JPH06216044A - Manufacture of semiconductor thin film - Google Patents
Manufacture of semiconductor thin filmInfo
- Publication number
- JPH06216044A JPH06216044A JP712693A JP712693A JPH06216044A JP H06216044 A JPH06216044 A JP H06216044A JP 712693 A JP712693 A JP 712693A JP 712693 A JP712693 A JP 712693A JP H06216044 A JPH06216044 A JP H06216044A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- semiconductor thin
- annealed
- laser
- mobility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体薄膜の製造方法に
関するものであり、とくに液晶ディスプレイ、イメージ
センサ等に応用可能な高速応答性を有する薄膜トランジ
スタ用半導体薄膜の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor thin film, and more particularly to a method for manufacturing a semiconductor thin film for a thin film transistor having a high-speed response applicable to a liquid crystal display, an image sensor and the like.
【0002】[0002]
【従来の技術】周辺駆動回路一体型液晶ディスプレイ
(LCD)では、画素部として対角十数インチもしくは
それ以上の広範囲において均一度が非常に高く、かつ高
品質な半導体薄膜が、周辺駆動回路部として狭幅ながら
も長尺な領域において、画素部以上により高移動度を有
する半導体薄膜が、それぞれ要求されている。一般に、
従来からの結晶成長技術であるLPCVD法や固相成長
法により作製した多結晶シリコン薄膜(以下poly−
Si薄膜)移動度が低いながらも均一性が非常に高いと
いう特徴を有している。その一方で、レーザアニール法
によって作製したpoly−Si薄膜は、高移動度化が
可能である反面、ビーム強度分布によりばらつきが生じ
易いという特性がある。そこで、上記駆動回路一体型L
CDのように同一基板上においてもそれぞれ異なる性能
が要求される場合、予めLPCVD法や固相成長法によ
り基板101上にpoly−Si薄膜102を均一に形
成し図3(A)、駆動回路部104のみにレーザアニー
ル105を行い高移動度化を図るといった半導体薄膜の
製造方法が提案されている(ssdm’91 pp.5
90〜592「Excimer Laser Anne
aled poly−SiTFTs for CMOS
Circuits,1991年8月27日)。2. Description of the Related Art In a peripheral drive circuit integrated liquid crystal display (LCD), a semiconductor thin film having a very high uniformity and a high quality in a wide area of a diagonal of several tens of inches or more is used as a peripheral drive circuit section. As a result, there is a demand for a semiconductor thin film having a higher mobility than the pixel portion in a narrow but long region. In general,
A polycrystalline silicon thin film (hereinafter referred to as poly-) manufactured by the conventional crystal growth technique such as LPCVD or solid phase growth method.
(Si thin film) It has a characteristic that the mobility is low but the uniformity is very high. On the other hand, the poly-Si thin film produced by the laser annealing method has a characteristic that although it can have high mobility, it tends to vary due to the beam intensity distribution. Therefore, the drive circuit integrated type L
When different performances are required on the same substrate such as a CD, a poly-Si thin film 102 is uniformly formed in advance on the substrate 101 by the LPCVD method or the solid-phase growth method, as shown in FIG. A method of manufacturing a semiconductor thin film has been proposed in which laser annealing 105 is performed only on 104 to increase the mobility (ssdm '91 pp. 5).
90-592 "Excimer Laser Anne
aled poly-SiTFTs for CMOS
Circuits, August 27, 1991).
【0003】[0003]
【発明が解決しようとする課題】ところが、レーザアニ
ールpoly−Si薄膜のキャリア移動度は被アニール
材料に依存する。上記LPCVD法等により形成された
poly−Si薄膜をレーザアニールに作製したpol
y−Si薄膜は、a−Siをレーザアニールして作製し
たpoly−Si薄膜移動度が低いという課題があっ
た。However, the carrier mobility of the laser-annealed poly-Si thin film depends on the material to be annealed. A poly-Si thin film formed by the above LPCVD method or the like is produced by laser annealing.
The y-Si thin film has a problem that the mobility of the poly-Si thin film produced by laser annealing of a-Si is low.
【0004】本発明の目的は、均一度の高い半導体薄膜
と、移動度の高い半導体薄膜とを、同一基板上に製造す
る方法を提供することである。An object of the present invention is to provide a method for manufacturing a semiconductor thin film having high uniformity and a semiconductor thin film having high mobility on the same substrate.
