JPH02181419A - Laser anneal method - Google Patents
Laser anneal methodInfo
- Publication number
- JPH02181419A JPH02181419A JP34589A JP34589A JPH02181419A JP H02181419 A JPH02181419 A JP H02181419A JP 34589 A JP34589 A JP 34589A JP 34589 A JP34589 A JP 34589A JP H02181419 A JPH02181419 A JP H02181419A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- sample
- substrate
- film
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 21
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 239000004065 semiconductor Substances 0.000 claims abstract description 6
- 238000000137 annealing Methods 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 48
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 6
- 238000005224 laser annealing Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 12
- 239000011521 glass Substances 0.000 abstract description 9
- 230000001681 protective effect Effects 0.000 abstract description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000002564 X-linked cardiac valvular dysplasia Diseases 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置の製造方法に係り、特に薄膜トラン
ジスタ製造の際のレーザアニール方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a laser annealing method for manufacturing a thin film transistor.
近年、アクティブマトリクス用の薄膜半導体装置である
薄膜トランジスタ(Thin Film Transi
stor、略してTPT)材料として高画質化の点で優
れている多結晶シリコン(Polycrystalli
ne 5ilicon 。In recent years, thin film transistors, which are thin film semiconductor devices for active matrix
Polycrystalline silicon (TPT) is an excellent material for achieving high image quality.
ne 5ilicon.
略してPo1y −S i )が用いられている。この
Po1y−5iは減圧CVD法あるいはプラズマCVD
法(PCVD法)によって堆積されている。基板として
は石英ガラス又は通常のガラス板を用いる。Po1y-S i ) is used for short. This Po1y-5i is produced by low pressure CVD method or plasma CVD method.
(PCVD method). A quartz glass or ordinary glass plate is used as the substrate.
通常のガラス板を用いる際はプロセスの最高温度が約6
00℃という大きな制約があるためガラス板には熱的影
響を与えないでPo1y −S i v&の表面層だけ
をレーザ照射することで再結晶化する方法が検討されて
いる。この方法によればガラス基板に影響を与えない低
温熱アニールに比べ結晶性が向上し、TPT特性を向上
している。When using a normal glass plate, the maximum temperature of the process is approximately 6
Since there is a large restriction of 00° C., a method of recrystallizing by irradiating only the surface layer of Po1y-Siv& with laser without giving any thermal effect to the glass plate is being considered. This method improves crystallinity and improves TPT characteristics compared to low-temperature thermal annealing that does not affect the glass substrate.
従来はこのレーザ照射方法として特開昭57−2106
24号に記載のように反射防止膜としての酸化膜、窒化
膜などの誘電体薄膜を選択的に形成することでパターニ
ングした素子の必要な部分だけに適正パワーのレーザ光
を照射したり、特開昭58−5[1316号に記載のよ
うにエネルギビームの走査方法を検討して導体装置を製
造する方法が検討されていた。Conventionally, this laser irradiation method was disclosed in Japanese Patent Application Laid-Open No. 57-2106.
As described in No. 24, by selectively forming a dielectric thin film such as an oxide film or a nitride film as an anti-reflection film, it is possible to irradiate only the necessary parts of a patterned element with a laser beam of appropriate power, As described in 1985-5 [1316], a method of manufacturing a conductor device by using an energy beam scanning method was studied.
上記従来技術では基板全面にレーザ照射することで基板
全体あるいは誘電体膜を部分的に形成し基板上の半導体
装置の所望の部分だけのアニール処理を行ない、陰火結
晶粒を得ることで電気的特性を向上させていた。電気的
特性を更に向上させるためにはレーザエネルギを大きく
することで結晶粒を大きくすれば良いが、−室以上にレ
ーザエネルギを大きくすればレーザ照射による基板から
の膜はがれが生じる。上記従来技術ではこのことに関し
て検討されておらず、特にアニール処理されるシリコン
膜が薄膜化した場合には膜はがれを生じさせずに得られ
る結晶粒の大きさには限度があった。In the above conventional technology, laser irradiation is applied to the entire surface of the substrate to form a dielectric film on the entire substrate or a portion of the dielectric film, and annealing is performed on only the desired portion of the semiconductor device on the substrate to obtain negative crystal grains, thereby improving electrical characteristics. was improving. In order to further improve the electrical characteristics, the crystal grains can be made larger by increasing the laser energy, but if the laser energy is increased to a level greater than -, the film will peel off from the substrate due to laser irradiation. This problem has not been studied in the prior art described above, and there is a limit to the size of crystal grains that can be obtained without film peeling, especially when the silicon film to be annealed is thinned.
