JPH06140323A - Method of crystallizing semiconductor film - Google Patents

Method of crystallizing semiconductor film

Info

Publication number
JPH06140323A
JPH06140323A JP30795792A JP30795792A JPH06140323A JP H06140323 A JPH06140323 A JP H06140323A JP 30795792 A JP30795792 A JP 30795792A JP 30795792 A JP30795792 A JP 30795792A JP H06140323 A JPH06140323 A JP H06140323A
Authority
JP
Japan
Prior art keywords
thin film
temperature range
amorphous silicon
crystals
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30795792A
Other languages
Japanese (ja)
Inventor
Eiichi Onaka
栄一 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP30795792A priority Critical patent/JPH06140323A/en
Publication of JPH06140323A publication Critical patent/JPH06140323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge the grain size of polysiscon film. CONSTITUTION:An amorphous film 13 is inadiated with excimer laser through a diffractive optical element 14. The diffractive optical element 14 is equipped with two parallel slits 14a. The excimer laser, when passing through a slit 14a, changes into a coaxial circular wave (diffractive wave). In this case, the coaxial waves from the two slits (light sources) 14a interfere with each other, and the maximum value of the amplitude occurs periodically on the surface of the amorphous silicon film 13. Therefore, the temperature distribution of the amorphous silicon film 13 within the irradiation range of a laser diffracted light becomes one which has high-temperature range and a low temperature range. As a result, the growth speed of crystals from the nuclei of crystals existing in high-temperature range becomes larger than the growth speed of the crystals from the nuclei of crystals existing in the low temperature range, and the crystal grains having grown from the high-temperature range widens to the low-temperature range, and the grain size becomes large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体薄膜の結晶化方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor thin film crystallization method.

【0002】[0002]

【従来の技術】例えばアモルファスシリコン薄膜を結晶
化して薄膜トランジスタを製造する方法には、図2
(A)に示すように、ガラス基板1の上面に酸化シリコ
ンからなる下地絶縁膜2を形成し、この下地絶縁膜2の
上面にアモルファスシリコン薄膜3を形成し、このアモ
ルファスシリコン薄膜3にエキシマレーザを照射するこ
とにより該アモルファスシリコン薄膜3を結晶化してポ
リシリコン薄膜4とし、このポリシリコン薄膜4を素子
分離して薄膜トランジスタ形成領域を形成する方法があ
る。この場合、エキシマレーザのスポットサイズが直径
数mm程度とかなり小さいので、エキシマレーザをx方
向にスキャンさせてアモルファスシリコン薄膜3全体を
照射するようにしている。
2. Description of the Related Art For example, a method for manufacturing a thin film transistor by crystallizing an amorphous silicon thin film is described in FIG.
As shown in (A), a base insulating film 2 made of silicon oxide is formed on the upper surface of a glass substrate 1, an amorphous silicon thin film 3 is formed on the upper surface of the base insulating film 2, and an excimer laser is formed on the amorphous silicon thin film 3. There is a method in which the amorphous silicon thin film 3 is crystallized into a polysilicon thin film 4 by irradiating with, and the polysilicon thin film 4 is separated into elements to form a thin film transistor forming region. In this case, since the spot size of the excimer laser is as small as about several mm in diameter, the excimer laser is scanned in the x direction to irradiate the entire amorphous silicon thin film 3.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
このような半導体薄膜の結晶化方法では、エキシマレー
ザを照射された直径数mmの範囲内におけるアモルファ
スシリコン薄膜3がほぼ均等に加熱され、このため図2
(B)に示すように、レーザ照射範囲内におけるアモル
ファスシリコン薄膜3の温度分布がほぼ均等となり、こ
の結果レーザ照射範囲内におけるアモルファスシリコン
薄膜3中に存在する結晶核から非選択的に結晶粒が成長
するが、非選択的であるので結晶成長がすぐに飽和して
しまい、したがってグレインサイズの大きなポリシリコ
ン薄膜4を得ることができないという問題があった。こ
の発明の目的は、グレインサイズを大きくすることので
きる半導体薄膜の結晶化方法を提供することにある。
However, in such a conventional method for crystallizing a semiconductor thin film, the amorphous silicon thin film 3 within a range of a few mm in diameter irradiated with an excimer laser is heated almost uniformly, which is why Figure 2
As shown in (B), the temperature distribution of the amorphous silicon thin film 3 within the laser irradiation range becomes substantially uniform, and as a result, crystal grains are non-selectively selected from the crystal nuclei present in the amorphous silicon thin film 3 within the laser irradiation range. Although it grows, there is a problem in that the crystal growth is saturated immediately because it is non-selective, so that the polysilicon thin film 4 having a large grain size cannot be obtained. An object of the present invention is to provide a method of crystallizing a semiconductor thin film which can increase the grain size.

【0004】[0004]

【課題を解決するための手段】この発明は、レーザを回
折現象を生じさせるための回折光学素子を介して半導体
薄膜に照射し、これにより前記半導体薄膜を結晶化する
ようにしたものである。
According to the present invention, a semiconductor thin film is irradiated with a laser beam through a diffractive optical element for producing a diffraction phenomenon, whereby the semiconductor thin film is crystallized.

【0005】[0005]

【作用】この発明によれば、レーザの回折光が半導体薄
膜に照射されることになるので、レーザ回折光照射範囲
内における半導体薄膜に温度差が生じ、このため高温領
域の半導体薄膜中に存在する結晶核からの結晶成長速度
が低温領域の半導体薄膜中に存在する結晶核からの結晶
成長速度よりも速くなり、高温領域から成長した結晶粒
が低温領域まで広がることとなり、したがってグレイン
サイズを大きくすることができる。
According to the present invention, since the semiconductor thin film is irradiated with the diffracted light of the laser, a temperature difference occurs in the semiconductor thin film within the irradiation range of the laser diffracted light, so that the semiconductor thin film exists in the high temperature region. The crystal growth rate from the crystal nuclei becomes faster than the crystal growth rate from the crystal nuclei existing in the semiconductor thin film in the low temperature region, and the crystal grains grown from the high temperature region spread to the low temperature region, thus increasing the grain size. can do.

【0006】[0006]

【実施例】図1(A)はこの発明の一実施例における半
導体薄膜の結晶化方法を説明するために示す断面図であ
る。この半導体薄膜の結晶化方法では、まず、ガラス基
板11の上面に酸化シリコンからなる下地絶縁膜12を
1000Å程度の厚さに堆積し、次いでその上面にアモ
ルファスシリコン薄膜13を500Å程度の厚さに堆積
する。次に、波長308nmのXeClエキシマレーザ
をx方向にスキャンさせながら回折光学素子14を介し
て照射すると、次に詳述するように、アモルファスシリ
コン薄膜13が結晶化してポリシリコン薄膜15とな
る。回折光学素子14は、回折現象を生じさせるための
もので、平行な2つのスリット14aを備え、エキシマ
レーザのx方向へのスキャンに同期して同方向に移動さ
れるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a sectional view shown for explaining a method of crystallizing a semiconductor thin film in an embodiment of the present invention. In this semiconductor thin film crystallization method, first, a base insulating film 12 made of silicon oxide is deposited on the upper surface of a glass substrate 11 to a thickness of about 1000 Å, and then an amorphous silicon thin film 13 is formed on the upper surface to a thickness of about 500 Å. accumulate. Next, when a XeCl excimer laser having a wavelength of 308 nm is irradiated through the diffractive optical element 14 while scanning in the x direction, the amorphous silicon thin film 13 is crystallized to become a polysilicon thin film 15, as described in detail below. The diffractive optical element 14 is for generating a diffraction phenomenon, has two parallel slits 14a, and is moved in the same direction in synchronization with scanning of the excimer laser in the x direction.

