JPH02181419A - Laser anneal method - Google Patents

Laser anneal method

Info

Publication number
JPH02181419A
JPH02181419A JP34589A JP34589A JPH02181419A JP H02181419 A JPH02181419 A JP H02181419A JP 34589 A JP34589 A JP 34589A JP 34589 A JP34589 A JP 34589A JP H02181419 A JPH02181419 A JP H02181419A
Authority
JP
Japan
Prior art keywords
laser
sample
substrate
film
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34589A
Other languages
Japanese (ja)
Inventor
Yoshihiko Koike
義彦 小池
Nakayuki Ko
胡 中行
Takashi Aoyama
隆 青山
Yoshiaki Okajima
岡島 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34589A priority Critical patent/JPH02181419A/en
Publication of JPH02181419A publication Critical patent/JPH02181419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent film separation from an edge part and also to enable irradiation with higher energy so as to obtain a TFT excellent in property by a covering the edge part of a sample with a mask so as to shut out a laser beam when annealing a film-shaped semiconductor device which is formed on a substrate by laser beams. CONSTITUTION:A glass substrate 1 whose distortion temperature is about 640 deg.C is kept at 550 deg.C, and a pressure reducing CVD film 2 is accumulated under the condition of pressure/Torr with SiH4 gass, which is diluted to 20% with He gass, as material. Next, the substrate 1 is kept at 480 deg.C, and a surface protective film 3 is accumulated with SiH4, which is diluted to 4% with He gas, and O2 as materials, and then a mask 4 about 0.5mm thick, consisting of material which does not transmit a laser beam such as Si, W, Mo, etc., is formed at the edge of a sample 5. Thereafter, a substrate 5 is irradiated with an Ar laser from outside to inside, or it is irradiated with an excimer laser which emit pulsed lights having high repetition period, so as to anneal a region 5 not covered with the mask 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に係り、特に薄膜トラン
ジスタ製造の際のレーザアニール方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a laser annealing method for manufacturing a thin film transistor.

〔従来の技術〕[Conventional technology]

近年、アクティブマトリクス用の薄膜半導体装置である
薄膜トランジスタ(Thin Film Transi
stor、略してTPT)材料として高画質化の点で優
れている多結晶シリコン(Polycrystalli
ne 5ilicon 。
In recent years, thin film transistors, which are thin film semiconductor devices for active matrix
Polycrystalline silicon (TPT) is an excellent material for achieving high image quality.
ne 5ilicon.

略してPo1y −S i )が用いられている。この
Po1y−5iは減圧CVD法あるいはプラズマCVD
法(PCVD法)によって堆積されている。基板として
は石英ガラス又は通常のガラス板を用いる。
Po1y-S i ) is used for short. This Po1y-5i is produced by low pressure CVD method or plasma CVD method.
(PCVD method). A quartz glass or ordinary glass plate is used as the substrate.

通常のガラス板を用いる際はプロセスの最高温度が約6
00℃という大きな制約があるためガラス板には熱的影
響を与えないでPo1y −S i v&の表面層だけ
をレーザ照射することで再結晶化する方法が検討されて
いる。この方法によればガラス基板に影響を与えない低
温熱アニールに比べ結晶性が向上し、TPT特性を向上
している。
When using a normal glass plate, the maximum temperature of the process is approximately 6
Since there is a large restriction of 00° C., a method of recrystallizing by irradiating only the surface layer of Po1y-Siv& with laser without giving any thermal effect to the glass plate is being considered. This method improves crystallinity and improves TPT characteristics compared to low-temperature thermal annealing that does not affect the glass substrate.

