JPS61145818A - Heat processing method for semiconductor thin film - Google Patents

Heat processing method for semiconductor thin film

Info

Publication number
JPS61145818A
JPS61145818A JP59268809A JP26880984A JPS61145818A JP S61145818 A JPS61145818 A JP S61145818A JP 59268809 A JP59268809 A JP 59268809A JP 26880984 A JP26880984 A JP 26880984A JP S61145818 A JPS61145818 A JP S61145818A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
laser light
film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59268809A
Other languages
Japanese (ja)
Other versions
JPH07118444B2 (en
Inventor
Toshiyuki Samejima
俊之 鮫島
Setsuo Usui
碓井 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59268809A priority Critical patent/JPH07118444B2/en
Publication of JPS61145818A publication Critical patent/JPS61145818A/en
Publication of JPH07118444B2 publication Critical patent/JPH07118444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask

Abstract

PURPOSE:To improve characteristic of a semiconductor thin film by heating the specified region of semiconductor thin film up to the specified high temperature by irradiating said semiconductor thin film with a laser light to be absorbed therewith for a short period and thereafter heating it at a comparatively low temperature for a comparatively long period. CONSTITUTION:Only a-Si:H film 2 is locally heated up to the specified crystallization temperature by short term irradiation of a laser light 3. Next, the entire part of semiconductor device is heated in an electric furnace for a long period at a comparatively low temperature in order to remove defect or thermal distortion induced by laser light 3 in the a-Si:H film 2. With short term irradiation of laser light, the processing region can be localized and emission of useful substance within the semiconductor to be processed can be suppressed. Moreover, defect of semiconductor by irradiation of laser light can be eliminated by comparatively long term processing at a comparatively low temperature and a semiconductor thin film having good characteristic can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ光による半導体薄膜の熱処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of heat treating a semiconductor thin film using laser light.

〔従来の技術〕[Conventional technology]

従来、非晶質半導体の結晶化、或はイオン注入された不
純物の活性化等のために、半導体薄膜の熱処理が行なわ
れていた。
Conventionally, semiconductor thin films have been heat-treated to crystallize amorphous semiconductors or activate ion-implanted impurities.

電気炉による熱処理の場合、例えばアモルファスシリコ
ン薄膜の結晶化のためには、少くとも 600℃を越え
る高温に長時間保持されることが必要であった。また、
イオン注入法によってアモルファスシリコンに注入され
九不純物の活性化のためKも、同程度の高温処理が必要
であつ九。
In the case of heat treatment using an electric furnace, for example, in order to crystallize an amorphous silicon thin film, it is necessary to maintain the temperature at a high temperature exceeding at least 600° C. for a long time. Also,
K, which is implanted into amorphous silicon by ion implantation, requires a similar high-temperature treatment to activate impurities.

そして、このアモルファスシリコン薄膜は、シラン(8
1H4)を反応ガスとして熱分解(CVD)法、プラズ
マ分解法または光分解法によって形成されるが、分解析
出されたアモルファスシリコンには、なおも一部の水素
が結合し九ものが含まれる。このシリコンと結合した水
素は、熱処理過程において。
This amorphous silicon thin film is made of silane (8
It is formed by thermal decomposition (CVD) method, plasma decomposition method, or photodecomposition method using 1H4) as a reaction gas, but the amorphous silicon that is separated and separated still contains some hydrogen bonded to it. . This hydrogen combined with silicon is removed during the heat treatment process.

シリコン薄膜中の欠陥を減少させ、半導体としての電気
的特性を向上させる有用物質である。以下、結合水素を
含むアモルファスシリコンをa−81:Hと略記する。
It is a useful substance that reduces defects in silicon thin films and improves their electrical properties as a semiconductor. Hereinafter, amorphous silicon containing bonded hydrogen will be abbreviated as a-81:H.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述のような高温度の熱処理がなされるため
、a−81:H薄膜が被着形成される基板には石英ガラ
スのような耐熱性材料を用いなければならず、価格が上
昇するという問題があった。
However, since the above-mentioned high-temperature heat treatment is performed, a heat-resistant material such as quartz glass must be used for the substrate on which the a-81:H thin film is deposited, which increases the price. There was a problem.

また、a−81:H薄膜から結合水素が放出されてしま
い、半導体としての電気的特性が劣化するという問題が
あった。
Further, there is a problem in that bonded hydrogen is released from the a-81:H thin film, resulting in deterioration of the electrical characteristics as a semiconductor.