本発明の目的は薄膜半導体装置の特性を向上させるため
膜はがれの生じないレーザエネルギを大きくすることに
より大きな結晶粒を得ることでTPT特性を向上させる
ことにある。An object of the present invention is to improve the TPT characteristics by increasing the laser energy without causing film peeling, thereby obtaining large crystal grains, in order to improve the characteristics of thin film semiconductor devices.
上記目的は、基板上に減圧CV l’)法あるいはPC
VD法によって堆積したシリコン膜にレーザ光を照射す
る際、同じエネルギでレーザ光を基板全面に照射した場
合でも最初に膜はがれが生じ始める基板エツジ部にレー
ザ光を照射しないことで達成される。The above purpose is to apply low pressure CV l') method or PC
When irradiating a silicon film deposited by the VD method with a laser beam, this is achieved by not irradiating the laser beam onto the edge of the substrate where film peeling first begins even if the entire surface of the substrate is irradiated with the laser beam with the same energy.
基板上に減圧CVD法あるいはPCVD法によって堆積
したシリコン膜の膜厚は装置、基板の大きさ、成膜条件
によっても異なるが例えば100m角の大きさの基板に
減圧CVD法によりシリコン膜を堆積させる方法であれ
ば基板内の膜ノリばらつきを±5%以内で堆積すること
ができる。しかし、基板エツジの部分では膜厚は急激に
薄くなる。The thickness of a silicon film deposited on a substrate by low pressure CVD or PCVD varies depending on the equipment, substrate size, and film forming conditions, but for example, a silicon film is deposited on a 100 m square substrate by low pressure CVD. With this method, it is possible to deposit a film with variation in film thickness within ±5% within the substrate. However, the film thickness rapidly decreases at the edge of the substrate.
そのため、基板全体を同一エネルギでレーザ照射する方
法ではエネルギを大きくしてゆけば基板中央部でははが
れは生じない範囲でもまず基板エツジの部分から膜はが
れが生じる。これは、例えば常圧CVD法により100
0人の保護膜を堆積した場合でも同様な膜はがれが生じ
、シリコン膜の膜厚が薄くなるほど低いエネルギで膜は
がれが生じる。そのエツジの部分にレーザ光を照射させ
ないことで基板中央部で謹はがれが生じるしきいエネル
ギまで照射エネルギを向上させることができるのでより
大きな結晶粒を基板全体に得ることができる。Therefore, in a method in which the entire substrate is irradiated with laser at the same energy, as the energy is increased, the film will first peel off from the edges of the substrate, even if no peeling occurs at the center of the substrate. This can be achieved by, for example, 100% by atmospheric pressure CVD method.
Similar film peeling occurs even when a protective film is deposited, and as the thickness of the silicon film becomes thinner, the film peels off at lower energy. By not irradiating the edge portion with the laser beam, the irradiation energy can be increased to the threshold energy that causes peeling in the center of the substrate, so that larger crystal grains can be obtained over the entire substrate.
以下本発明の詳細な説明する。 The present invention will be explained in detail below.
第1図は歪温度が約640℃のガラス基板1を550℃
に保ち、ヘリウムガスで20%に希釈したモノシランガ
スを原料として圧力I Torrの条件で減圧CVD1
12を堆積させる。この時例えばガラス基板1の大きさ
を100 +m+角とし、1500人の膜厚で堆積すれ
ばLPGVD膜2の基板内での膜厚分布は±5%以内で
再現出来る。次に基板1を480℃に保ち、ヘリウムガ
スで4%希釈したモノシランガスと酸素を原料として常
圧CVD法により表面保護膜3を約1. OO0人堆積
させる。Figure 1 shows a glass substrate 1 with a strain temperature of approximately 640°C being heated to 550°C.