従来はこのレーザ照射方法として特開昭57−2106
24号に記載のように反射防止膜としての酸化膜、窒化
膜などの誘電体薄膜を選択的に形成することでパターニ
ングした素子の必要な部分だけに適正パワーのレーザ光
を照射したり、特開昭58−5[1316号に記載のよ
うにエネルギビームの走査方法を検討して導体装置を製
造する方法が検討されていた。
Conventionally, this laser irradiation method was disclosed in Japanese Patent Application Laid-Open No. 57-2106.
As described in No. 24, by selectively forming a dielectric thin film such as an oxide film or a nitride film as an anti-reflection film, it is possible to irradiate only the necessary parts of a patterned element with a laser beam of appropriate power, As described in 1985-5 [1316], a method of manufacturing a conductor device by using an energy beam scanning method was studied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では基板全面にレーザ照射することで基板
全体あるいは誘電体膜を部分的に形成し基板上の半導体
装置の所望の部分だけのアニール処理を行ない、陰火結
晶粒を得ることで電気的特性を向上させていた。電気的
特性を更に向上させるためにはレーザエネルギを大きく
することで結晶粒を大きくすれば良いが、−室以上にレ
ーザエネルギを大きくすればレーザ照射による基板から
の膜はがれが生じる。上記従来技術ではこのことに関し
て検討されておらず、特にアニール処理されるシリコン
膜が薄膜化した場合には膜はがれを生じさせずに得られ
る結晶粒の大きさには限度があった。
In the above conventional technology, laser irradiation is applied to the entire surface of the substrate to form a dielectric film on the entire substrate or a portion of the dielectric film, and annealing is performed on only the desired portion of the semiconductor device on the substrate to obtain negative crystal grains, thereby improving electrical characteristics. was improving. In order to further improve the electrical characteristics, the crystal grains can be made larger by increasing the laser energy, but if the laser energy is increased to a level greater than -, the film will peel off from the substrate due to laser irradiation. This problem has not been studied in the prior art described above, and there is a limit to the size of crystal grains that can be obtained without film peeling, especially when the silicon film to be annealed is thinned.

本発明の目的は薄膜半導体装置の特性を向上させるため
膜はがれの生じないレーザエネルギを大きくすることに
より大きな結晶粒を得ることでTPT特性を向上させる
ことにある。
An object of the present invention is to improve the TPT characteristics by increasing the laser energy without causing film peeling, thereby obtaining large crystal grains, in order to improve the characteristics of thin film semiconductor devices.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、基板上に減圧CV l’)法あるいはPC
VD法によって堆積したシリコン膜にレーザ光を照射す
る際、同じエネルギでレーザ光を基板全面に照射した場
合でも最初に膜はがれが生じ始める基板エツジ部にレー
ザ光を照射しないことで達成される。
The above purpose is to apply low pressure CV l') method or PC
When irradiating a silicon film deposited by the VD method with a laser beam, this is achieved by not irradiating the laser beam onto the edge of the substrate where film peeling first begins even if the entire surface of the substrate is irradiated with the laser beam with the same energy.

〔作用〕[Effect]

基板上に減圧CVD法あるいはPCVD法によって堆積
したシリコン膜の膜厚は装置、基板の大きさ、成膜条件
によっても異なるが例えば100m角の大きさの基板に
減圧CVD法によりシリコン膜を堆積させる方法であれ
ば基板内の膜ノリばらつきを±5%以内で堆積すること
ができる。しかし、基板エツジの部分では膜厚は急激に
薄くなる。
The thickness of a silicon film deposited on a substrate by low pressure CVD or PCVD varies depending on the equipment, substrate size, and film forming conditions, but for example, a silicon film is deposited on a 100 m square substrate by low pressure CVD. With this method, it is possible to deposit a film with variation in film thickness within ±5% within the substrate. However, the film thickness rapidly decreases at the edge of the substrate.