かかる点に鑑み1本発明の目的は、全般的に比較的低温
処理を可能にして従来の欠点を除去した半導体薄膜の熱
処理方法を提供するところにある・φ−1(3)を短時
間照射して、半導体薄膜(2)の所定領域を所定の高温
に加熱した後、半導体薄膜(2)を比較的長時間に亘っ
て、比較的低温度で加熱するようにした半導体薄膜の熱
処理方法である。
In view of the above points, an object of the present invention is to provide a method for heat treatment of semiconductor thin films which enables relatively low temperature treatment in general and eliminates the drawbacks of the conventional methods. A heat treatment method for a semiconductor thin film, in which a predetermined region of the semiconductor thin film (2) is heated to a predetermined high temperature, and then the semiconductor thin film (2) is heated at a relatively low temperature for a relatively long period of time. be.

〔作用〕[Effect]

かかる本発明によれば、レーザ光の短時間照射のため、
半導体薄膜の所定領域のみが所要の高温度となり、比較
的長時間低温度の加熱によって、半導体薄膜の特性が向
上する。
According to the present invention, for short-time irradiation with laser light,
Only a predetermined region of the semiconductor thin film is brought to the required high temperature, and the properties of the semiconductor thin film are improved by heating at a low temperature for a relatively long period of time.

(実施例〕 以下、ii図〜第3図を参照しながら、本発明による半
導体薄膜の熱処理方法の一実施例について説明する。
(Example) Hereinafter, an example of the method for heat treatment of a semiconductor thin film according to the present invention will be described with reference to FIGS. ii to 3.

第1図K、本発明方法の一実施例が適用される半導体装
置の構成を示す。
FIG. 1K shows the structure of a semiconductor device to which an embodiment of the method of the present invention is applied.

第1図において、(1)は基板であって、例えばンーダ
ガラスから成る。(2)は半導体薄膜であって、本実施
例では前述のa−81:Hから成り、基板(1)上に被
着形成される。その厚さtは例えば200nmである。
In FIG. 1, reference numeral (1) denotes a substrate, which is made of, for example, powdered glass. (2) is a semiconductor thin film, which in this embodiment is made of the aforementioned a-81:H, and is deposited on the substrate (1). The thickness t is, for example, 200 nm.

(3)は波長が245nmのKrFエキシマレーザ光で
あって、半導体薄膜(2)に間欠的に照射される。
(3) is a KrF excimer laser beam having a wavelength of 245 nm, which is intermittently irradiated onto the semiconductor thin film (2).

本実施例においては、先ず、レーザ光(3)の短時間照
射によって、a−81:H膜(2)のみが局部的に所定
の結晶化温度まで加熱される。次いで、a−81: H
膜(2)中のレーザ光(3)K誘起され九欠陥や熱歪に
よる欠陥を除去するため、電気炉によって、半導体装置
全体が比較的低温度で長時間加熱される。
In this example, first, only the a-81:H film (2) is locally heated to a predetermined crystallization temperature by short-time irradiation with laser light (3). Then a-81: H
In order to remove defects induced by laser light (3) and thermal strain in the film (2), the entire semiconductor device is heated in an electric furnace at a relatively low temperature for a long time.

波長が400nm以下の紫外線に対して、アモルファス
シリコンの吸収係数αは10’m−’以上と極めて大き
いので、レーザ光(3)はa−81:H膜(2)の表面
からの深さdt=1/αが10nmと極めて浅い範囲で
吸収されて熱エネルギーに変換される。
For ultraviolet light with a wavelength of 400 nm or less, the absorption coefficient α of amorphous silicon is extremely large at 10'm-' or more, so the laser beam (3) is transmitted at a depth dt from the surface of the a-81:H film (2). =1/α is absorbed in an extremely shallow range of 10 nm and converted into thermal energy.