【0005】[0005]
【課題を解決するための手段】本発明は、絶縁性基板上
に気相成長または固相成長により多結晶半導体薄膜を形
成する工程と、上記多結晶半導体薄膜上にアモルファス
半導体薄膜を積層する工程と、上記基板上に形成された
アモルファス半導体薄膜の任意の領域をレーザアニール
する工程と、及び前記アモルファス半導体薄膜を熱アニ
ールする工程とをこの順に行うことを特徴とする半導体
薄膜の製造方法である。The present invention comprises a step of forming a polycrystalline semiconductor thin film on an insulating substrate by vapor phase growth or solid phase growth, and a step of laminating an amorphous semiconductor thin film on the polycrystalline semiconductor thin film. And a step of laser annealing an arbitrary region of the amorphous semiconductor thin film formed on the substrate, and a step of thermally annealing the amorphous semiconductor thin film in this order, a method of manufacturing a semiconductor thin film. .
【0006】また、熱アニールにかえて、レーザアニー
ル以外のアモルファス半導体薄膜層のみを除去する工程
とからなる半導体薄膜の製造方法である。この場合に
は、レーザアニールする工程と、アモルファス半導体薄
膜層を除去する工程との順序関係に制限はなく、どちら
を先に行ってもよい。Further, the method of manufacturing a semiconductor thin film comprises a step of removing only the amorphous semiconductor thin film layer other than laser annealing, instead of thermal annealing. In this case, there is no limitation on the order relationship between the step of laser annealing and the step of removing the amorphous semiconductor thin film layer, and either step may be performed first.
【0007】気相成長または固相成長により多結晶半導
体薄膜を形成する方法とには、例えばLPCVD法、プ
ラズマCVD法、スパッタリンク法またはCVD法によ
りアモルファス半導体薄膜を形成し、熱アニールにより
多結晶化する方法等公知の方法を用いることができる。As a method for forming a polycrystalline semiconductor thin film by vapor phase growth or solid phase growth, for example, an amorphous semiconductor thin film is formed by LPCVD method, plasma CVD method, sputter link method or CVD method, and polycrystalline by thermal annealing. A known method such as a method for converting the compound into a compound can be used.
【0008】アモルファス半導体薄膜の形成についても
同様に、LPCVD法、常圧CVD法、プラズマCVD
法スパッタリング法等を用いることができる。Similarly, for the formation of the amorphous semiconductor thin film, the LPCVD method, the atmospheric pressure CVD method and the plasma CVD method are used.
A sputtering method or the like can be used.
【0009】レーザアニールには、XeCl,XeF,
KrF,KrCl,F2 ,ArF等のエキシマレーザを
用いることができる。For laser annealing, XeCl, XeF,
An excimer laser such as KrF, KrCl, F 2 or ArF can be used.
【0010】熱アニールは、基板にガラス基板を用いる
場合には620℃以下の低温で行うことが望ましいが、
石英基板を用いるならばこの限りではない。The thermal annealing is preferably carried out at a low temperature of 620 ° C. or lower when a glass substrate is used as the substrate.
This does not apply if a quartz substrate is used.
【0011】[0011]
【作用】本発明によれば、周辺駆動回路等を形成する領
域のように高移動度を要求される領域は、アモルファス
層をレーザアニールしており、均一度を要求される領域
は、アモルファス層の熱アニールあるいは、気相成長ま
たは固相成長による多結晶薄膜を用いているため、均一
度の高い半導体薄膜と、移動度の高い半導体薄膜とを同
一基板上に製造することができる。また、熱アニール工
程において、すでにレーザアニールされた領域は膜質の
変化を生じない。According to the present invention, the amorphous layer is laser-annealed in a region requiring high mobility such as a region forming a peripheral drive circuit, and the amorphous layer is required in a region requiring uniformity. Since the polycrystalline thin film formed by the thermal annealing or vapor phase growth or solid phase growth is used, the semiconductor thin film having high uniformity and the semiconductor thin film having high mobility can be manufactured on the same substrate. Further, in the thermal annealing process, the film quality does not change in the region that has already been laser-annealed.
