JPH08293464A - Manufacture of semiconductor substrate and semiconductor device - Google Patents

Manufacture of semiconductor substrate and semiconductor device

Info

Publication number
JPH08293464A
JPH08293464A JP9558095A JP9558095A JPH08293464A JP H08293464 A JPH08293464 A JP H08293464A JP 9558095 A JP9558095 A JP 9558095A JP 9558095 A JP9558095 A JP 9558095A JP H08293464 A JPH08293464 A JP H08293464A
Authority
JP
Japan
Prior art keywords
film
substrate
semiconductor
antireflection film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9558095A
Other languages
Japanese (ja)
Inventor
Tadayoshi Miyamoto
忠芳 宮本
Yasuhiro Mitani
康弘 三谷
Tsukasa Shibuya
司 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9558095A priority Critical patent/JPH08293464A/en
Publication of JPH08293464A publication Critical patent/JPH08293464A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method of manufacturing a semiconductor substrate and a semiconductor device in which an antireflection film composed of a silicon dioxide film is selectively deposited on the surface of an amorphous silicon film formed on an insulating substrate and after that, the whole surface of the substrate is irradiated with a laser beam to perform annealing processing in the molten crystallization process of a semiconductor film. CONSTITUTION: An antireflection film is selectively deposited in the surface of an amorphous silicon film 12, thereby making it feasible to selectively control the energy power of a laser beam 15 in every substrate region even in the case of radiating the laser beam 15 onto the whole surface of a substrate under same conditions, and a plurality of thin film transistors having a more suitable characteristic for each region on a same substrate can be formed with high accuracy. Further, since the whole surface of a substrate can be processed by the one radiation of an energy ray, a throughput is high and also since the processing can be performed by the irradiation of the low energy power of an energy ray device main body, the burden of the device can be reduced, so that stable process may be always performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板及びその半
導体基板が加工されて構成される半導体装置の製造方法
に関し、アクティブマトリクス型の画像表示装置やイメ
ージセンサ等に利用できる薄膜トランジスタ用半導体膜
の結晶化工程で好適に実施される半導体基板及び半導体
装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate and a method of manufacturing a semiconductor device formed by processing the semiconductor substrate. The present invention relates to a semiconductor substrate and a method for manufacturing a semiconductor device that are preferably implemented in a crystallization process.

【0002】[0002]

【従来の技術】硝子等の絶縁性基板上に薄膜トランジス
タを有する半導体装置としては、薄膜トランジスタを各
画素用のスイッチング素子及びそのスイッチング素子の
ための周辺駆動回路に用いるアクティブマトリクス型液
晶表示装置やイメージセンサ等が知られている。これら
の装置に用いられる薄膜トランジスタには、薄膜状のシ
リコン半導体を用いるのが一般的である。薄膜状のシリ
コン半導体としては、非晶質シリコン半導体からなるも
のと結晶性を有するシリコン半導体からなるものとの二
つに大別される。
2. Description of the Related Art As a semiconductor device having a thin film transistor on an insulating substrate such as glass, an active matrix type liquid crystal display device or an image sensor using the thin film transistor as a switching element for each pixel and a peripheral drive circuit for the switching element is known. Etc. are known. Thin film silicon semiconductors are generally used for thin film transistors used in these devices. The thin film silicon semiconductor is roughly classified into two types, that is, an amorphous silicon semiconductor and a crystalline silicon semiconductor.

【0003】非晶質シリコン半導体は、作製温度が低
く、また気相法で比較的容易に作製することが可能で量
産性に富むため、最も一般的に用いられているが、構造
上トランジスタサイズの縮小化が困難であるため、画素
の高開口率化が難しく、かつキャリア移動度等の物性が
結晶性を有するシリコン半導体に比べて劣っている。し
たがって、よりすぐれた高速特性と高開口率を得るため
に、結晶性を有するシリコン半導体からなる薄膜トラン
ジスタの製造方法の確立が強く求められていた。
Amorphous silicon semiconductors are most commonly used because they are low in manufacturing temperature, can be relatively easily manufactured by a vapor phase method, and have high mass productivity. Since it is difficult to reduce the pixel size, it is difficult to increase the aperture ratio of the pixel, and the physical properties such as carrier mobility are inferior to those of a crystalline silicon semiconductor. Therefore, in order to obtain better high-speed characteristics and high aperture ratio, there has been a strong demand for establishment of a method for manufacturing a thin film transistor made of a crystalline silicon semiconductor.