また、レーザ光(3)の1回の照射時間(パルス幅)を
τsec 、 a−81:H膜(2)の熱拡散係数をD
cIR”/’seeとすると、このτ、。。間にa−8
l SH膜(2)の表面から熱が拡散する距離dhは次
の(1)式で表わされる。
In addition, the irradiation time (pulse width) of one laser beam (3) is τsec, and the thermal diffusion coefficient of the a-81:H film (2) is D
cIR"/'see, this τ..., between a-8
The distance dh through which heat diffuses from the surface of the lSH film (2) is expressed by the following equation (1).

dh=2y″TF       ・・・・・・(1)こ
の拡散距離dhがa−81:H膜(2)の厚さtを越え
ない場合、a−81:H膜(2)の表面に発生した熱は
レーザ光(3)の照射時間中に基板(1)tで到達せず
、a−8l:H膜(2)のレーザ光照射領域のみが局部
的に所定の高温になる。
dh=2y″TF ・・・・・・(1) If this diffusion distance dh does not exceed the thickness t of the a-81:H film (2), it will occur on the surface of the a-81:H film (2). The generated heat does not reach the substrate (1) t during the irradiation time of the laser beam (3), and only the laser beam irradiated area of the a-8l:H film (2) becomes locally at a predetermined high temperature.

所定の温度上昇分子、を得るために必要なレーず光のパ
ルス当シのエネルギー密度1.(υi)は次の(2)式
のように表わされる。
Energy density per pulse of laser light necessary to obtain a predetermined temperature increase in the molecule.1. (υi) is expressed as the following equation (2).

E、 = (1−R) T、・c、す・2f「 ・・・
・・・(2)ここく、Rは表面の反射率、CPは比熱、
ρは密度である。
E, = (1-R) T,・c,su・2f "...
...(2) Here, R is the reflectance of the surface, CP is the specific heat,
ρ is the density.

a−81:Hの反射率Rは略70チと大きく、また、熱
拡散係数りは略0.01 cys”/ s@aと推定さ
れる。結晶化に必要なエネルギー密度は20 rnJ/
cm”以上あれば良く、本実施例においては、パルス幅
が14ns@aで100 mJ/CIIM麿のKrFエ
キシマレーザ光が用いられ、a−81:H膜(2)は約
1000℃まで加熱されて、結晶化がなされる。この場
合、レーザ光の照射時間が極めて短か(、a−8l:H
膜(2)が高温になる時間もまた極めて短かい丸め、そ
の中の結合水素はすべて放出されるに至らず、一部はシ
リコンと結合したままの状態で残留する。
The reflectance R of a-81:H is as large as approximately 70 cm, and the thermal diffusion coefficient is estimated to be approximately 0.01 cys"/s@a. The energy density required for crystallization is 20 rnJ/
In this example, KrF excimer laser light with a pulse width of 14 ns@a and 100 mJ/CIIM was used, and the a-81:H film (2) was heated to about 1000°C. In this case, the laser beam irradiation time is extremely short (, a-8l:H
The time during which the film (2) is heated to a high temperature is also extremely short, and all of the bonded hydrogen therein is not released, and some of it remains bonded to silicon.

第2図はレーザ光照射前後における81:H膜の赤外線
吸収スペクトルであって、同図中、Aは照射前、Bは照
射後を示す。この第2図からレーザ光の照射後において
も、シリコン膜中に結合水素が存在し【いることが判る
。なお、従来の高温炉結晶化処理によるものでは、この
赤外線吸収は認められない。
FIG. 2 shows the infrared absorption spectra of the 81:H film before and after laser beam irradiation, in which A shows before irradiation and B shows after irradiation. It can be seen from FIG. 2 that bonded hydrogen exists in the silicon film even after laser beam irradiation. Note that this infrared absorption is not observed in conventional high-temperature furnace crystallization treatment.

上述のような結晶化処理の後、光誘起欠陥や熱歪による
欠陥を除去するため、電気炉において、圧力が1 to
rrの窒素ガス中で300℃1時間の比較的低温度長時
間の熱処理がなされる。このとき、結合水素がシリコン
結晶中の欠陥を減少させるので、半導体としての電気的
特性が向上する。この模様を第3図に示す。
After the crystallization process as described above, in order to remove photo-induced defects and defects due to thermal strain, the pressure was increased to 1 to
A heat treatment is performed at a relatively low temperature for 1 hour at 300° C. in nitrogen gas at a temperature of 30° C. for a long time. At this time, since the bonded hydrogen reduces defects in the silicon crystal, the electrical characteristics as a semiconductor are improved. This pattern is shown in Figure 3.

第3図において、白丸及び黒丸はシリ;ン膜の光導電率
及び暗導電率を示す。また、横軸の!。
In FIG. 3, white circles and black circles indicate the photoconductivity and dark conductivity of the silicon film. Also, on the horizontal axis! .