そのため、基板全体を同一エネルギでレーザ照射する方
法ではエネルギを大きくしてゆけば基板中央部でははが
れは生じない範囲でもまず基板エツジの部分から膜はが
れが生じる。これは、例えば常圧CVD法により100
0人の保護膜を堆積した場合でも同様な膜はがれが生じ
、シリコン膜の膜厚が薄くなるほど低いエネルギで膜は
がれが生じる。そのエツジの部分にレーザ光を照射させ
ないことで基板中央部で謹はがれが生じるしきいエネル
ギまで照射エネルギを向上させることができるのでより
大きな結晶粒を基板全体に得ることができる。
Therefore, in a method in which the entire substrate is irradiated with laser at the same energy, as the energy is increased, the film will first peel off from the edges of the substrate, even if no peeling occurs at the center of the substrate. This can be achieved by, for example, 100% by atmospheric pressure CVD method.
Similar film peeling occurs even when a protective film is deposited, and as the thickness of the silicon film becomes thinner, the film peels off at lower energy. By not irradiating the edge portion with the laser beam, the irradiation energy can be increased to the threshold energy that causes peeling in the center of the substrate, so that larger crystal grains can be obtained over the entire substrate.

〔実施例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図は歪温度が約640℃のガラス基板1を550℃
に保ち、ヘリウムガスで20%に希釈したモノシランガ
スを原料として圧力I Torrの条件で減圧CVD1
12を堆積させる。この時例えばガラス基板1の大きさ
を100 +m+角とし、1500人の膜厚で堆積すれ
ばLPGVD膜2の基板内での膜厚分布は±5%以内で
再現出来る。次に基板1を480℃に保ち、ヘリウムガ
スで4%希釈したモノシランガスと酸素を原料として常
圧CVD法により表面保護膜3を約1. OO0人堆積
させる。
Figure 1 shows a glass substrate 1 with a strain temperature of approximately 640°C being heated to 550°C.
Using monosilane gas diluted to 20% with helium gas as a raw material, low-pressure CVD1 was carried out at a pressure of I Torr.
12 is deposited. At this time, for example, if the size of the glass substrate 1 is 100 + m + square and the film is deposited to a thickness of 1500, the thickness distribution of the LPGVD film 2 within the substrate can be reproduced within ±5%. Next, the substrate 1 is kept at 480° C., and a surface protective film 3 is formed by about 1% by normal pressure CVD using monosilane gas diluted 4% with helium gas and oxygen as raw materials. Deposit 00 people.

次に例えばシリコンや高融点金属のタングステンやモリ
ブデン等レーザ光を透過しない厚さQ、5画描度のマス
ク4を試料上にセットする。この時マスクは試料のエツ
ジ部分から約5m程度覆うようにセットする。次に第2
図に示すようにマスクをセツトシた試料5を矢印で示す
方向に走査させなからレーザ光を照射する。レーザ光に
例えば連続光を発振するアルゴンレーザ等を用いた場合
試料のX軸方向の走査を試料基板5の外で行ない走査速
度が変化することで試料5の面内で照射条件が異なるこ
とによる再結晶化状態の変化を防ぐ。
Next, a mask 4 of silicon, high-melting point metal such as tungsten or molybdenum, which does not transmit laser light and has a thickness of Q and a drawing density of 5 is set on the sample. At this time, the mask is set so as to cover about 5 m from the edge of the sample. Then the second
As shown in the figure, the sample 5 with the mask set thereon is irradiated with laser light while being scanned in the direction indicated by the arrow. When the laser beam is, for example, an argon laser that oscillates continuous light, scanning of the sample in the X-axis direction is performed outside the sample substrate 5, and the scanning speed changes, resulting in different irradiation conditions within the plane of the sample 5. Prevents changes in recrystallization state.