【0007】ここで、アモルファスシリコン薄膜13の
結晶化について説明する。回折光学素子14のスリット
14aを通る前のエキシマレーザはコヒーレントな平面
波であり、進行方向に対して垂直な等位相波面を持って
いる。エキシマレーザは、回折光学素子14のスリット
14aを通り抜けるとき、ホイヘンスの原理により回折
を生じ、同心円状の波(回折光)に変わる。この場合、
回折光学素子14は平行な2つのスリット14aを備え
ているので、この2つのスリット(光源)14aからの
同心円状の波が相互に干渉し、アモルファスシリコン薄
膜13の表面で振幅の極大値が周期的に生じることにな
る。このため、図1(B)に示すように、レーザ回折光
照射範囲内におけるアモルファスシリコン薄膜13の温
度分布は高温領域と低温領域を有する温度分布となる。
この結果、高温領域のアモルファスシリコン薄膜13中
に存在する結晶核からの結晶成長速度が低温領域のアモ
ルファスシリコン薄膜13中に存在する結晶核からの結
晶成長速度よりも速くなり、高温領域から成長した結晶
粒が低温領域まで広がることとなる。したがって、グレ
インサイズの大きなポリシリコン薄膜15を得ることが
できる。なお、回折光学素子14としては、単一スリッ
トを有するものであってもよく、また回折格子であって
もよい。
Here, the crystallization of the amorphous silicon thin film 13 will be described. The excimer laser before passing through the slit 14a of the diffractive optical element 14 is a coherent plane wave and has an equiphase wavefront perpendicular to the traveling direction. When passing through the slit 14a of the diffractive optical element 14, the excimer laser causes diffraction by the Huygens' principle and changes into concentric waves (diffracted light). in this case,
Since the diffractive optical element 14 has two parallel slits 14a, concentric waves from the two slits (light sources) 14a interfere with each other, and the maximum value of the amplitude is periodically generated on the surface of the amorphous silicon thin film 13. It will happen in a timely manner. Therefore, as shown in FIG. 1B, the temperature distribution of the amorphous silicon thin film 13 in the laser diffracted light irradiation range has a high temperature region and a low temperature region.
As a result, the crystal growth rate from the crystal nuclei existing in the amorphous silicon thin film 13 in the high temperature region becomes faster than the crystal growth rate from the crystal nuclei existing in the amorphous silicon thin film 13 in the low temperature region, and the crystals grow from the high temperature region. The crystal grains will spread to the low temperature region. Therefore, the polysilicon thin film 15 having a large grain size can be obtained. The diffractive optical element 14 may have a single slit or may be a diffraction grating.

【0008】[0008]

【発明の効果】以上説明したように、この発明によれ
ば、レーザの回折光を半導体薄膜に照射しているので、
レーザ回折光照射範囲内における半導体薄膜に温度差を
生じさせることができ、このため高温領域の半導体薄膜
中に存在する結晶核からの結晶成長速度が低温領域の半
導体薄膜中に存在する結晶核からの結晶成長速度よりも
速くなり、高温領域から成長した結晶粒を低温領域まで
広げることができ、したがってグレインサイズを大きく
することができる。
As described above, according to the present invention, since the semiconductor thin film is irradiated with the diffracted light of the laser,
A temperature difference can be generated in the semiconductor thin film within the laser diffracted light irradiation range, so that the crystal growth rate from the crystal nuclei existing in the semiconductor thin film in the high temperature region can be increased from the crystal nuclei existing in the semiconductor thin film in the low temperature region. The crystal growth rate is higher than that of (1), the crystal grains grown from the high temperature region can be spread to the low temperature region, and thus the grain size can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はこの発明の一実施例における半導体薄
膜の結晶化方法を説明するために示す断面図、(B)は
レーザ回折光照射範囲内におけるアモルファスシリコン
薄膜の温度分布を示す図。
FIG. 1A is a sectional view for explaining a method of crystallizing a semiconductor thin film in an embodiment of the present invention, and FIG. 1B is a diagram showing a temperature distribution of an amorphous silicon thin film within a laser diffracted light irradiation range. .

【図2】(A)は従来の半導体薄膜の結晶化方法を説明
するために示す断面図、(B)はレーザ照射範囲内にお
けるアモルファスシリコン薄膜の温度分布を示す図。
2A is a cross-sectional view shown for explaining a conventional method for crystallizing a semiconductor thin film, and FIG. 2B is a view showing a temperature distribution of an amorphous silicon thin film within a laser irradiation range.