Using monosilane gas diluted to 20% with helium gas as a raw material, low-pressure CVD1 was carried out at a pressure of I Torr.
12 is deposited. At this time, for example, if the size of the glass substrate 1 is 100 + m + square and the film is deposited to a thickness of 1500, the thickness distribution of the LPGVD film 2 within the substrate can be reproduced within ±5%. Next, the substrate 1 is kept at 480° C., and a surface protective film 3 is formed by about 1% by normal pressure CVD using monosilane gas diluted 4% with helium gas and oxygen as raw materials. Deposit 00 people.
次に例えばシリコンや高融点金属のタングステンやモリ
ブデン等レーザ光を透過しない厚さQ、5画描度のマス
ク4を試料上にセットする。この時マスクは試料のエツ
ジ部分から約5m程度覆うようにセットする。次に第2
図に示すようにマスクをセツトシた試料5を矢印で示す
方向に走査させなからレーザ光を照射する。レーザ光に
例えば連続光を発振するアルゴンレーザ等を用いた場合
試料のX軸方向の走査を試料基板5の外で行ない走査速
度が変化することで試料5の面内で照射条件が異なるこ
とによる再結晶化状態の変化を防ぐ。Next, a mask 4 of silicon, high-melting point metal such as tungsten or molybdenum, which does not transmit laser light and has a thickness of Q and a drawing density of 5 is set on the sample. At this time, the mask is set so as to cover about 5 m from the edge of the sample. Then the second
As shown in the figure, the sample 5 with the mask set thereon is irradiated with laser light while being scanned in the direction indicated by the arrow. When the laser beam is, for example, an argon laser that oscillates continuous light, scanning of the sample in the X-axis direction is performed outside the sample substrate 5, and the scanning speed changes, resulting in different irradiation conditions within the plane of the sample 5. Prevents changes in recrystallization state.
又、高い繰返し周期のパルス光を発振するエキシマレー
ザ等を用いた場合パルス繰返し周期と試料5の走査速度
とを連動させ試料全面を同一数だけ照射する。繰返し周
期を遅くした場合第3図に示すように試料5の走査をス
テップ走査にし、1回に照射出来るレーザ光の照射面積
だけその発振数に合せて走査する。この時試料5のエツ
ジの部分にはレーザ光を照射しないようにする。これら
の方法により試料エツジ部分にレーザ光を照射しないよ
うにして試料エツジ部分からの膜はがれを防止する。第
4図に前述と同様に試料を作成し、その試料に例えばビ
ーム面積が10nwn角のXeCQ。Furthermore, when using an excimer laser or the like that oscillates pulsed light with a high repetition rate, the pulse repetition rate and the scanning speed of the sample 5 are linked to irradiate the entire surface of the sample the same number of times. When the repetition period is slowed down, as shown in FIG. 3, the sample 5 is scanned in steps, and the irradiation area of the laser beam that can be irradiated at one time is scanned in accordance with the number of oscillations. At this time, the edge portion of the sample 5 is not irradiated with laser light. These methods prevent the edge of the sample from being irradiated with laser light, thereby preventing the film from peeling off from the edge of the sample. In FIG. 4, a sample was prepared in the same manner as described above, and the sample was made of, for example, XeCQ with a beam area of 10 nwn square.