又、高い繰返し周期のパルス光を発振するエキシマレー
ザ等を用いた場合パルス繰返し周期と試料5の走査速度
とを連動させ試料全面を同一数だけ照射する。繰返し周
期を遅くした場合第3図に示すように試料5の走査をス
テップ走査にし、1回に照射出来るレーザ光の照射面積
だけその発振数に合せて走査する。この時試料5のエツ
ジの部分にはレーザ光を照射しないようにする。これら
の方法により試料エツジ部分にレーザ光を照射しないよ
うにして試料エツジ部分からの膜はがれを防止する。第
4図に前述と同様に試料を作成し、その試料に例えばビ
ーム面積が10nwn角のXeCQ。
Furthermore, when using an excimer laser or the like that oscillates pulsed light with a high repetition rate, the pulse repetition rate and the scanning speed of the sample 5 are linked to irradiate the entire surface of the sample the same number of times. When the repetition period is slowed down, as shown in FIG. 3, the sample 5 is scanned in steps, and the irradiation area of the laser beam that can be irradiated at one time is scanned in accordance with the number of oscillations. At this time, the edge portion of the sample 5 is not irradiated with laser light. These methods prevent the edge of the sample from being irradiated with laser light, thereby preventing the film from peeling off from the edge of the sample. In FIG. 4, a sample was prepared in the same manner as described above, and the sample was made of, for example, XeCQ with a beam area of 10 nwn square.

をガス源とするエキシマレーザ(波長;308nm)を
用いて試料全面にレーザ光を照射した時の膜はがれの状
態を示す。試料を矢印方向に走査させた場合まずエツジ
部分で1膜はがれが生じ、込に膜はがれが生じた部分の
隣接部にレーザ光を照射した時にも膜はがれが生じてし
まい試料全面を照射した時には斜線部で示す部分で膜は
がれが生じる。この膜はがれはエツジ部分から約511
紺の範囲にレーザ光を照射しないことで防げる。シリコ
ン膜の膜はがれが生じるエネルギはシリコン膜厚によっ
て大きく変化する。第5図に前述と同様な方法で100
 on角のガラス基板上にシリコン膜厚を200〜35
00人の範囲で堆積し、保護膜を前述と同様な方法で1
000人堆積する。この試料に第4図で示す様にしてX
eCQをガス源としたエキシマレーザで基板を走査する
ことによって試料全面に各エネルギで1パルス照射した
。その試料基板の内、中央部分の20 +a角だけ切出
してX線回折強度を測定し膜厚補正したX線回折強度と
シリコン膜厚との関係を示し、更にエツジ部分と中央部
分とで膜はがれが生じる領域を示す。試料中央部での膜
はがれが生じた場合シリコン膜の量が減少することから
X線回折強度も減少している。エツジ部での膜はがれは
中央部の11!!はがれに比べ低いエネルギで生じてお
り、試料基板全体で素子を作成する際より低いエネルギ
でレーザ光を照射しなければならなくなる。しかし試料
エツジ部にレーザ光を照射しないことで中央部で膜はが
れが生じるまで照射エネルギ強度を増すことが出来る。
This figure shows the state of film peeling when the entire surface of the sample is irradiated with laser light using an excimer laser (wavelength: 308 nm) with a gas source of When the sample is scanned in the direction of the arrow, one film peels off at the edge, and when the laser beam is applied to the area adjacent to the peeled part, the film also peels off, and when the entire surface of the sample is irradiated. Film peeling occurs in the shaded area. This film peels off from the edge part about 511cm.
This can be prevented by not irradiating the dark blue area with laser light. The energy that causes the silicon film to peel varies greatly depending on the silicon film thickness. 100 in the same manner as described above in Figure 5.
A silicon film thickness of 200 to 35 mm on an on-angle glass substrate
The protective film was deposited in the same manner as described above.
000 people deposited. X the sample as shown in Figure 4.
The entire surface of the sample was irradiated with one pulse at each energy by scanning the substrate with an excimer laser using eCQ as a gas source. The X-ray diffraction intensity was measured by cutting out a 20+a angle in the center of the sample substrate, and the relationship between the X-ray diffraction intensity corrected for the film thickness and the silicon film thickness is shown. shows the area where this occurs. When the film peels off at the center of the sample, the amount of silicon film decreases, so the X-ray diffraction intensity also decreases. Film peeling at the edges is 11 in the center! ! This occurs at a lower energy than peeling, and it is necessary to irradiate the laser beam with a lower energy than when creating an element on the entire sample substrate. However, by not irradiating the edge part of the sample with laser light, the irradiation energy intensity can be increased until the film peels off in the center part.