【0004】一方、結晶性を有するシリコン半導体とし
ては、単結晶シリコン(c−Si)、多結晶シリコン
(p−Si)、微結晶シリコン(μc−Si)、結晶成
分を含む非晶質シリコン、結晶性と非晶質性の中間の状
態を有するセミアモルファスシリコン等が知られてい
る。これら結晶性を有する薄膜状のシリコン半導体を得
る方法としては、 (1)成膜時に結晶性を有する膜を直接成膜する。 (2)半導体膜を成膜しておき、熱エネルギを加えるこ
とによって結晶性を有せしめる。 (3)半導体膜を成膜しておき、レーザ光のエネルギに
よって結晶性を有せしめる。 といった方法が知られている。
On the other hand, as the crystalline silicon semiconductor, single crystal silicon (c-Si), polycrystalline silicon (p-Si), microcrystalline silicon (μc-Si), amorphous silicon containing a crystalline component, Semi-amorphous silicon having an intermediate state between crystalline and amorphous is known. As a method for obtaining these thin film silicon semiconductors having crystallinity, (1) a film having crystallinity is directly formed at the time of film formation. (2) A semiconductor film is formed and crystallinity is imparted by applying heat energy. (3) A semiconductor film is formed in advance and made crystalline by the energy of laser light. Such methods are known.

【0005】上述の各方法には、以下の問題点がある。Each of the above methods has the following problems.

【0006】(1)の方法では、成膜工程と同時に結晶
化が進行するので、結晶性シリコンを得るにはシリコン
膜の厚膜化が不可欠であり、粒径の大きさを一定以上に
大きくすることが困難である。したがって、シリコン膜
中に多くの粒界を含み、キャリア移動度が粒界部のトラ
ップによって制限され、駆動回路に必要な電流駆動能力
が得られない。また、成膜温度が600℃以上と高いの
で、安価な硝子基板が使用できないというコスト面の問
題もある。
In the method (1), since crystallization progresses at the same time as the film forming step, it is necessary to thicken the silicon film in order to obtain crystalline silicon. Difficult to do. Therefore, the silicon film contains many grain boundaries, the carrier mobility is limited by the traps at the grain boundary portions, and the current driving capability required for the driving circuit cannot be obtained. Further, since the film forming temperature is as high as 600 ° C. or higher, there is a cost problem that an inexpensive glass substrate cannot be used.

【0007】(2)の方法では、大面積に対応できると
いう利点はあるが、結晶化に際し、600℃以上の高温
にて数十時間にわたる加熱処理が必要である。すなわ
ち、安価な硝子基板の使用、及び単位時間当たりの加工
数であるスループットの向上を考えると、加熱温度を下
げ、さらに短時間で結晶化させるという相反する問題点
を同時に解決する必要がある。
The method (2) has the advantage that it can be applied to a large area, but requires a heat treatment for several tens of hours at a high temperature of 600 ° C. or higher for crystallization. That is, considering the use of an inexpensive glass substrate and the improvement of throughput, which is the number of processes per unit time, it is necessary to simultaneously solve the conflicting problems of lowering the heating temperature and crystallizing in a shorter time.

【0008】(3)の方法では、熔融結晶化過程の結晶
化現象を利用するため、小粒径ながら粒界が良好に処理
され高品質な結晶性シリコン膜が得られるが、現在最も
一般的に使用されているエキシマレーザを例にとると、
レーザ光の照射面積が小さくスループットが低いという
問題があり、また大面積基板の全面を均一に処理するに
はレーザの安定性が充分ではない。
In the method (3), since the crystallization phenomenon in the melt crystallization process is utilized, the grain boundaries are well processed and a high quality crystalline silicon film is obtained although the grain size is small. Taking the excimer laser used in
There is a problem that the irradiation area of the laser beam is small and the throughput is low, and the stability of the laser is not sufficient to uniformly process the entire surface of the large area substrate.

【0009】今後の技術として、たとえばアクティブマ
トリクス型液晶表示装置の周辺駆動回路を構成するよう
な高速な薄膜トランジスタと高い開口率を実現できる画
素を構成するような薄膜トランジスタとを、同一基板上
に同時に形成することが望まれる。このような所謂モノ
リシック化基板においては、駆動回路用の薄膜トランジ
スタには高速かつ高キャリア移動度が必要となり、画素
用の薄膜トランジスタにはオフ電流の低減が大きな課題
となる。
As a future technology, for example, a high speed thin film transistor which constitutes a peripheral driving circuit of an active matrix type liquid crystal display device and a thin film transistor which constitutes a pixel capable of realizing a high aperture ratio are simultaneously formed on the same substrate. It is desired to do. In such a so-called monolithic substrate, a thin film transistor for a driving circuit needs to have high speed and high carrier mobility, and a thin film transistor for a pixel has a big problem of reducing off current.