をガス源とするエキシマレーザ(波長;308nm)を
用いて試料全面にレーザ光を照射した時の膜はがれの状
態を示す。試料を矢印方向に走査させた場合まずエツジ
部分で1膜はがれが生じ、込に膜はがれが生じた部分の
隣接部にレーザ光を照射した時にも膜はがれが生じてし
まい試料全面を照射した時には斜線部で示す部分で膜は
がれが生じる。この膜はがれはエツジ部分から約511
紺の範囲にレーザ光を照射しないことで防げる。シリコ
ン膜の膜はがれが生じるエネルギはシリコン膜厚によっ
て大きく変化する。第5図に前述と同様な方法で100
on角のガラス基板上にシリコン膜厚を200〜35
00人の範囲で堆積し、保護膜を前述と同様な方法で1
000人堆積する。この試料に第4図で示す様にしてX
eCQをガス源としたエキシマレーザで基板を走査する
ことによって試料全面に各エネルギで1パルス照射した
。その試料基板の内、中央部分の20 +a角だけ切出
してX線回折強度を測定し膜厚補正したX線回折強度と
シリコン膜厚との関係を示し、更にエツジ部分と中央部
分とで膜はがれが生じる領域を示す。試料中央部での膜
はがれが生じた場合シリコン膜の量が減少することから
X線回折強度も減少している。エツジ部での膜はがれは
中央部の11!!はがれに比べ低いエネルギで生じてお
り、試料基板全体で素子を作成する際より低いエネルギ
でレーザ光を照射しなければならなくなる。しかし試料
エツジ部にレーザ光を照射しないことで中央部で膜はが
れが生じるまで照射エネルギ強度を増すことが出来る。This figure shows the state of film peeling when the entire surface of the sample is irradiated with laser light using an excimer laser (wavelength: 308 nm) with a gas source of When the sample is scanned in the direction of the arrow, one film peels off at the edge, and when the laser beam is applied to the area adjacent to the peeled part, the film also peels off, and when the entire surface of the sample is irradiated. Film peeling occurs in the shaded area. This film peels off from the edge part about 511cm.
This can be prevented by not irradiating the dark blue area with laser light. The energy that causes the silicon film to peel varies greatly depending on the silicon film thickness. 100 in the same manner as described above in Figure 5.
A silicon film thickness of 200 to 35 mm on an on-angle glass substrate
The protective film was deposited in the same manner as described above.
000 people deposited. X the sample as shown in Figure 4.
The entire surface of the sample was irradiated with one pulse at each energy by scanning the substrate with an excimer laser using eCQ as a gas source. The X-ray diffraction intensity was measured by cutting out a 20+a angle in the center of the sample substrate, and the relationship between the X-ray diffraction intensity corrected for the film thickness and the silicon film thickness is shown. shows the area where this occurs. When the film peels off at the center of the sample, the amount of silicon film decreases, so the X-ray diffraction intensity also decreases. Film peeling at the edges is 11 in the center! ! This occurs at a lower energy than peeling, and it is necessary to irradiate the laser beam with a lower energy than when creating an element on the entire sample substrate. However, by not irradiating the edge part of the sample with laser light, the irradiation energy intensity can be increased until the film peels off in the center part.
第6図には前述と同様にして減圧CVD膜を1500人
堆積した後書エネルギでレーザ光を照射した後TPTを
形成した時のレーザのエネルギと移動度との相関を示す
。レーザ光強度を増せばTPT特性は向上しており、試
料エツジ部での膜はがれを防ぎ、更に高いエネルギでレ
ーザ光を照射することで特性の良いTPTを形成するこ
とが出来る。FIG. 6 shows the correlation between the laser energy and the mobility when a TPT was formed after irradiating laser light at the same energy after depositing 1500 low pressure CVD films in the same manner as described above. Increasing the laser beam intensity improves the TPT characteristics, prevents film peeling at the edge of the sample, and irradiates the laser beam with even higher energy to form TPT with better characteristics.
本発明によれば、レーザ照射による基板エツジ部分から
の償はがれを防ぐことが出来、基板中央部で膜はがれが
生じるまで照射エネルギを大きくすることが出来るので
Po1y −S i膜の結晶性を向上させTPTの特性
も向上させることが出来る。According to the present invention, it is possible to prevent the peeling off from the edge portion of the substrate due to laser irradiation, and the irradiation energy can be increased until the film peels off at the center of the substrate, thereby improving the crystallinity of the Po1y-Si film. The characteristics of TPT can also be improved.
第1図は本発明のレーザ照射時の試料とマスクの断面図
、第2図、第3図は試料をレーザ照射側からの状態と試
料の走査方向を示す図、第4図は試料エツジの部分にも
レーザ光を照射した時の収はがれが生じる領域を示す図
、第5図はPo1y−Siの膜厚とX線回折強度を15
00人の膜厚で換算した結果を照射したレーザ光のエネ
ルギ別及び膜はがれの領域を示す図、第6図はレーザ照
射エネルギとTPT特性との関係を示す図である。
1・・・ガラス基板、2・・・LPGVD膜、3・・・
Si○2保護膜、4・・・レーザ遮断マスク、5・・・
試料。Fig. 1 is a cross-sectional view of the sample and mask during laser irradiation according to the present invention, Figs. 2 and 3 are views showing the state of the sample from the laser irradiation side and the scanning direction of the sample, and Fig. 4 is a view of the sample edge. Figure 5 shows the area where convergence occurs when the laser beam is irradiated on the part.
