing semiconductor thin film and semiconductor device using the same
US6861668B2 (en) Thin film transistor (TFT) and method for fabricating the TFT
Helen et al. Single shot excimer laser crystallization and LPCVD silicon TFTs
JPH0851218A (en) Method of forming thin film transistor
JPS63299322A (en) Formation of single crystal silicon film
JP2809152B2 (en) Method for manufacturing thin film transistor
JPH04226040A (en) Manufacture of polycrystalline silicon thin-film transistor, and active matrix substrate
JP2817613B2 (en) Method for forming crystalline silicon film
JPH05315361A (en) Manufacture of semiconductor thin film and semiconductor element
JPH0574704A (en) Semiconductor layer forming method
JPH09306839A (en) Method for melting/crystallizing semiconductor and method for activating semiconductor impurity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees