JPS60229330A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60229330A
JPS60229330A JP59084016A JP8401684A JPS60229330A JP S60229330 A JPS60229330 A JP S60229330A JP 59084016 A JP59084016 A JP 59084016A JP 8401684 A JP8401684 A JP 8401684A JP S60229330 A JPS60229330 A JP S60229330A
Authority
JP
Japan
Prior art keywords
polycrystalline
amorphous silicon
insulating film
oxide film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59084016A
Other languages
Japanese (ja)
Inventor
Toru Kaga
徹 加賀
Takaaki Hagiwara
萩原 隆旦
Katsutada Horiuchi
勝忠 堀内
Hitoshi Kume
久米 均
Yasuo Igura
井倉 康雄
Akihiro Shimizu
昭博 清水
Osamu Okura
理 大倉
Kikuo Kusukawa
喜久雄 楠川
Masanobu Miyao
正信 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP59084016A priority Critical patent/JPS60229330A/en
Publication of JPS60229330A publication Critical patent/JPS60229330A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To check deterioration of quality of a thin oxide film at a semiconductor device by a method wherein a heat reflecting or a heat absorbing material is provided selectively only on the upper part of an amorphous or a polycrystalline silicon layer on a thin insulating film region, and the insulating film region thereof is thermally shielded. CONSTITUTION:An oxide film 2 of 0.4mum thickness is formed on a part of a single crystal silicon substrate 1. After then, a thin oxide film 3 of 20nm thickness is formed on the region not covered with the oxide film 2. Then, after a part of the oxide film 3 is etched, a polycrystalline silicon film 5 of 0.4mum thickness is formed on the whole surface according to thermal decomposition of SiH4. Then after a tungsten film 6 of 0.2mum thickness is formed, the tungsten film at the part excluding on the oxide film 3 region is etched. Then a laser beam 7 is projected by performing scanning to convert the silicon layer 5 into a single crystal layer. The silicon layer excluding the part on the oxide film 3 region is molten once, and at resolidifying time, the region excluding on the oxide film 3 is converted into a single crystal layer.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はS OI (Silicon On Inan
lator)製造技術に係わる。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to SOI (Silicon On Inan)
(lator) related to manufacturing technology.

〔発明の背景〕[Background of the invention]

SOI技術の1つであるブリッジングエビタキシー法は
、単結晶基板上の一部に絶縁膜領域を設け、この上に形
成した多結晶もしくは非結晶シリコン層をエネルギービ
ームの照射により融解せしめ、再固化時に結晶成長が単
結晶基板上部から横方向へ進むことを利用したものであ
る。この方法は、多結晶又は非結質シリコンを高温融解
させるために、下地絶縁膜が薄い場合には、該絶縁膜を
融解せしめ、あるいは著しく絶縁膜の絶縁性を劣化させ
る等の欠点があった。
The bridging epitaxy method, which is one of the SOI technologies, involves forming an insulating film region on a part of a single-crystal substrate, melting the polycrystalline or amorphous silicon layer formed thereon by irradiating it with an energy beam, and then regenerating it. This method takes advantage of the fact that crystal growth progresses laterally from the top of the single crystal substrate during solidification. This method melts polycrystalline or non-crystalline silicon at a high temperature, so if the underlying insulating film is thin, it has the disadvantage of melting the insulating film or significantly deteriorating the insulation properties of the insulating film. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の問題を解決し、一部に薄い
部分を有する絶縁膜上であったも、薄い絶縁膜膜質を劣
化させることなくSOI層を形成し得る半導体装置の製
造方法を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for manufacturing a semiconductor device in which an SOI layer can be formed on an insulating film having a thin portion without deteriorating the quality of the thin insulating film. It is about providing.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、咳薄い絶縁膜領域上の非晶質
もしくは多結晶シリコン上部のみ選択的に、熱反射性も
しくは吸熱性材料を設け、該絶縁膜領域を熱的に5hi
eldする。
In order to achieve the above object, a heat reflective or heat absorbing material is selectively provided only on the upper part of the amorphous or polycrystalline silicon on the thin insulating film region, and the insulating film region is thermally
eld.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の第1の実施例を第1図により説明する。 A first embodiment of the present invention will be described below with reference to FIG.

まず、単結晶シリコン(100)基板1上の一部にLO
CO5酸化法により厚さ0.4 μmの酸化膜2を形成
した。この後、酸化膜2に覆われていない領域上に熱酸
化法により厚さ20nmの薄い酸化膜3を形成した。つ
ぎに薄い酸化膜3の一部をエツチングした(領域4)後
、5i)1.の熱分解により厚さ0.4 μmの多結晶
シリコン膜5を全面に形成した。つきに、スパッタ法に
より厚さ0.2 μmのタングステン6を形成した後、
王水により、薄い酸化膜3領域上を除く部分のタングス
テンをエツチングした。つぎに、連続発振アルゴンイオ
ンレーザ−光7を図のように走査しながら照射し、上記
多結晶シリコン層5の単結晶化を行った。照射条件は、
試料基板温度を500℃とし、ビーム直径10〜100
μm、照射パワー5〜15W、ビーム走査速度1−10
0cm+/8とした。この照射によって、薄い酸化膜3
領域上を除く多結晶シリコン層が一旦融解し、再固化過
程に於て単結晶成長が基板表面4から酸化膜2上の領域
へと横方向に進み、薄い酸化膜3上を除く領域が単結晶
化された。この時、薄い酸化膜3は変化を受けなかった
First, LO is placed on a part of the single crystal silicon (100) substrate 1.
An oxide film 2 having a thickness of 0.4 μm was formed by a CO5 oxidation method. Thereafter, a thin oxide film 3 with a thickness of 20 nm was formed on the region not covered by the oxide film 2 by thermal oxidation. Next, after etching a part of the thin oxide film 3 (region 4), 5i) 1. A polycrystalline silicon film 5 having a thickness of 0.4 μm was formed on the entire surface by thermal decomposition. At the same time, after forming tungsten 6 with a thickness of 0.2 μm by sputtering,
Tungsten was etched with aqua regia except for the area on the thin oxide film 3. Next, continuous wave argon ion laser light 7 was irradiated while scanning as shown in the figure, thereby converting the polycrystalline silicon layer 5 into a single crystal. The irradiation conditions are
The sample substrate temperature was 500℃, and the beam diameter was 10 to 100℃.
μm, irradiation power 5-15W, beam scanning speed 1-10
It was set to 0cm+/8. By this irradiation, the thin oxide film 3
The polycrystalline silicon layer except on the region is once melted, and during the resolidification process, single crystal growth progresses laterally from the substrate surface 4 to the region on the oxide film 2, and the region except on the thin oxide film 3 becomes monocrystalline. crystallized. At this time, the thin oxide film 3 did not undergo any change.

次に、本発明の第2の実施例を第2図により説明する。Next, a second embodiment of the present invention will be described with reference to FIG.

第1の実施例と同じく、Si+14の熱分解により厚さ
0.4 μmの多結晶シリコン層5の形成までの工程を
行った後、上記多結晶シリコン上にνat酸化法により
厚さ0.2 μmの酸化膜8を形成した。その後、再度
SiH4の熱分解により厚さ0.4μmの単結晶シリコ
ン層9を形成し、薄い酸化膜3上を除く領域の多結晶シ
リコン層9をμ波プラズマエツチング法によりエツチン
グした。その後。
As in the first embodiment, after performing the steps up to the formation of a polycrystalline silicon layer 5 with a thickness of 0.4 μm by thermal decomposition of Si+14, a 0.2 μm thick polycrystalline silicon layer 5 is formed on the polycrystalline silicon by the νat oxidation method. An oxide film 8 having a thickness of μm was formed. Thereafter, a single crystal silicon layer 9 having a thickness of 0.4 .mu.m was formed again by thermal decomposition of SiH4, and the polycrystalline silicon layer 9 in the region excluding the thin oxide film 3 was etched by a microwave plasma etching method. after that.

第1の実施例と同じレーザーを用い、又同じ照射条件が
図の様な走査でレーザー照射を行った。この照射によっ
て薄い酸化膜3領域上を除く多結晶シリコン5と、薄い
酸化膜3領域上に残された多結晶シリコン層9が一旦融
解し、再固化過程に於て単結晶成長が基板表面4から酸
化膜2上の領域へと横方向に進み薄い酸化膜3上に除く
領域の多結晶シリコン5が単結晶化され、薄い酸化膜3
上の多結晶シリコン9の粒径成長がみられた。この時、
薄い酸化膜3は変化しなかった。
Laser irradiation was performed using the same laser as in the first example and under the same irradiation conditions as shown in the figure. By this irradiation, the polycrystalline silicon 5 excluding the thin oxide film 3 region and the polycrystalline silicon layer 9 left on the thin oxide film 3 region are once melted, and during the re-solidification process, single crystal growth occurs on the substrate surface 4. The polycrystalline silicon 5 in the area except for the area on the thin oxide film 3 is turned into a single crystal by proceeding laterally to the area on the oxide film 2, and the thin oxide film 3
Grain size growth of the polycrystalline silicon 9 above was observed. At this time,
The thin oxide film 3 remained unchanged.

以上2つの実施例では、単結晶化にアルゴンインオレー
ザーを用いたが1本発明の効果はこれに限定されず、電
子線、ストリップヒータ等による局所加熱を用いれば良
い、また実施例1においてはタングステン、実施例2に
おいては単結晶シリコンを用いて該領域下の多結晶シリ
コンの融解単結晶化を防止したが、前者の代わりにモリ
ブデン等高融点金属あるいはその他、熱エネルギー(又
は電子線)反射効果の高い材料、また後者の代わりとし
ては、非晶質シリコン等吸熱効果の高い材料に置換えて
も本実施例と同様の効果のが得られる。
In the above two examples, an argon in-o laser was used for single crystallization, but the effects of the present invention are not limited to this, and local heating with an electron beam, a strip heater, etc. may be used. In Example 2, single crystal silicon was used to prevent the melting and single crystallization of polycrystalline silicon under the region, but instead of the former, high melting point metal such as molybdenum or other thermal energy (or electron beam) was used. The same effect as in this embodiment can be obtained by replacing the material with a material having a high reflective effect, or by replacing the latter with a material having a high heat absorption effect such as amorphous silicon.

また、本実施例は薄い酸化膜3を保護することを目的と
したものであるが、第3図に示す様に、単結晶化をしよ
うとする多結晶シリコン5の一部に高濃度不純物領域1
0がある場合、該不純物領域10上にタングステン等熱
反射性材料あるいは絶縁膜を介して多結晶シリコン等の
吸熱性材料6を形成後、レーザー照射することにより、
該不純物領域の不純物を拡散させることなく、該不純物
領域を除く多結晶シリコン領域5を融解単結晶化する効
果も有する。このように、熱を加えたくない領域に対し
、レーザー照射時の熱シールドという効果に対し本発明
は有効である。
Furthermore, although this embodiment is intended to protect the thin oxide film 3, as shown in FIG. 1
0, by forming a heat absorbing material 6 such as polycrystalline silicon on the impurity region 10 via a heat reflective material such as tungsten or an insulating film, and then irradiating it with a laser.
It also has the effect of melting and converting the polycrystalline silicon region 5 except the impurity region into a single crystal without diffusing the impurity in the impurity region. As described above, the present invention is effective in providing a heat shielding effect during laser irradiation in areas to which heat should not be applied.

本実施例中の酸化膜2及び3は基本的には絶縁膜であれ
ば良く、Si02に限定するものではない。
The oxide films 2 and 3 in this embodiment basically need only be insulating films, and are not limited to Si02.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、酸化膜上の多結晶もしくは非晶質シリ
コンのうち、下地酸化膜が薄い部分だけを選択的に覆っ
て融解単結晶化するため、該薄酸化膜膜質を劣化させる
ことがない。これにより、S OI (Silicon
 On In、5ulator)層を積層するとき下地
の影響を考えなくて済み、高自由度の設計が可能となる
According to the present invention, the base oxide film selectively covers only the thin portions of the polycrystalline or amorphous silicon on the oxide film and melts them into single crystals, so that the quality of the thin oxide film is not deteriorated. do not have. This allows SOI (Silicon
When laminating layers (on-in, 5 ulator), there is no need to consider the influence of the underlying layer, allowing for a high degree of freedom in design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例を示す断面図、第2図は第2の実
施例を示す断面図、第3図はその他の実施例を示す断面
図である。 1・・・単結晶シリコン基板、2・・・酸化膜、3・・
・薄い酸化膜、4・・・薄い酸化膜がエッチオフされた
領域、5・・・多結晶シリコン膜、6・・・タングステ
ン、7・・・連続発振アルゴンイオンレーザ−光、8・
・・酸化膜、第 1 図
FIG. 1 is a sectional view showing a first embodiment, FIG. 2 is a sectional view showing a second embodiment, and FIG. 3 is a sectional view showing another embodiment. 1... Single crystal silicon substrate, 2... Oxide film, 3...
・Thin oxide film, 4...A region where the thin oxide film is etched off, 5...Polycrystalline silicon film, 6...Tungsten, 7...Continuous wave argon ion laser light, 8.
...Oxide film, Figure 1

Claims (1)

【特許請求の範囲】 1、半導体基板の露出された表面と上記半導体基板上に
被着された絶縁膜を連続して覆う多結晶もしくは非結晶
シリコン膜をレーザ・−光、電子線等のビームエネルギ
ーの照射、あるいは線状ヒータ等による局所加熱融解に
よって単結晶化させる方法において、上記多結晶もしく
は非結晶シリコン膜上の一部にタングステン、モリブデ
ン等の高融点金属あるいは他の反射効果の高い材料を被
着することにより、加熱時にエネルギービームもしくは
ヒータによる熱エネルギーを反射あるいは散乱させ該高
融点金属領域下の多結晶もしくは非結晶シリコンが融解
単結晶化されないことを特徴とする半導体装置の製造方
法。 2、多結晶もしくは非結晶シリコン膜上の一部にタング
ステン、モリブデン等の高融点金属あるいは他の反射効
果の高い材料を被着する場合において、両者の間に絶縁
膜があることは特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法。 3、多結晶もしくは非結晶シリコン膜上の一部に絶縁膜
を介して多結晶もしくは非結晶シリコン層あるいは他の
吸熱性の高い材料を被着することにより、加熱時にエネ
ルギービームもしくはヒータによる熱エネルギーを吸収
し該エネルギー吸収剤下の多結晶もしくは非結晶シリコ
ンが融解単結晶化されないことを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。 4、半導体基板の露出された表面と上記半導体基板上に
被着されている電界効果トランジスタのゲート絶縁膜と
なる薄い絶縁膜及び素子分離用の厚い絶縁膜を連続して
覆う多結晶もしくは非結晶シリコン膜をレーザー光、電
子線等のビームエネルギーの照射、あるいは線状ヒータ
等による局所加熱融解によって単結晶化させる方法にお
いて、少なくとも前記ゲート絶縁膜上の多結晶もしくは
非結晶シリコン膜上にタングステン、モリブデン等の高
融点金属あるいは他の反射効果の高い材料を選択的に被
着することにより、加熱時にエネルギービームもしくは
ヒータによる熱エネルギーを反射あるいは散乱させ該高
融点金属領域下の多結晶もしくは非結晶シリコンが融解
単結晶化されないことを特徴とする特許請求の範囲第1
項記載の半導体装置の製造方法。 5、多結晶もしくは非結晶シリコン膜上の一部にタング
ステン、モリブデン等の高融点金属あるいは他の反射効
果の高い材料を被着する場合において、両者の間に絶縁
膜があることを特徴とする特許請求の範囲第4項記載の
半導体装置の製造方法6 6、多結晶もしくは非結晶シリコン膜上の一部に絶縁膜
を介して多結晶もしくは非結晶シリコン層あるいは他の
吸熱性の高い材料を被着することにより、加熱時にエネ
ルギービームもしくはヒータによる熱エネルギーを吸収
し、該エネルギー吸収剤下の多結晶もしくは非結晶シリ
コンが融解単結晶化されないことを特徴とする特許請求
の範囲第4項記載の半導体装置の製造方法。
[Claims] 1. A polycrystalline or amorphous silicon film that continuously covers the exposed surface of the semiconductor substrate and the insulating film deposited on the semiconductor substrate is exposed to a beam of laser light, electron beam, etc. In the method of single crystallization by energy irradiation or local heating melting using a linear heater, etc., a part of the polycrystalline or amorphous silicon film is coated with a high melting point metal such as tungsten or molybdenum, or other material with a high reflective effect. A method for manufacturing a semiconductor device, characterized in that by depositing a metal, thermal energy from an energy beam or a heater is reflected or scattered during heating so that polycrystalline or amorphous silicon under the high melting point metal region is not melted into a single crystal. . 2. When a high melting point metal such as tungsten or molybdenum or other highly reflective material is deposited on a part of a polycrystalline or amorphous silicon film, the feature is that there is an insulating film between the two. A method for manufacturing a semiconductor device according to claim 1. 3. By depositing a polycrystalline or amorphous silicon layer or other highly heat-absorbing material on a part of the polycrystalline or amorphous silicon film via an insulating film, thermal energy from an energy beam or heater can be applied during heating. 2. The method of manufacturing a semiconductor device according to claim 1, wherein polycrystalline or amorphous silicon under the energy absorber is not melted into single crystal. 4. Polycrystalline or amorphous material that continuously covers the exposed surface of the semiconductor substrate, the thin insulating film that serves as the gate insulating film of the field effect transistor, and the thick insulating film for element isolation that is deposited on the semiconductor substrate. In a method in which a silicon film is made into a single crystal by irradiation with beam energy such as a laser beam or an electron beam, or by local heating and melting using a linear heater, tungsten, By selectively depositing a high melting point metal such as molybdenum or other highly reflective material, the thermal energy from the energy beam or heater can be reflected or scattered during heating to form polycrystalline or non-crystalline areas under the high melting point metal region. Claim 1 characterized in that silicon is not melted into single crystals.
A method for manufacturing a semiconductor device according to section 1. 5. When a high melting point metal such as tungsten or molybdenum or other highly reflective material is deposited on a part of the polycrystalline or amorphous silicon film, there is an insulating film between the two. 6. Method for manufacturing a semiconductor device according to claim 4 6. A polycrystalline or amorphous silicon layer or other highly heat-absorbing material is formed on a portion of the polycrystalline or amorphous silicon film via an insulating film. Claim 4, characterized in that by adhering, thermal energy from an energy beam or a heater is absorbed during heating, and the polycrystalline or amorphous silicon under the energy absorbing agent is not melted into a single crystal. A method for manufacturing a semiconductor device.
JP59084016A 1984-04-27 1984-04-27 Manufacture of semiconductor device Pending JPS60229330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59084016A JPS60229330A (en) 1984-04-27 1984-04-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59084016A JPS60229330A (en) 1984-04-27 1984-04-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60229330A true JPS60229330A (en) 1985-11-14

Family

ID=13818768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59084016A Pending JPS60229330A (en) 1984-04-27 1984-04-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60229330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423521A (en) * 1987-07-20 1989-01-26 Agency Ind Science Techn Protective film for recrystallization treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423521A (en) * 1987-07-20 1989-01-26 Agency Ind Science Techn Protective film for recrystallization treatment

Similar Documents

Publication Publication Date Title
EP0127323B1 (en) A process for producing a single crystal semiconductor island on an insulator
JPS6281709A (en) Manufacture of semiconductor device
US4737233A (en) Method for making semiconductor crystal films
JPS62132311A (en) Recrystallizing method for conductor film
JPH0588544B2 (en)
JPH027415A (en) Formation of soi thin film
JP2709591B2 (en) Method for manufacturing recrystallized semiconductor thin film
JPS60229330A (en) Manufacture of semiconductor device
JPS6018913A (en) Manufacture of semiconductor device
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPH0282519A (en) Solid phase epitaxy method
JPS61135110A (en) Manufacture of semiconductor device
JPS5928328A (en) Preparation of semiconductor device
JP2929660B2 (en) Method for manufacturing semiconductor device
JPS6237922A (en) Semiconductor substrate
JPS61102723A (en) Manufacture of semiconductor device
JP2692138B2 (en) Manufacturing method of single crystal thin film
JPH03292717A (en) Manufacture of crystalline semiconductor thin film
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JPS62219510A (en) Formation of single crystal island region
JPS6126598A (en) Preparation of germanium thin film crystal
JPH03138925A (en) Semiconductor-film crystallizing method
JPS5939023A (en) Manufacture of semiconductor thin film
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS5919312A (en) Manufacture of semiconductor device