【0010】同一基板上に特性の異なる薄膜トランジス
タを構成しうる半導体膜の製造方法として、レーザ光ま
たは電子ビーム等のエネルギ線を用いて、同一基板内に
半導体膜の選択的な熔融結晶化を行う方法が提案されて
いる。たとえば、特開昭64−45162号公報に示さ
れる第一の方法では、直接レーザを照射した部分以外が
再結晶化しないように予め半導体膜を複数の領域に分離
しておき、所望する領域のみにエネルギ線を照射し、そ
の他の所望しない領域にはエネルギ線を照射しない方法
が提案されている。また、特開平3−292721号公
報に示される第二の方法では、所望しない領域にエネル
ギ線の不透過膜を形成して、選択的に熔融結晶化処理を
行う方法が提案されている。
As a method of manufacturing a semiconductor film capable of forming thin film transistors having different characteristics on the same substrate, selective melting and crystallization of the semiconductor film is performed on the same substrate by using energy rays such as laser light or electron beam. A method has been proposed. For example, in the first method disclosed in Japanese Patent Application Laid-Open No. 64-45162, the semiconductor film is divided into a plurality of regions in advance so that the portions other than the portion directly irradiated with the laser do not recrystallize, and only the desired regions are formed. There has been proposed a method of irradiating an energy beam to a laser beam and not irradiating the energy beam to other undesired regions. The second method disclosed in Japanese Patent Laid-Open No. 3-292721 proposes a method of forming an energy ray impermeable film in an undesired region and selectively performing melt crystallization treatment.

【0011】[0011]

【発明が解決しようとする課題】しかし、上述のような
方法には以下の問題がある。
However, the above method has the following problems.

【0012】第一の方法では、複数回のレーザ照射が必
要となりスループットが低く、かつ処理工程も複雑にな
り、精度良くアライメントを行うことは非常に困難であ
る。また第二の方法では、不透過膜を形成することで熔
融結晶化が起こらない領域が基板内にできてしまう。す
なわち、同一基板上に非晶質膜と多結晶膜との組み合わ
せしかできないため、画素領域の高開口率化は困難であ
るという問題がある。
In the first method, laser irradiation is required a plurality of times, the throughput is low, the processing steps are complicated, and it is very difficult to perform accurate alignment. In the second method, the formation of the impermeable film causes a region in the substrate where melt crystallization does not occur. That is, since only an amorphous film and a polycrystalline film can be combined on the same substrate, it is difficult to increase the aperture ratio of the pixel region.

【0013】したがって両方法では、レーザアニール処
理のスループットの向上並びに特性改善、具体的には周
辺駆動回路を構成するような薄膜トランジスタにおいて
キャリア移動度の向上、及び画素を構成するような薄膜
トランジスタにおいて高開口率の実現、オフ時のリーク
電流の低減といった問題を同時に解決することは困難で
ある。
Therefore, in both methods, the throughput of the laser annealing treatment is improved and the characteristics are improved, more specifically, the carrier mobility is improved in the thin film transistor forming the peripheral drive circuit, and the high aperture is formed in the thin film transistor forming the pixel. It is difficult to solve the problems such as realization of the rate and reduction of the leak current at the off time at the same time.

【0014】本発明の目的は、同一基板上に特性の異な
る薄膜トランジスタを精度良く、かつ経済的に構成しう
る半導体基板及び半導体装置の製造方法を提供すること
である。
It is an object of the present invention to provide a semiconductor substrate and a method of manufacturing a semiconductor device, which can accurately and economically form thin film transistors having different characteristics on the same substrate.

【0015】[0015]

【課題を解決するための手段】請求項1の発明に係る半
導体基板及び半導体装置の製造方法は、絶縁性表面を有
する基板または、絶縁膜で表面を覆った基板上に形成さ
れた非晶質半導体膜にエネルギ線を照射し、前記非晶質
半導体膜を熔融結晶化する工程において、前記非晶質半
導体膜表面に膜厚の相互に異なる反射防止膜を選択的に
堆積することを特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor substrate and a method for manufacturing a semiconductor device, which are amorphous formed on a substrate having an insulating surface or a substrate whose surface is covered with an insulating film. In the step of irradiating the semiconductor film with energy rays to melt and crystallize the amorphous semiconductor film, antireflection films having different thicknesses are selectively deposited on the surface of the amorphous semiconductor film. To do.

【0016】また請求項2の発明に係る半導体基板及び
半導体装置の製造方法は、前記エネルギ線は波長400
nm以下の紫外線レーザのパルス光であり、前記反射防
止膜は前記紫外線を吸収しない材料に選ばれることを特
徴とする。
According to a second aspect of the present invention, in the method of manufacturing a semiconductor substrate and a semiconductor device, the energy beam has a wavelength of 400.
The antireflection film is a pulsed light of an ultraviolet laser having a wavelength of nm or less, and the antireflection film is selected as a material that does not absorb the ultraviolet rays.

【0017】[0017]

【作用】請求項1の発明に従えば、絶縁性の表面を有す
る基板、または絶縁膜で表面を覆った基板上に、化学的
気相成長法(CVD法)やスパッタリング法等で堆積さ
れたアモルファスシリコン等の非晶質半導体膜の表面
に、選択的に反射防止膜を設ける。その後、レーザ光、
または電子ビーム等のエネルギ線を用いて、ある一定の
エネルギパワーで基板全面を照射する。
According to the invention of claim 1, it is deposited by chemical vapor deposition (CVD) or sputtering on a substrate having an insulating surface or a substrate whose surface is covered with an insulating film. An antireflection film is selectively provided on the surface of an amorphous semiconductor film such as amorphous silicon. Then laser light,
Alternatively, the entire surface of the substrate is irradiated with a certain constant energy power using an energy beam such as an electron beam.