第6図には前述と同様にして減圧CVD膜を1500人
堆積した後書エネルギでレーザ光を照射した後TPTを
形成した時のレーザのエネルギと移動度との相関を示す
。レーザ光強度を増せばTPT特性は向上しており、試
料エツジ部での膜はがれを防ぎ、更に高いエネルギでレ
ーザ光を照射することで特性の良いTPTを形成するこ
とが出来る。
FIG. 6 shows the correlation between the laser energy and the mobility when a TPT was formed after irradiating laser light at the same energy after depositing 1500 low pressure CVD films in the same manner as described above. Increasing the laser beam intensity improves the TPT characteristics, prevents film peeling at the edge of the sample, and irradiates the laser beam with even higher energy to form TPT with better characteristics.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レーザ照射による基板エツジ部分から
の償はがれを防ぐことが出来、基板中央部で膜はがれが
生じるまで照射エネルギを大きくすることが出来るので
Po1y −S i膜の結晶性を向上させTPTの特性
も向上させることが出来る。
According to the present invention, it is possible to prevent the peeling off from the edge portion of the substrate due to laser irradiation, and the irradiation energy can be increased until the film peels off at the center of the substrate, thereby improving the crystallinity of the Po1y-Si film. The characteristics of TPT can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザ照射時の試料とマスクの断面図
、第2図、第3図は試料をレーザ照射側からの状態と試
料の走査方向を示す図、第4図は試料エツジの部分にも
レーザ光を照射した時の収はがれが生じる領域を示す図
、第5図はPo1y−Siの膜厚とX線回折強度を15
00人の膜厚で換算した結果を照射したレーザ光のエネ
ルギ別及び膜はがれの領域を示す図、第6図はレーザ照
射エネルギとTPT特性との関係を示す図である。 1・・・ガラス基板、2・・・LPGVD膜、3・・・
Si○2保護膜、4・・・レーザ遮断マスク、5・・・
試料。
Fig. 1 is a cross-sectional view of the sample and mask during laser irradiation according to the present invention, Figs. 2 and 3 are views showing the state of the sample from the laser irradiation side and the scanning direction of the sample, and Fig. 4 is a view of the sample edge. Figure 5 shows the area where convergence occurs when the laser beam is irradiated on the part.
FIG. 6 is a diagram showing the relationship between the laser irradiation energy and the TPT characteristics. 1...Glass substrate, 2...LPGVD film, 3...
Si○2 protective film, 4... laser blocking mask, 5...
sample.

Claims (1)

【特許請求の範囲】 1、レーザ光によつて基板上に用いた薄膜半導体装置を
アニールする方法において試料のエッジ部分にレーザ光
を照射させないことでレーザ照射による膜はがれを防止
することを特徴とするレーザアニール方法。 2、レーザ光面積より試料が広い場合、あるいは連続発
振、あるいは高い繰返し周波数を持つたレーザ光源を使
用する場合、試料基板上のエッジ部の所定の場所にレー
ザ光を透過しないマスクを設けることを特徴とする特許
請求の範囲第1項記載のレーザアニール方法。 3、パルスレーザ光源を使用する場合、繰返し周期と試
料基板の移動を連動させエッジ部分を避けて試料、ある
いはレーザ光を移動させることを特徴とする特許請求の
範囲第1項記載のレーザアニール方法。
[Claims] 1. In a method of annealing a thin film semiconductor device used on a substrate with laser light, the method is characterized in that film peeling due to laser irradiation is prevented by not irradiating the edge portion of the sample with the laser light. Laser annealing method. 2. If the sample is wider than the laser beam area, or if a continuous wave or high repetition frequency laser light source is used, it is recommended to install a mask at a predetermined location on the edge of the sample substrate that does not transmit the laser beam. A laser annealing method according to claim 1, characterized in that: 3. When using a pulsed laser light source, the laser annealing method according to claim 1 is characterized in that the repetition period and the movement of the sample substrate are linked to move the sample or the laser beam while avoiding the edge portions. .
JP34589A 1989-01-06 1989-01-06 Laser anneal method Pending JPH02181419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34589A JPH02181419A (en) 1989-01-06 1989-01-06 Laser anneal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34589A JPH02181419A (en) 1989-01-06 1989-01-06 Laser anneal method