FIG. 6 is a diagram showing the relationship between the laser irradiation energy and the TPT characteristics. 1...Glass substrate, 2...LPGVD film, 3...
Si○2 protective film, 4... laser blocking mask, 5...
sample.
Claims (1)
アニールする方法において試料のエッジ部分にレーザ光
を照射させないことでレーザ照射による膜はがれを防止
することを特徴とするレーザアニール方法。 2、レーザ光面積より試料が広い場合、あるいは連続発
振、あるいは高い繰返し周波数を持つたレーザ光源を使
用する場合、試料基板上のエッジ部の所定の場所にレー
ザ光を透過しないマスクを設けることを特徴とする特許
請求の範囲第1項記載のレーザアニール方法。 3、パルスレーザ光源を使用する場合、繰返し周期と試
料基板の移動を連動させエッジ部分を避けて試料、ある
いはレーザ光を移動させることを特徴とする特許請求の
範囲第1項記載のレーザアニール方法。[Claims] 1. In a method of annealing a thin film semiconductor device used on a substrate with laser light, the method is characterized in that film peeling due to laser irradiation is prevented by not irradiating the edge portion of the sample with the laser light. Laser annealing method. 2. If the sample is wider than the laser beam area, or if a continuous wave or high repetition frequency laser light source is used, it is recommended to install a mask at a predetermined location on the edge of the sample substrate that does not transmit the laser beam. A laser annealing method according to claim 1, characterized in that: 3. When using a pulsed laser light source, the laser annealing method according to claim 1 is characterized in that the repetition period and the movement of the sample substrate are linked to move the sample or the laser beam while avoiding the edge portions. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34589A JPH02181419A (en) | 1989-01-06 | 1989-01-06 | Laser anneal method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34589A JPH02181419A (en) | 1989-01-06 | 1989-01-06 | Laser anneal method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02181419A true JPH02181419A (en) | 1990-07-16 |
Family
ID=11471269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34589A Pending JPH02181419A (en) | 1989-01-06 | 1989-01-06 | Laser anneal method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02181419A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994022173A1 (en) * | 1993-03-23 | 1994-09-29 | Tdk Corporation | Solid state imaging device and process for production thereof |
US5982460A (en) * | 1996-06-25 | 1999-11-09 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical display |
US6115088A (en) * | 1996-09-04 | 2000-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
JP2003059831A (en) * | 2001-08-17 | 2003-02-28 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2003133254A (en) * | 2001-08-10 | 2003-05-09 | Semiconductor Energy Lab Co Ltd | Laser annealing device and manufacturing method of thin film transistor using the same |
JP2003224070A (en) * | 2001-11-26 | 2003-08-08 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
US6638800B1 (en) | 1992-11-06 | 2003-10-28 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus and laser processing process |
US6700096B2 (en) | 2001-10-30 | 2004-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment |
US6770546B2 (en) | 2001-07-30 | 2004-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
US6808969B2 (en) | 2001-10-30 | 2004-10-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device |
JP2004343092A (en) * | 2003-04-21 | 2004-12-02 | Semiconductor Energy Lab Co Ltd | Beam irradiation apparatus, beam irradiation method, and method of manufacturing thin film transistor |
US6897889B2 (en) | 2001-11-30 | 2005-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device |
US6984573B2 (en) | 2002-06-14 | 2006-01-10 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and apparatus |
JP2006216980A (en) * | 1996-02-15 | 2006-08-17 | Semiconductor Energy Lab Co Ltd | Process for fabricating semiconductor device |
US7105048B2 (en) | 2001-11-30 | 2006-09-12 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus |
US7109069B2 (en) | 2001-12-21 | 2006-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7112517B2 (en) | 2001-09-10 | 2006-09-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment device, laser treatment method, and semiconductor device fabrication method |
US7132375B2 (en) | 2001-08-30 | 2006-11-07 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate |
US7138306B2 (en) | 2001-09-25 | 2006-11-21 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US7317205B2 (en) | 2001-09-10 | 2008-01-08 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing a semiconductor device |
US7468312B2 (en) | 2001-11-09 | 2008-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device |
US7863541B2 (en) | 2001-08-10 | 2011-01-04 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing apparatus and semiconductor device manufacturing method |