【0018】前記非晶質半導体膜表面で前記反射防止膜
を設けた領域と設けていない領域とでは、反射率が相互
に異なるために、同じ条件で照射を行っても、反射防止
膜上では実効的に高いパワーを得ることが可能である。
したがって、エネルギパワーを領域ごとに選択的に制御
することを可能にし、同一基板内に特性の異なる複数の
薄膜トランジスタを、精度良く、かつ高スループットで
形成することができる。
Since the reflectance of the region where the antireflection film is provided and the region where the antireflection film is not provided on the surface of the amorphous semiconductor film are different from each other, even if irradiation is performed under the same conditions, the antireflection film is not exposed. It is possible to effectively obtain high power.
Therefore, the energy power can be selectively controlled for each region, and a plurality of thin film transistors having different characteristics can be formed in the same substrate with high precision and high throughput.

【0019】また請求項2の発明に従えば、前記エネル
ギ線は波長400nm以下の紫外線レーザのパルス光で
あり、レーザ源として、たとえば発振波長308nm
で、発振時間約50nsのエキシマレーザを用いる。ま
た、前記反射防止膜は前記紫外線を吸収しない材料に選
ばれ、たとえば紫外線が吸収されなくて、かつプロセス
上シリコン膜との相性の良い二酸化シリコン膜を用い
る。
According to the second aspect of the invention, the energy beam is pulsed light of an ultraviolet laser having a wavelength of 400 nm or less, and the laser beam has an oscillation wavelength of 308 nm, for example.
Then, an excimer laser with an oscillation time of about 50 ns is used. The antireflection film is selected as a material that does not absorb the ultraviolet rays. For example, a silicon dioxide film that does not absorb the ultraviolet rays and has good compatibility with the silicon film in the process is used.

【0020】[0020]

【実施例】本発明の一実施例について、図1〜図4に基
づいて説明すれば以下のとおりである。
EXAMPLE An example of the present invention will be described below with reference to FIGS.

【0021】図1は、本発明の一実施例の半導体装置で
あるTFTA1,B1の製造工程を示す断面図であり、
図2は、前記TFTA1,B1が用いられる液晶表示装
置の平面図である。また、図1の工程断面図は図2の平
面図における切断面Lに対応する。
FIG. 1 is a sectional view showing a manufacturing process of TFTs A1 and B1 which are semiconductor devices of an embodiment of the present invention.
FIG. 2 is a plan view of a liquid crystal display device using the TFTs A1 and B1. The process sectional view of FIG. 1 corresponds to the cutting plane L in the plan view of FIG.

【0022】本実施例を図1の製造工程に従って説明す
ると、まず図1(a)は、石英、硝子等からなる絶縁性
基板10の表面を洗浄後、ベースコート膜11として二
酸化シリコン膜をスパッタリング装置を用いて厚さ30
0nm程度堆積した状態である。このベースコート膜の
必要膜厚は基板の表面状態によって異なり、十分に平坦
でかつナトリウムイオン等の半導体特性に悪影響を与え
るイオン濃度が十分に低い基板であれば省略することも
可能であり、逆に表面の状態が傷や凹凸の激しいもので
あれば上記の膜厚よりも厚く堆積する必要がある。
This embodiment will be described in accordance with the manufacturing process of FIG. 1. First, in FIG. 1A, the surface of an insulating substrate 10 made of quartz, glass or the like is cleaned, and then a silicon dioxide film is used as a base coat film 11 for a sputtering apparatus. With a thickness of 30
It is in a state of being deposited to about 0 nm. The required film thickness of this base coat film varies depending on the surface condition of the substrate, and can be omitted if the substrate is sufficiently flat and has a sufficiently low ion concentration that adversely affects semiconductor characteristics such as sodium ions. If the surface condition is severely scratched or uneven, it is necessary to deposit thicker than the above film thickness.

【0023】図1(b)は、前記ベースコート膜11上
に化学的気相成長法やスパッタリング法を用いて非晶質
シリコン膜12を50nm程度の厚さに堆積した状態で
ある。図1(c)は、その後、前記非晶質シリコン膜1
2上に紫外線が吸収されないような透明な反射防止膜、
たとえば二酸化シリコン膜13をスパッタリング法等を
用いて堆積した状態である。
FIG. 1B shows a state in which the amorphous silicon film 12 is deposited on the base coat film 11 by a chemical vapor deposition method or a sputtering method to a thickness of about 50 nm. FIG. 1C shows the amorphous silicon film 1 after that.
2, a transparent anti-reflection film that does not absorb ultraviolet rays,
For example, it is a state in which the silicon dioxide film 13 is deposited by a sputtering method or the like.