【0012】特に、予め形成されたアモルファス層をレ
ーザアニールしているため、多結晶層を直接レーザアニ
ールする方法に比べ低いレーザエネルギーで、かつより
キャリア移動度の高い半導体薄膜を得ることができる。In particular, since the amorphous layer formed in advance is laser-annealed, a semiconductor thin film having lower laser energy and higher carrier mobility can be obtained as compared with the method of directly laser-annealing the polycrystalline layer.
【0013】さらに熱アニールによりアモルファス層を
結晶化させる工程においても、下層部に多結晶層を有す
るため、アモルファス層を直接熱アニールする方法に比
べ熱アニールによる多結晶薄膜形成時間を短縮すること
ができる。Further, even in the step of crystallizing the amorphous layer by thermal annealing, since the polycrystalline layer is provided in the lower layer portion, it is possible to shorten the time for forming the polycrystalline thin film by thermal annealing as compared with the method of directly thermal annealing the amorphous layer. it can.
【0014】また、アモルファス層をエッチングするこ
とにより、下層部多結晶層を利用可能となり、熱アニー
ルにかかる時間を省略することができる。Further, by etching the amorphous layer, the lower polycrystalline layer can be utilized, and the time required for thermal annealing can be omitted.
【0015】[0015]
【実施例】図1(A)に示すように、ガラス基板(例え
ば、日本電気硝子製OA−2)(201)上に予め被ア
ニール薄膜として、poly−Si薄膜(202)をS
iH4 ガスを原料とするLPCVD法により成膜温度6
20℃で、a−Si薄膜(203)を同様のLPCVD
法により成膜温度550℃でそれぞれ厚さ100nm堆
積し積層する。次ぎ基板上の半分の領域に、紫外パルス
レーザであるXeClエキシマレーザ(波長308n
m)を照射(205)しアニールを行い多結晶Si(2
04)化する(図1(B))。この時の照射強度は30
0mJ/cm2であった。エキシマレーザアニール終了
後、窒素雰囲気中で600℃での熱アニールを行い(2
0時間)、レーザ非照射部分を多結晶化(206)する
(図1(C))。LPCVD法の原料ガスとしては、S
iH4 に限らずSi2 H6 等でも良い。EXAMPLE As shown in FIG. 1A, a poly-Si thin film (202) was preliminarily annealed on a glass substrate (for example, OA-2 made by Nippon Electric Glass) (201).
Film formation temperature 6 by LPCVD method using iH 4 gas as a raw material
The same a-Si thin film (203) is LPCVDed at 20 ° C.
100 nm in thickness is deposited by the method at a film forming temperature of 550 ° C. and laminated. XeCl excimer laser (wavelength 308n
m) is irradiated (205) and annealed to obtain polycrystalline Si (2
04) (FIG. 1 (B)). The irradiation intensity at this time is 30
It was 0 mJ / cm 2 . After the excimer laser annealing is completed, thermal annealing is performed at 600 ° C. in a nitrogen atmosphere (2
At 0 hours), the laser non-irradiated portion is polycrystallized (206) (FIG. 1C). As a source gas for the LPCVD method, S
Not limited to iH 4 , Si 2 H 6 or the like may be used.
【0016】このようにして形成されるpoly−Si
薄膜を用いてプレーナ型薄膜トランジスタを作製した。
その結果、エキシマレーザアニール部において電子移動
度100cm2 /Vsec(均一性±10%)が得ら
れ、結晶性層を直接アニールする場合(照射強度340
mJ/cm2 、電子移動度70cm2 /Vsec程度)
に比べ1.5倍程度の高い移動度が得られた。また熱ア
ニール部で移動度10cm2 /Vsec(均一性±1
%)の特性が得られた。下地に多結晶層を有するため、
従来の固相成長法に比べ熱アニール時間が半分程度と短
縮された。The poly-Si formed in this way
A planar type thin film transistor was produced using the thin film.
As a result, an electron mobility of 100 cm 2 / Vsec (uniformity ± 10%) is obtained in the excimer laser annealing part, and when the crystalline layer is directly annealed (irradiation intensity 340
mJ / cm 2 , electron mobility 70 cm 2 / Vsec)
The mobility was about 1.5 times higher than that of. In the thermal annealing part, the mobility is 10 cm 2 / Vsec (uniformity ± 1
%) Characteristics were obtained. Since it has a polycrystalline layer in the base,
The thermal annealing time was reduced to about half that of the conventional solid-phase growth method.