Publications (1)

Publication Number Publication Date
JPH02181419A true JPH02181419A (en) 1990-07-16

Family

ID=11471269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34589A Pending JPH02181419A (en) 1989-01-06 1989-01-06 Laser anneal method

Country Status (1)

Country Link
JP (1) JPH02181419A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022173A1 (en) * 1993-03-23 1994-09-29 Tdk Corporation Solid state imaging device and process for production thereof
US5982460A (en) * 1996-06-25 1999-11-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display
US6115088A (en) * 1996-09-04 2000-09-05 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2003059831A (en) * 2001-08-17 2003-02-28 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2003133254A (en) * 2001-08-10 2003-05-09 Semiconductor Energy Lab Co Ltd Laser annealing device and manufacturing method of thin film transistor using the same
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US6638800B1 (en) 1992-11-06 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6808969B2 (en) 2001-10-30 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
JP2004343092A (en) * 2003-04-21 2004-12-02 Semiconductor Energy Lab Co Ltd Beam irradiation apparatus, beam irradiation method, and method of manufacturing thin film transistor
US6897889B2 (en) 2001-11-30 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP2006216980A (en) * 1996-02-15 2006-08-17 Semiconductor Energy Lab Co Ltd Process for fabricating semiconductor device
US7105048B2 (en) 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7132375B2 (en) 2001-08-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate
US7138306B2 (en) 2001-09-25 2006-11-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US7468312B2 (en) 2001-11-09 2008-12-23 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
US7863541B2 (en) 2001-08-10 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Laser annealing apparatus and semiconductor device manufacturing method
US7915099B2 (en) 2003-04-21 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device
JP2013510443A (en) * 2009-11-03 2013-03-21 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System and method for partial dissolution membrane treatment with non-periodic pulses

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638800B1 (en) 1992-11-06 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process
US5574293A (en) * 1993-03-23 1996-11-12 Tdk Corp. Solid state imaging device using disilane
US5591988A (en) * 1993-03-23 1997-01-07 Tdk Corporation Solid state imaging device with low trap density
WO1994022173A1 (en) * 1993-03-23 1994-09-29 Tdk Corporation Solid state imaging device and process for production thereof
JP2006216980A (en) * 1996-02-15 2006-08-17 Semiconductor Energy Lab Co Ltd Process for fabricating semiconductor device
US6246453B1 (en) 1996-06-25 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6914260B2 (en) 1996-06-25 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US5982460A (en) * 1996-06-25 1999-11-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display
US7542103B2 (en) 1996-06-25 2009-06-02 Semiconductor Energy Laboratory Electro-optical device
US7206053B2 (en) 1996-06-25 2007-04-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6115088A (en) * 1996-09-04 2000-09-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US7863618B2 (en) 1996-09-04 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Display device
US7646022B2 (en) 1996-09-04 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Display device
US8586985B2 (en) 1996-09-04 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. Display device
US7023502B2 (en) 1996-09-04 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having light-shielded thin film transistor
US7046313B2 (en) 1996-09-04 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a source line formed on interlayer insulating film having flattened surface
US8536577B2 (en) 1996-09-04 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Display device
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7679800B2 (en) 2001-07-30 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US8035877B2 (en) 2001-07-30 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US7218431B2 (en) 2001-07-30 2007-05-15 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US7863541B2 (en) 2001-08-10 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Laser annealing apparatus and semiconductor device manufacturing method
JP2003133254A (en) * 2001-08-10 2003-05-09 Semiconductor Energy Lab Co Ltd Laser annealing device and manufacturing method of thin film transistor using the same
US7393729B2 (en) 2001-08-17 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
US7109073B2 (en) 2001-08-17 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
JP2003059831A (en) * 2001-08-17 2003-02-28 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7422987B2 (en) 2001-08-30 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7132375B2 (en) 2001-08-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate
US7682949B2 (en) 2001-09-10 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US7138306B2 (en) 2001-09-25 2006-11-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US10366885B2 (en) 2001-09-25 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US9748099B2 (en) 2001-09-25 2017-08-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US8686315B2 (en) 2001-09-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US10910219B2 (en) 2001-09-25 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7943885B2 (en) 2001-09-25 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing semiconductor device
US7892952B2 (en) 2001-10-30 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US7300516B2 (en) 2001-10-30 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US7037809B2 (en) 2001-10-30 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device using a laser irradiation process
US6808969B2 (en) 2001-10-30 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US7468312B2 (en) 2001-11-09 2008-12-23 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US8696808B2 (en) 2001-11-27 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US6897889B2 (en) 2001-11-30 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
US7445974B2 (en) 2001-11-30 2008-11-04 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
US7105048B2 (en) 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8093593B2 (en) 2001-12-21 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multichannel transistor
US7560660B2 (en) 2002-06-14 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
US7915099B2 (en) 2003-04-21 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device
JP4503343B2 (en) * 2003-04-21 2010-07-14 株式会社半導体エネルギー研究所 Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor
JP2004343092A (en) * 2003-04-21 2004-12-02 Semiconductor Energy Lab Co Ltd Beam irradiation apparatus, beam irradiation method, and method of manufacturing thin film transistor
JP2013510443A (en) * 2009-11-03 2013-03-21 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System and method for partial dissolution membrane treatment with non-periodic pulses

Similar Documents

Publication Publication Date Title
JPH02181419A (en) Laser anneal method
US5312771A (en) Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer
US5365875A (en) Semiconductor element manufacturing method
US5077233A (en) Method for recrystallizing specified portions of a non-crystalline semiconductor material to fabricate a semiconductor device therein
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
TW515101B (en) Method for fabrication of field-effect transistor
JPH01187814A (en) Manufacture of thin film semiconductor device
US7271041B2 (en) Method for manufacturing thin film transistor
JP3149450B2 (en) Method and apparatus for manufacturing thin film transistor
US6537864B1 (en) Method of fabricating a thin film transistor using electromagnetic wave heating of an amorphous semiconductor film
JPH02148831A (en) Laser annealing method
JP2935446B2 (en) Semiconductor device
JP3281431B2 (en) Thin film transistor
JPS63299322A (en) Formation of single crystal silicon film
JPH07326769A (en) Plane display use thin film transistor
JP3203706B2 (en) Method for annealing semiconductor layer and method for manufacturing thin film transistor
JP3146702B2 (en) Method for manufacturing thin film transistor
JPH04120738A (en) Manufacture of thin-film transistor
JPS6230314A (en) Manufacture of crystalline semiconductor thin film
JP2709376B2 (en) Method for manufacturing non-single-crystal semiconductor
JP3210313B2 (en) Method for improving characteristics of polycrystalline silicon thin film
JPH04340724A (en) Manufacture of thin film transistor
JPH0574704A (en) Semiconductor layer forming method
JPH04212410A (en) Light annealing method for semiconductor layer and forming method for semiconductor device
JPS6185815A (en) Method for formation of polycrystalline silicon film