【0024】前記二酸化シリコン膜13の膜厚は、図3
に基づいて算出することができる。図3は、レーザ波長
308nmに対する反射防止膜の膜厚と反射率との関係
を示し、反射防止膜としては前記二酸化シリコン膜13
が用いられている。本実施例では、前記二酸化シリコン
膜13の膜厚を、波長光308nmのXeClレーザに
対し反射率の最も低い50nmとした。なお、図3の反
射率をもとに実効エネルギパワーを計算すると、反射防
止膜を設けた領域と設けない領域とで最大40%の差が
生じる。
The thickness of the silicon dioxide film 13 is as shown in FIG.
Can be calculated based on FIG. 3 shows the relationship between the film thickness of the antireflection film and the reflectance with respect to the laser wavelength of 308 nm. As the antireflection film, the silicon dioxide film 13 is used.
Is used. In this embodiment, the film thickness of the silicon dioxide film 13 is set to 50 nm, which has the lowest reflectance with respect to the XeCl laser having a wavelength of 308 nm. When the effective energy power is calculated based on the reflectance shown in FIG. 3, there is a maximum difference of 40% between the region where the antireflection film is provided and the region where the antireflection film is not provided.

【0025】図1(d)は、フォトリソグラフィによっ
て、周辺駆動回路を構成するような高速な薄膜トランジ
スタ領域に反射防止膜を選択的に形成した状態である。
反射防止膜を選択的に堆積する領域14は、図4で示す
反射防止膜用のフォトマスク27の平面図において斜線
で示す開口部分26に対応する。次に基板全面にレーザ
光15の照射を行うと、非晶質シリコンの熔融結晶化が
起こり、結晶成長させることによって結晶シリコン膜を
得る。
FIG. 1D shows a state in which an antireflection film is selectively formed by photolithography in a high speed thin film transistor region which constitutes a peripheral drive circuit.
The region 14 where the antireflection film is selectively deposited corresponds to the opening portion 26 shown by hatching in the plan view of the photomask 27 for the antireflection film shown in FIG. Next, when the entire surface of the substrate is irradiated with the laser beam 15, amorphous silicon is melted and crystallized, and a crystalline silicon film is obtained by crystal growth.

【0026】本実施例では、レーザの発振波長は前記3
08nm、設定照射エネルギ密度は200mJ/cm2
程度で、発振時間(パルス幅)は約50nsであり、発
振周波数は300Hzとしたが、レーザ照射される膜の
状態(膜質、膜厚、構造)によって条件は異なる。
In this embodiment, the oscillation wavelength of the laser is 3
08 nm, setting irradiation energy density is 200 mJ / cm 2
The oscillation time (pulse width) was about 50 ns, and the oscillation frequency was 300 Hz, but the conditions differ depending on the state (film quality, film thickness, structure) of the film irradiated with laser.

【0027】図1(e)は、レーザ処理終了後、フッ酸
溶液等のSiO2 用のエッチャントを用いて反射防止膜
を除去した状態であり、前記反射防止膜の有無によっ
て、同一基板上にレーザのエネルギパワーの異なる結晶
シリコンが得られていることを表す。本実施例では、設
定照射エネルギ密度200mJ/cm2 で処理を行って
いるので、反射防止膜で覆われていた領域(周辺駆動回
路を構成する領域)16は、実効エネルギパワー280
mJ/cm2 程度になり、その他の反射防止膜で覆われ
ていなかった領域(内部の画素を構成する領域)17
は、実効エネルギパワー200mJ/cm2 である。
FIG. 1E shows a state in which the antireflection film is removed by using an etchant for SiO 2 such as a hydrofluoric acid solution after the laser treatment is completed. This indicates that crystalline silicon having different laser energy powers has been obtained. In the present embodiment, since the processing is performed at the set irradiation energy density of 200 mJ / cm 2 , the region 16 (the region forming the peripheral drive circuit) 16 covered with the antireflection film has an effective energy power of 280.
Area around mJ / cm 2 and not covered with other antireflection film (area forming internal pixels) 17
Is an effective energy power of 200 mJ / cm 2 .

【0028】次に、上述の方法で作製した半導体基板2
3の周辺駆動回路領域24及び内部の画素領域25に、
たとえば以下の製造方法で、それぞれTFTA1,B1
を構成する。前記結晶シリコン膜のTFT領域のみエッ
チング処理で残し、その上にスパッタリング法によって
ゲート絶縁膜18を積層する。続いてゲート電極19を
形成し、不純物注入を行う。さらに、SiO2 からなる
絶縁膜20を積層し、エッチングによって開口部分を設
け、ソース電極21及びドレイン電極22を形成する
と、図1(f)に示すように、特性の異なるTFTA
1,B1がそれぞれ完成する。
Next, the semiconductor substrate 2 produced by the above method
3 in the peripheral drive circuit area 24 and the internal pixel area 25,
For example, by the following manufacturing method, TFTA1, B1
Is configured. Only the TFT region of the crystalline silicon film is left by the etching process, and the gate insulating film 18 is laminated thereon by the sputtering method. Subsequently, the gate electrode 19 is formed and impurities are implanted. Furthermore, when an insulating film 20 made of SiO 2 is laminated, an opening is provided by etching, and a source electrode 21 and a drain electrode 22 are formed, as shown in FIG.
1 and B1 are completed respectively.

【0029】上述のように、薄膜トランジスタ用半導体
膜の熔融結晶化工程において、絶縁性基板10上に形成
された非晶質シリコン膜12表面に、反射防止膜である
二酸化シリコン膜13を周辺駆動回路領域24に選択的
に堆積し、その後、基板全面に同じ条件でXeClレー
ザ光15を照射することによって、前記周辺駆動回路領
域24にはキャリア移動度の高い高速なTFT(図2に
おけるA1,A2)を形成することができ、同時に内部
の画素領域25には高開口率を実現できるTFT(図2
におけるB1,B2,B3,B4)を形成することがで
きる。すなわち、基板全面を一度のレーザ照射で処理す
ることによって、同一基板上で各領域により適した特性
を有する複数の薄膜トランジスタを、精度良く、高スル
ープットで形成することができ、さらに、レーザ装置本
体も低エネルギパワーでの照射でアニール処理ができる
ため、常に安定した処理を行うことができ、ガス寿命が
伸び、装置の負担を軽減できる。
As described above, in the melt crystallization process of the semiconductor film for thin film transistors, the silicon dioxide film 13, which is an antireflection film, is formed on the surface of the amorphous silicon film 12 formed on the insulating substrate 10 in the peripheral driving circuit. By selectively depositing in the region 24 and then irradiating the entire surface of the substrate with the XeCl laser beam 15 under the same conditions, the peripheral drive circuit region 24 is provided with high-speed TFTs (A1, A2 in FIG. 2) having high carrier mobility. ) Can be formed, and at the same time, a TFT (FIG.
B1, B2, B3, B4) can be formed. That is, by processing the entire surface of the substrate with a single laser irradiation, it is possible to form a plurality of thin film transistors having characteristics more suitable for each region on the same substrate with high precision and high throughput. Since the annealing treatment can be performed by irradiation with low energy power, stable treatment can be always performed, the gas life is extended, and the burden on the apparatus can be reduced.

【0030】なお本実施例では、反射防止膜の膜厚は、
50nm(反射防止膜を設けた領域)と0nm(反射防
止膜を設けなかった領域)の二つに異なる場合であった
が、反射防止膜の膜厚が三つ以上に異なる場合で行われ
てもよいし、反射防止膜の材質や構成される薄膜トラン
ジスタの特性等に応じて、膜厚を変化させてもよい。ま
た、熔融結晶化工程において照射するエネルギ線として
レーザ光15を使用したが、レーザ光15の代りに、電
子ビーム及びそれに対応した材質の反射防止膜を使用し
ても同様の効果が期待できる。
In this embodiment, the thickness of the antireflection film is
The difference was 50 nm (a region provided with an antireflection film) and 0 nm (a region not provided with an antireflection film), but it was performed when the film thickness of the antireflection film was three or more different. Alternatively, the film thickness may be changed according to the material of the antireflection film, the characteristics of the thin film transistor to be formed, and the like. Further, although the laser beam 15 is used as the energy beam for irradiation in the melt crystallization step, the same effect can be expected by using an electron beam and an antireflection film made of a material corresponding thereto instead of the laser beam 15.

【0031】また、半導体基板23は、他の形状のTF
Tや、またTFTに限らず他の半導体装置に用いられて
もよい。
The semiconductor substrate 23 has a TF of another shape.
It may be used not only for T or TFT but also for other semiconductor devices.

【0032】[0032]

【発明の効果】請求項1の発明に係る半導体基板及び半
導体装置の製造方法は、以上のように、非晶質半導体膜
表面に反射防止膜を選択的に設けることによって、同一
基板上で各領域により適した特性を有する薄膜トランジ
スタを同時に形成することが可能である。たとえば、硝
子等の絶縁性基板上に設けられた薄膜トランジスタを画
素及びその駆動回路に用いるアクティブマトリクス型液
晶表示装置やイメージセンサ等において、画素を構成す
るような低リークの薄膜トランジスタと周辺駆動回路を
構成するような高速な薄膜トランジスタとを同一基板上
に同時に形成する場合、前記周辺駆動回路領域に反射防
止膜を設けて、その後ある一定のエネルギパワーで基板
全面にレーザ照射を行うと、前記反射防止膜で覆われた
前記周辺駆動回路領域にはキャリア移動度の高い高速な
薄膜トランジスタ(たとえば多結晶シリコン)を形成す
ることができ、しかも前記反射防止膜で覆われていない
内部の画素領域においても高開口率を得るための薄膜ト
ランジスタを形成することができる。また、一度のレー
ザ照射で基板全面を処理することができるため、スルー
プットの向上が図れる。さらに、レーザ装置本体も低エ
ネルギパワーでの照射で処理を行うことができるため、
常に安定した処理を行うことができ、ガス寿命が伸び、
装置の負担を軽減できる。
As described above, according to the method of manufacturing a semiconductor substrate and a semiconductor device of the present invention, by selectively providing an antireflection film on the surface of the amorphous semiconductor film, each of the semiconductor substrates and the semiconductor device can be formed on the same substrate. It is possible to simultaneously form a thin film transistor having a characteristic more suitable for a region. For example, in an active matrix type liquid crystal display device, an image sensor or the like in which a thin film transistor provided on an insulating substrate such as glass is used for a pixel and its driving circuit, a low leak thin film transistor and peripheral driving circuit for forming a pixel are configured. When a high speed thin film transistor as described above is simultaneously formed on the same substrate, an antireflection film is provided in the peripheral drive circuit region, and then laser irradiation is performed on the entire surface of the substrate with a certain energy power, the antireflection film is formed. A high-speed thin film transistor (for example, polycrystalline silicon) having a high carrier mobility can be formed in the peripheral drive circuit region covered with, and a high opening is formed even in the internal pixel region not covered with the antireflection film. A thin film transistor for obtaining the rate can be formed. Further, since the entire surface of the substrate can be processed with one laser irradiation, throughput can be improved. Furthermore, since the laser device itself can be processed by irradiation with low energy power,
You can always perform stable processing, extend the gas life,
The load on the device can be reduced.

【0033】また請求項2の発明に係る半導体基板及び
半導体装置の製造方法は、以上のように、熔融結晶化工
程において照射するエネルギ線には、波長400nm以
下の紫外線レーザのパルス光を使用する。波長400n
m以下のエネルギ線は半導体シリコン膜の吸収係数にマ
ッチングした波長であり、半導体シリコン膜の効率良い
加熱を行うことができる。また、反射防止膜は前記紫外
線を吸収しない材料に選ばれ、したがって反射防止膜内
でのエネルギ損失をなくすことができる。
In the method for manufacturing a semiconductor substrate and a semiconductor device according to a second aspect of the present invention, as described above, pulsed light of an ultraviolet laser having a wavelength of 400 nm or less is used as the energy ray irradiated in the melt crystallization step. . Wavelength 400n
An energy ray of m or less has a wavelength matching the absorption coefficient of the semiconductor silicon film, and the semiconductor silicon film can be efficiently heated. Further, the antireflection film is selected as a material which does not absorb the ultraviolet rays, and therefore energy loss in the antireflection film can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体装置であるTFTの
製造工程を示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a TFT which is a semiconductor device according to an embodiment of the present invention.

【図2】前記TFTが用いられる液晶表示装置の平面図
であり、周辺駆動回路領域及び内部の画素領域のTFT
を模式的に示す。
FIG. 2 is a plan view of a liquid crystal display device in which the TFT is used, in which a TFT in a peripheral driving circuit region and an internal pixel region
Is schematically shown.

【図3】レーザ波長308nmに対する、反射防止膜で
ある二酸化シリコン膜の膜厚と反射率との関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the film thickness and the reflectance of a silicon dioxide film, which is an antireflection film, with respect to a laser wavelength of 308 nm.

【図4】選択的に反射防止膜を形成するためのフォトマ
スクの平面図である。
FIG. 4 is a plan view of a photomask for selectively forming an antireflection film.

【符号の説明】[Explanation of symbols]

10 絶縁性基板 11 ベースコート膜 12 非晶質シリコン膜 13 二酸化シリコン膜 14 選択的に反射防止膜を形成した領域 15 レーザ光 16 反射防止膜で覆われていた領域(周辺駆動回路を
構成する領域) 17 反射防止膜で覆われていなかった領域(内部の画
素を構成する領域) 18 ゲート絶縁膜 19 ゲート 20 絶縁膜 21 ソース電極 22 ドレイン電極 23 半導体基板 24 周辺駆動回路領域 25 内部の画素領域 26 開口部分 27 フォトマスク A1 TFT(周辺駆動回路用) A2 TFT(周辺駆動回路用) B1 TFT(画素用) B2 TFT(画素用) B3 TFT(画素用) B4 TFT(画素用)
10 Insulating Substrate 11 Base Coat Film 12 Amorphous Silicon Film 13 Silicon Dioxide Film 14 Region with Antireflection Film Formed 15 Laser Light 16 Region Covered with Antireflection Film (Region Comprising Peripheral Driving Circuit) 17 Area Not Covered with Antireflection Film (Area That Comprises Internal Pixel) 18 Gate Insulating Film 19 Gate 20 Insulating Film 21 Source Electrode 22 Drain Electrode 23 Semiconductor Substrate 24 Peripheral Driving Circuit Area 25 Internal Pixel Area 26 Opening Part 27 Photomask A1 TFT (for peripheral drive circuit) A2 TFT (for peripheral drive circuit) B1 TFT (for pixel) B2 TFT (for pixel) B3 TFT (for pixel) B4 TFT (for pixel)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁性表面を有する基板、または絶縁膜で
表面を覆った基板上に形成された非晶質半導体膜にエネ
ルギ線を照射し、前記非晶質半導体膜を熔融結晶化する
工程において、 前記非晶質半導体膜表面に膜厚の相互に異なる反射防止
膜を選択的に堆積することを特徴とする半導体基板及び
半導体装置の製造方法。
1. A step of irradiating an energy beam to an amorphous semiconductor film formed on a substrate having an insulating surface or a substrate whose surface is covered with an insulating film to melt-crystallize the amorphous semiconductor film. 2. The method for manufacturing a semiconductor substrate and a semiconductor device, wherein: an antireflection film having a different film thickness is selectively deposited on the surface of the amorphous semiconductor film.
【請求項2】前記エネルギ線は波長400nm以下の紫
外線レ−ザのパルス光であり、前記反射防止膜は前記紫
外線を吸収しない材料に選ばれることを特徴とする請求
項1記載の半導体基板及び半導体装置の製造方法。
2. The semiconductor substrate according to claim 1, wherein the energy rays are pulsed light of an ultraviolet laser having a wavelength of 400 nm or less, and the antireflection film is selected from a material that does not absorb the ultraviolet rays. Manufacturing method of semiconductor device.
JP9558095A 1995-04-20 1995-04-20 Manufacture of semiconductor substrate and semiconductor device Pending JPH08293464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9558095A JPH08293464A (en) 1995-04-20 1995-04-20 Manufacture of semiconductor substrate and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9558095A JPH08293464A (en) 1995-04-20 1995-04-20 Manufacture of semiconductor substrate and semiconductor device