【0017】次に図2を用いて他の実施例を示す。図1
(A)と同様に、ガラス基板(301)上に被アニール
薄膜として、poly−Si薄膜(302)、及びa−
Si薄膜(303)をLPCVD法により形成し積層す
る(図2(A))。次に紫外パルスレーザであるXeC
lエキシマレーザ(λ=308nm)を照射(305)
しアニールを行う(図2(B))。次に、エキシマレー
ザアニールされた領域のみにレジストをパターニング
し、CF4 ,O2 混合気体によるプラズマエッチングに
より非結晶層部分のみを取り除く(306(図2
(C))。Next, another embodiment will be described with reference to FIG. Figure 1
Similar to (A), as a thin film to be annealed, a poly-Si thin film (302) and a- are formed on a glass substrate (301).
A Si thin film (303) is formed by LPCVD and laminated (FIG. 2A). Next, XeC which is an ultraviolet pulse laser
Irradiation with an excimer laser (λ = 308 nm) (305)
Then, annealing is performed (FIG. 2B). Next, the resist is patterned only in the region annealed by the excimer laser, and only the amorphous layer portion is removed by plasma etching with a mixed gas of CF 4 and O 2 (306 (FIG. 2).
(C)).
【0018】このようにして形成されるpoly−Si
薄膜を用いてプレーナ型薄膜トランジスタを作製した。
その結果、エキシマレーザアニール部において電子移動
度100cm2 /Vsec(均一性±10%)が得ら
れ、結晶性層を直接アニールする場合(電子移動度70
cm2 /Vsec程度)に比べ1.5培程度の高い移動
度が得られた。また非結晶層を取り除いた後のpoly
−Si薄膜部で移動度10cm2 /Vsec(均一性±
1%以下)の特性が得られた。従って、上記の方法によ
り、同一基板上に用途に応じた特性を有する半導体薄膜
の形成が可能となった。The poly-Si formed in this way
A planar type thin film transistor was produced using the thin film.
As a result, an electron mobility of 100 cm 2 / Vsec (uniformity ± 10%) is obtained in the excimer laser annealing part, and when the crystalline layer is directly annealed (electron mobility 70
The mobility was about 1.5 times higher than that of (cm 2 / Vsec). Also, after removing the amorphous layer, poly
-Mobility 10 cm 2 / Vsec (uniformity ±
1% or less) was obtained. Therefore, according to the above method, it is possible to form a semiconductor thin film having the characteristics according to the application on the same substrate.
【0019】ガラス基板上の非結晶性半導体薄膜をレー
ザアニールするため、電子移動度;100cm2 /Vs
ecが得られ、ガラス基板上の結晶性半導体薄膜をレー
ザアニールして得られる電子移動度;70cm2 /Vs
ecに比べ高いキャリア移動度が得られた。したがっ
て、より高速動作が可能な薄膜トランジスタを形成する
ことが可能になる。また一方で、固相成長法やCVD法
により形成された結晶性半導体薄膜を同一基板上に有す
るため、高い均一度;±1%以下を持った薄膜トランジ
スタアレイを同時に形成することが可能である。レーザ
アニールにより形成した領域を周辺駆動回路用に用い、
固相成長法やCVD法により形成された領域を画素部な
どのトランジスタアレイ用に用いることで、それぞれの
要求性能を満足する半導体薄膜を提供することができ
る。Electron mobility: 100 cm 2 / Vs for laser annealing the amorphous semiconductor thin film on the glass substrate.
electron mobility obtained by laser annealing a crystalline semiconductor thin film on a glass substrate; 70 cm 2 / Vs
Higher carrier mobility was obtained as compared with ec. Therefore, it becomes possible to form a thin film transistor which can operate at higher speed. On the other hand, since the crystalline semiconductor thin film formed by the solid phase growth method or the CVD method is provided on the same substrate, it is possible to simultaneously form a thin film transistor array having high uniformity; ± 1% or less. The region formed by laser annealing is used for the peripheral drive circuit,
By using the region formed by the solid phase growth method or the CVD method for a transistor array such as a pixel portion, it is possible to provide a semiconductor thin film satisfying each required performance.
【0020】[0020]
【発明の効果】以上により、より高移動度が要求される
半導体薄膜、より高い均一性が要求される半導体薄膜そ
れぞれを同一基板上に作製可能になり、薄膜トランジス
タ集積回路の動作性能の向上、高スループット化が実現
されるという効果を有する。As described above, it becomes possible to fabricate a semiconductor thin film requiring higher mobility and a semiconductor thin film requiring higher uniformity on the same substrate, thereby improving the operating performance of the thin film transistor integrated circuit. This has the effect of realizing higher throughput.
【図1】本発明の1実施例の工程図である。FIG. 1 is a process drawing of an example of the present invention.
【図2】本発明の1実施例の工程図である。FIG. 2 is a process drawing of an example of the present invention.
【図3】従来技術の1例を示す図である。FIG. 3 is a diagram showing an example of a conventional technique.
201 ガラス基板 202 ポリシリコン薄膜 203 非晶質シリコン薄膜 204 レーザアニールされたシリコン薄膜 205 エキシマレーザ 206 熱アニールされたシリコン薄膜 301 ガラス基板 302 ポリシリコン薄膜 303 非晶質シリコン薄膜 304 レーザアニールされたシリコン薄膜 305 エキシマレーザ 306 エッチングにより除去された部分 101 ガラス基板 102 ポリシリコン薄膜 104 レーザアニールされたシリコン薄膜 105 エキシマレーザ 201 Glass Substrate 202 Polysilicon Thin Film 203 Amorphous Silicon Thin Film 204 Laser Annealed Silicon Thin Film 205 Excimer Laser 206 Thermal Annealed Silicon Thin Film 301 Glass Substrate 302 Polysilicon Thin Film 303 Amorphous Silicon Thin Film 304 Laser Annealed Silicon Thin Film 305 Excimer laser 306 Part removed by etching 101 Glass substrate 102 Polysilicon thin film 104 Laser-annealed silicon thin film 105 Excimer laser
Claims (2)
により多結晶半導体薄膜を形成する工程と、上記多結晶
半導体薄膜上にアモルファス半導体薄膜を積層する工程
と、上記基板上に形成されたアモルファス半導体薄膜の
任意の領域をレーザアニールする工程と、及び上記基板
上に形成されたアモルファス半導体薄膜を熱アニールす
る工程とをこの順に行うことを特徴とする半導体薄膜の
製造方法。1. A step of forming a polycrystalline semiconductor thin film on an insulating substrate by vapor phase growth or solid phase growth, a step of laminating an amorphous semiconductor thin film on the polycrystalline semiconductor thin film, and a step of forming the amorphous semiconductor thin film on the substrate. A method of manufacturing a semiconductor thin film, which comprises performing a step of laser annealing an arbitrary region of the amorphous semiconductor thin film and a step of thermally annealing the amorphous semiconductor thin film formed on the substrate in this order.
により多結晶半導体薄膜を形成する工程と、上記多結晶
半導体薄膜上にアモルファス半導体薄膜を積層する工程
と、上記基板上に形成されたアモルファス半導体薄膜の
任意の領域をレーザアニールする工程と、及びレーザア
ニール領域以外のアモルファス半導体薄膜層のみを除去
する工程とからなる半導体薄膜の製造方法。2. A step of forming a polycrystalline semiconductor thin film on an insulating substrate by vapor phase growth or solid phase growth, a step of laminating an amorphous semiconductor thin film on the polycrystalline semiconductor thin film, and a step of forming the amorphous semiconductor thin film on the substrate. A method of manufacturing a semiconductor thin film, which comprises a step of laser annealing an arbitrary region of the amorphous semiconductor thin film, and a step of removing only the amorphous semiconductor thin film layer other than the laser annealing region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5007126A JPH0828337B2 (en) | 1993-01-20 | 1993-01-20 | Method for manufacturing semiconductor thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5007126A JPH0828337B2 (en) | 1993-01-20 | 1993-01-20 | Method for manufacturing semiconductor thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06216044A true JPH06216044A (en) | 1994-08-05 |
JPH0828337B2 JPH0828337B2 (en) | 1996-03-21 |
Family
ID=11657391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5007126A Expired - Lifetime JPH0828337B2 (en) | 1993-01-20 | 1993-01-20 | Method for manufacturing semiconductor thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0828337B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0714140A1 (en) * | 1994-06-15 | 1996-05-29 | Seiko Epson Corporation | Manufacture of thin film semiconductor device, thin film semiconductor device, liquid crystal display device, and electronic device |
US6066516A (en) * | 1995-06-26 | 2000-05-23 | Seiko Epson Corporation | Method for forming crystalline semiconductor layers, a method for fabricating thin film transistors, and method for fabricating solar cells and active matrix liquid crystal devices |
JP2008211204A (en) * | 2008-02-12 | 2008-09-11 | Semiconductor Energy Lab Co Ltd | Manufacturing method of semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61145818A (en) * | 1984-12-20 | 1986-07-03 | Sony Corp | Heat processing method for semiconductor thin film |
JPH01212430A (en) * | 1988-02-20 | 1989-08-25 | Fujitsu General Ltd | Manufacture of thin film semiconductor device |
-
1993
- 1993-01-20 JP JP5007126A patent/JPH0828337B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61145818A (en) * | 1984-12-20 | 1986-07-03 | Sony Corp | Heat processing method for semiconductor thin film |