【符号の説明】[Explanation of symbols]

11 ガラス基板 12 下地絶縁膜 13 アモルファスシリコン薄膜 14 回折光学素子 14a スリット 15 ポリシリコン薄膜 11 Glass Substrate 12 Base Insulating Film 13 Amorphous Silicon Thin Film 14 Diffractive Optical Element 14a Slit 15 Polysilicon Thin Film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザを回折現象を生じさせるための回
折光学素子を介して半導体薄膜に照射し、これにより前
記半導体薄膜を結晶化することを特徴とする半導体薄膜
の結晶化方法。
1. A method for crystallizing a semiconductor thin film, which comprises irradiating a semiconductor thin film with a laser through a diffractive optical element for producing a diffraction phenomenon, thereby crystallizing the semiconductor thin film.
【請求項2】 前記回折光学素子は平行な1対以上のス
リットを備えていることを特徴とする請求項1記載の半
導体薄膜の結晶化方法。
2. The method of crystallizing a semiconductor thin film according to claim 1, wherein the diffractive optical element has one or more pairs of parallel slits.
JP30795792A 1992-10-23 1992-10-23 Method of crystallizing semiconductor film Pending JPH06140323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30795792A JPH06140323A (en) 1992-10-23 1992-10-23 Method of crystallizing semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30795792A JPH06140323A (en) 1992-10-23 1992-10-23 Method of crystallizing semiconductor film

Publications (1)

Publication Number Publication Date
JPH06140323A true JPH06140323A (en) 1994-05-20

Family

ID=17975210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30795792A Pending JPH06140323A (en) 1992-10-23 1992-10-23 Method of crystallizing semiconductor film

Country Status (1)

Country Link
JP (1) JPH06140323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797246A1 (en) * 1996-03-22 1997-09-24 Koninklijke Philips Electronics N.V. Electronic TFT device manufacture
US6528397B1 (en) 1997-12-17 2003-03-04 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
US7022558B2 (en) 2003-05-21 2006-04-04 Hitachi, Ltd. Method of manufacturing an active matrix substrate and an image display device using the same
JP2007273833A (en) * 2006-03-31 2007-10-18 Sharp Corp Crystallization device and crystallization method of semiconductor film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797246A1 (en) * 1996-03-22 1997-09-24 Koninklijke Philips Electronics N.V. Electronic TFT device manufacture
US5930609A (en) * 1996-03-22 1999-07-27 U.S. Philips Corporation Electronic device manufacture
US6528397B1 (en) 1997-12-17 2003-03-04 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
US6806498B2 (en) 1997-12-17 2004-10-19 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method and apparatus for producing the same, and semiconductor device and method of producing the same
US7022558B2 (en) 2003-05-21 2006-04-04 Hitachi, Ltd. Method of manufacturing an active matrix substrate and an image display device using the same
US7655950B2 (en) 2003-05-21 2010-02-02 Hitachi Displays, Ltd. Method of manufacturing an active matrix substrate and an image display device using the same
JP2007273833A (en) * 2006-03-31 2007-10-18 Sharp Corp Crystallization device and crystallization method of semiconductor film

Similar Documents

Publication Publication Date Title
US4330363A (en) Thermal gradient control for enhanced laser induced crystallization of predefined semiconductor areas
JP4263403B2 (en) Silicon crystallization method
US6322625B2 (en) Crystallization processing of semiconductor film regions on a substrate, and devices made therewith
JP4211967B2 (en) Method for crystallizing silicon using mask
JPH08236443A (en) Semiconductor crystal growing method and semiconductor manufacturing device
JP2001035806A (en) Manufacture of semiconductor thin film
JPH10242073A (en) Apparatus and method for laser irradiation
JP2005101530A (en) Forming method for polycrystalline silicon layer, and switching device using the same
JPH04307727A (en) Formation method of silicon semiconductor layer
JP4237278B2 (en) Formation method of silicon single crystal using nucleation site
US5821135A (en) Methods for and applications of making buried structures in semiconductor thin films
JPH06140323A (en) Method of crystallizing semiconductor film
JP4131752B2 (en) Method for manufacturing polycrystalline semiconductor film
JPH06140321A (en) Method of crystallizing of semiconductor film
KR100250182B1 (en) Method of forming semiconductor crystal and semiconductor device
JPH0282519A (en) Solid phase epitaxy method
JPH06140324A (en) Method of crystallizing semiconductor film
JPS5939791A (en) Production of single crystal
JPS61135110A (en) Manufacture of semiconductor device
KR100915236B1 (en) Mask and Crystallization method of silicon
JPH0652712B2 (en) Semiconductor device
JPS62243314A (en) Manufacture of semiconductor device
JPH01294336A (en) Manufacture of electron emitting element
JPH0793261B2 (en) Single crystal thin film forming equipment
JPS62165908A (en) Forming method for single crystal thin-film