Publications (1)

Publication Number Publication Date
JPH08293464A true JPH08293464A (en) 1996-11-05

Family

ID=14141538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9558095A Pending JPH08293464A (en) 1995-04-20 1995-04-20 Manufacture of semiconductor substrate and semiconductor device

Country Status (1)

Country Link
JP (1) JPH08293464A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167663A (en) * 1997-08-18 1999-03-09 Fujitsu Ltd Manufacture of semiconductor device
JP2002033330A (en) * 2000-05-12 2002-01-31 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2005101553A (en) * 2003-08-27 2005-04-14 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
DE10083498B4 (en) * 1999-10-18 2007-09-13 Fujikura Ltd. A method of producing a thin polycrystalline layer and an oxide superconducting element
JP2008040192A (en) * 2006-08-08 2008-02-21 Sony Corp Display device and method of manufacturing display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167663A (en) * 1997-08-18 1999-03-09 Fujitsu Ltd Manufacture of semiconductor device
DE10083498B4 (en) * 1999-10-18 2007-09-13 Fujikura Ltd. A method of producing a thin polycrystalline layer and an oxide superconducting element
JP2002033330A (en) * 2000-05-12 2002-01-31 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2005101553A (en) * 2003-08-27 2005-04-14 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2008040192A (en) * 2006-08-08 2008-02-21 Sony Corp Display device and method of manufacturing display device
US8460986B2 (en) 2006-08-08 2013-06-11 Sony Corporation Method for manufacturing a display device

Similar Documents

Publication Publication Date Title
KR100227439B1 (en) Polycrystalline thin film and the manufacturing method of thin film semiconductor device
US7507645B2 (en) Method of forming polycrystalline semiconductor layer and thin film transistor using the same
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
US6686978B2 (en) Method of forming an LCD with predominantly <100> polycrystalline silicon regions
KR100577795B1 (en) Method for forming polycrystalline silicon film
EP0822581B1 (en) A method of manufacturing a thin film transistor
JPH08195492A (en) Formation of polycrystalline film, and manufacture of film transistor
KR100269312B1 (en) Method for crystallization of silicon film and fabricating method for thin film transistor-liquid crystal display using the same
US5580801A (en) Method for processing a thin film using an energy beam
JP2000260709A (en) Method of crystallizing semiconductor thin film and semiconductor device using the same
JPH10321870A (en) Method for crystallizing amorphous silicon layer and manufacture of thin-film transistor using the same
JPH1084114A (en) Thin-film semiconductor device and manufacture thereof
JPH08293464A (en) Manufacture of semiconductor substrate and semiconductor device
JP3221251B2 (en) Amorphous silicon crystallization method and thin film transistor manufacturing method
JPH0917729A (en) Manufacture of semiconductor device
JPH0955509A (en) Manufacture of semiconductor device
JP4357006B2 (en) Method for forming polycrystalline semiconductor thin film and method for manufacturing thin film transistor
JPS6230314A (en) Manufacture of crystalline semiconductor thin film
US20060172469A1 (en) Method of fabricating a polycrystalline silicon thin film transistor
JPH09213965A (en) Manufacture of semiconductor device
JPH09293872A (en) Manufacture of thin-film transistor
JPH10189450A (en) Manufacture of semiconductor device
JPH04340725A (en) Manufacture of thin film transistor
JP3269730B2 (en) Method of manufacturing semiconductor substrate and method of manufacturing semiconductor device
JPH09260285A (en) Manufacture of semiconductor device