JPH01212430A (en) * | 1988-02-20 | 1989-08-25 | Fujitsu General Ltd | Manufacture of thin film semiconductor device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0714140A1 (en) * | 1994-06-15 | 1996-05-29 | Seiko Epson Corporation | Manufacture of thin film semiconductor device, thin film semiconductor device, liquid crystal display device, and electronic device |
EP0714140A4 (en) * | 1994-06-15 | 1998-04-01 | Seiko Epson Corp | Manufacture of thin film semiconductor device, thin film semiconductor device, liquid crystal display device, and electronic device |
US6066516A (en) * | 1995-06-26 | 2000-05-23 | Seiko Epson Corporation | Method for forming crystalline semiconductor layers, a method for fabricating thin film transistors, and method for fabricating solar cells and active matrix liquid crystal devices |
US6455360B1 (en) | 1995-06-26 | 2002-09-24 | Seiko Epson Corporation | Method for forming crystalline semiconductor layers, a method for fabricating thin film transistors, and a method for fabricating solar cells and active matrix liquid crystal devices |
US6746903B2 (en) | 1995-06-26 | 2004-06-08 | Seiko Epson Corporation | Method for forming crystalline semiconductor layers, a method for fabricating thin film transistors, and a method for fabricating solar cells and active matrix liquid crystal devices |
JP2008211204A (en) * | 2008-02-12 | 2008-09-11 | Semiconductor Energy Lab Co Ltd | Manufacturing method of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH0828337B2 (en) | 1996-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5569610A (en) | Method of manufacturing multiple polysilicon TFTs with varying degrees of crystallinity | |
JP4026182B2 (en) | Semiconductor device manufacturing method and electronic device manufacturing method | |
JP3586558B2 (en) | Method for reforming thin film and apparatus used for implementing the method | |
JP4211967B2 (en) | Method for crystallizing silicon using mask | |
KR100333153B1 (en) | Process for fabricating semiconductor device | |
US6881615B2 (en) | Method for crystallizing semiconductor material without exposing it to air | |
JP3516424B2 (en) | Thin film semiconductor device | |
JP3306258B2 (en) | Method for manufacturing semiconductor device | |
JPH05175235A (en) | Manufacture of polycrystalline semiconductor thin film | |
JP2004214615A (en) | Method for amorphous silicon film crystallization, mask for amorphous silicon crystallization, and method for manufacturing array substrate | |
JPH01187814A (en) | Manufacture of thin film semiconductor device | |
US5580801A (en) | Method for processing a thin film using an energy beam | |
JPH06267988A (en) | Method of manufacturing semiconductor circuit | |
JP3431681B2 (en) | Method for manufacturing semiconductor circuit | |
JPH06216044A (en) | Manufacture of semiconductor thin film | |
JPH0917729A (en) | Manufacture of semiconductor device | |
JPH10189449A (en) | Manufacture of crystallize semiconductor film and manufacture of thin-film transistor | |
JPS6230314A (en) | Manufacture of crystalline semiconductor thin film | |
JPH09139499A (en) | Manufacture of thin film transistor | |
JP4357006B2 (en) | Method for forming polycrystalline semiconductor thin film and method for manufacturing thin film transistor | |
JP2000068518A (en) | Manufacture of thin-film transistor | |
JP3431903B2 (en) | Semiconductor circuit and semiconductor device | |
JPH07193247A (en) | Thin-film transistor and its manufacture | |
JPH09232584A (en) | Method of manufacturing semiconductor device | |
JPH10163112A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960910 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080321 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090321 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090321 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100321 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100321 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120321 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120321 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130321 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term |