US7915099B2 (en) | 2003-04-21 | 2011-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device |
JP2013510443A (en) * | 2009-11-03 | 2013-03-21 | ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク | System and method for partial dissolution membrane treatment with non-periodic pulses |
-
1989
- 1989-01-06 JP JP34589A patent/JPH02181419A/en active Pending
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6638800B1 (en) | 1992-11-06 | 2003-10-28 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus and laser processing process |
US5574293A (en) * | 1993-03-23 | 1996-11-12 | Tdk Corp. | Solid state imaging device using disilane |
US5591988A (en) * | 1993-03-23 | 1997-01-07 | Tdk Corporation | Solid state imaging device with low trap density |
WO1994022173A1 (en) * | 1993-03-23 | 1994-09-29 | Tdk Corporation | Solid state imaging device and process for production thereof |
JP2006216980A (en) * | 1996-02-15 | 2006-08-17 | Semiconductor Energy Lab Co Ltd | Process for fabricating semiconductor device |
US6246453B1 (en) | 1996-06-25 | 2001-06-12 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
US6914260B2 (en) | 1996-06-25 | 2005-07-05 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
US5982460A (en) * | 1996-06-25 | 1999-11-09 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical display |
US7542103B2 (en) | 1996-06-25 | 2009-06-02 | Semiconductor Energy Laboratory | Electro-optical device |
US7206053B2 (en) | 1996-06-25 | 2007-04-17 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
US6115088A (en) * | 1996-09-04 | 2000-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US7863618B2 (en) | 1996-09-04 | 2011-01-04 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US7646022B2 (en) | 1996-09-04 | 2010-01-12 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US8586985B2 (en) | 1996-09-04 | 2013-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US7023502B2 (en) | 1996-09-04 | 2006-04-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having light-shielded thin film transistor |
US7046313B2 (en) | 1996-09-04 | 2006-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including a source line formed on interlayer insulating film having flattened surface |
US8536577B2 (en) | 1996-09-04 | 2013-09-17 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US6770546B2 (en) | 2001-07-30 | 2004-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
US7679800B2 (en) | 2001-07-30 | 2010-03-16 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment apparatus and method of manufacturing semiconductor device |
US8035877B2 (en) | 2001-07-30 | 2011-10-11 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment apparatus and method of manufacturing semiconductor device |
US7218431B2 (en) | 2001-07-30 | 2007-05-15 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment apparatus and method of manufacturing semiconductor device |
US7863541B2 (en) | 2001-08-10 | 2011-01-04 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing apparatus and semiconductor device manufacturing method |
JP2003133254A (en) * | 2001-08-10 | 2003-05-09 | Semiconductor Energy Lab Co Ltd | Laser annealing device and manufacturing method of thin film transistor using the same |
US7393729B2 (en) | 2001-08-17 | 2008-07-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for fabricating semiconductor device |
US7109073B2 (en) | 2001-08-17 | 2006-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for fabricating semiconductor device |
JP2003059831A (en) * | 2001-08-17 | 2003-02-28 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
US7422987B2 (en) | 2001-08-30 | 2008-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US7132375B2 (en) | 2001-08-30 | 2006-11-07 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate |
US7682949B2 (en) | 2001-09-10 | 2010-03-23 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment device, laser treatment method, and semiconductor device fabrication method |
US7112517B2 (en) | 2001-09-10 | 2006-09-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment device, laser treatment method, and semiconductor device fabrication method |
US7317205B2 (en) | 2001-09-10 | 2008-01-08 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing a semiconductor device |
US7138306B2 (en) | 2001-09-25 | 2006-11-21 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US10366885B2 (en) | 2001-09-25 | 2019-07-30 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US9748099B2 (en) | 2001-09-25 | 2017-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US8686315B2 (en) | 2001-09-25 | 2014-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US10910219B2 (en) | 2001-09-25 | 2021-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US7943885B2 (en) | 2001-09-25 | 2011-05-17 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and method of manufacturing semiconductor device |
US7892952B2 (en) | 2001-10-30 | 2011-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment |
US7300516B2 (en) | 2001-10-30 | 2007-11-27 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device |
US7037809B2 (en) | 2001-10-30 | 2006-05-02 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device using a laser irradiation process |
US6808969B2 (en) | 2001-10-30 | 2004-10-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device |
US6700096B2 (en) | 2001-10-30 | 2004-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment |
US7468312B2 (en) | 2001-11-09 | 2008-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device |
JP2003224070A (en) * | 2001-11-26 | 2003-08-08 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
US8696808B2 (en) | 2001-11-27 | 2014-04-15 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus |
US6897889B2 (en) | 2001-11-30 | 2005-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device |
US7445974B2 (en) | 2001-11-30 | 2008-11-04 | Semiconductor Energy Laboratory Co., Ltd. | Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device |
US7105048B2 (en) | 2001-11-30 | 2006-09-12 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus |
US7109069B2 (en) | 2001-12-21 | 2006-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US8093593B2 (en) | 2001-12-21 | 2012-01-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having multichannel transistor |
US7560660B2 (en) | 2002-06-14 | 2009-07-14 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and apparatus |
US6984573B2 (en) | 2002-06-14 | 2006-01-10 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and apparatus |
US7915099B2 (en) | 2003-04-21 | 2011-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device |
JP4503343B2 (en) * | 2003-04-21 | 2010-07-14 | 株式会社半導体エネルギー研究所 | Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor |
JP2004343092A (en) * | 2003-04-21 | 2004-12-02 | Semiconductor Energy Lab Co Ltd | Beam irradiation apparatus, beam irradiation method, and method of manufacturing thin film transistor |
JP2013510443A (en) * | 2009-11-03 | 2013-03-21 | ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク | System and method for partial dissolution membrane treatment with non-periodic pulses |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02181419A (en) | Laser anneal method | |
US5312771A (en) | Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer | |
US5365875A (en) | Semiconductor element manufacturing method | |
US5077233A (en) | Method for recrystallizing specified portions of a non-crystalline semiconductor material to fabricate a semiconductor device therein | |
JP3586558B2 (en) | Method for reforming thin film and apparatus used for implementing the method | |
TW515101B (en) | Method for fabrication of field-effect transistor | |
JPH01187814A (en) | Manufacture of thin film semiconductor device | |
US7271041B2 (en) | Method for manufacturing thin film transistor | |
JP3149450B2 (en) | Method and apparatus for manufacturing thin film transistor | |
US6537864B1 (en) | Method of fabricating a thin film transistor using electromagnetic wave heating of an amorphous semiconductor film | |
JPH02148831A (en) | Laser annealing method | |
JP2935446B2 (en) | Semiconductor device | |
JP3281431B2 (en) | Thin film transistor | |
JPS63299322A (en) | Formation of single crystal silicon film | |
JPH07326769A (en) | Plane display use thin film transistor | |
JP3203706B2 (en) | Method for annealing semiconductor layer and method for manufacturing thin film transistor | |
JP3146702B2 (en) | Method for manufacturing thin film transistor | |
JPH04120738A (en) | Manufacture of thin-film transistor | |
JPS6230314A (en) | Manufacture of crystalline semiconductor thin film | |
JP2709376B2 (en) | Method for manufacturing non-single-crystal semiconductor | |
JP3210313B2 (en) | Method for improving characteristics of polycrystalline silicon thin film | |
JPH04340724A (en) | Manufacture of thin film transistor | |
JPH0574704A (en) | Semiconductor layer forming method | |
JPH04212410A (en) | Light annealing method for semiconductor layer and forming method for semiconductor device | |
JPS6185815A (en) | Method for formation of polycrystalline silicon film |