■及び■はそれぞれレーザ光照射前、照射後及び低温炉
処理後の状態を示す。
■ and ■ indicate the states before laser beam irradiation, after irradiation, and after low temperature furnace treatment, respectively.

同図から明らかなように、暗導電率はレーザ照射後大幅
に増大して多結晶薄膜の特性を示し、低温炉処理後、更
に増大する。一方、光導電率はレーザ照射後に減少する
が、低温炉処理によってレーザ照射前よシも増大し、良
好な多結晶膜特性を示す。
As is clear from the figure, the dark conductivity increases significantly after laser irradiation, exhibiting the characteristics of a polycrystalline thin film, and further increases after low temperature furnace treatment. On the other hand, although the photoconductivity decreases after laser irradiation, the low temperature furnace treatment increases it even more than before laser irradiation, indicating good polycrystalline film properties.

次に、第4図を参照しながら、本発明方法をイオン注入
法による不純物の活性化に適用した他の実施例について
説明する。
Next, with reference to FIG. 4, another embodiment in which the method of the present invention is applied to activation of impurities by ion implantation will be described.

この場合、a−st:HJIIKはp型となる不純物が
例えば50 K・Vのエネルギーで10/eIl?の密
度でイオン注入される。このイオン注入され九a−81
:H膜がエネルギー密度80 mJ 7cm”のKrF
エキシマレーザ。に短時間照射された後、前述の実施例
と同様に、1 torrの窒素ガス中で300℃1時間
の低温炉処理がなされる。
In this case, a-st:HJIIK has a p-type impurity of, for example, 10/eIl? at an energy of 50 K·V. Ions are implanted at a density of This ion implantation is nine a-81
:H film is KrF with energy density 80 mJ 7 cm”
excimer laser. After being irradiated for a short period of time, a low-temperature furnace treatment is performed at 300° C. for 1 hour in nitrogen gas at 1 torr, as in the previous example.

この場合の導電率の変化の模様を第4図に示す。FIG. 4 shows the pattern of change in conductivity in this case.

第4図において、横軸の1.1及び■は、それぞれレー
ザ光照射前、照射後及び低温炉処理後の状態を示し、■
は低温炉処理のみを行なった後の状態を示す。
In FIG. 4, 1.1 and ■ on the horizontal axis indicate the states before laser beam irradiation, after irradiation, and after low temperature furnace treatment, respectively;
shows the state after only low-temperature furnace treatment.

同図から明らかなように、レーザ光を照射することなく
、低温炉処理のみを行った場合、活性化は認められない
のに対して、レーザ光照射によって、導電率が10”/
Ω傭まで活性化されたp+型のa−81:H膜は、低温
炉処理によって、その導電率が更に増大しておシ、イオ
ン注入による不純物が効果的に活性化されていることが
判る。
As is clear from the figure, when only low temperature furnace treatment was performed without laser light irradiation, no activation was observed, whereas with laser light irradiation, the electrical conductivity increased by 10”/
It can be seen that the conductivity of the p+ type a-81:H film, which has been activated to Ωm, further increases through low-temperature furnace treatment, and the impurities caused by ion implantation are effectively activated. .

次に、第5図を参照しながら、本発明の更に他の実施例
について説明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

第5図において、ガラス基板(1)上に半導体薄膜(2
)として結晶シリコン膜が形成され、ノ4ルスレーザ光
(3)の光源(4)としてKrFエキシマレーザが用い
られる。レーザ光(3)は、レンズ(5)によって所定
の大きさに集束されて、半導体薄膜(2)の表面の局所
(2a)を照射して所定温度まで加熱する。
In FIG. 5, a semiconductor thin film (2) is placed on a glass substrate (1).
), and a KrF excimer laser is used as the light source (4) of the Norse laser beam (3). The laser beam (3) is focused to a predetermined size by a lens (5), and irradiates a local area (2a) on the surface of the semiconductor thin film (2) to heat it to a predetermined temperature.

(2)は低温処理のためのエネルギービームであって、
そのビーム源α4としてはアルコ9ンレーザ、炭酸がス
レーブま九は赤外線灯等が用いられる。低温処理の場合
、エネルギービーム斡を局部的に照射する必要はなく、
その照射量はシャッタ(ロ)によって制御される。
(2) is an energy beam for low temperature processing,
As the beam source α4, an alcohol laser, an infrared lamp, etc. are used as the beam source α4. In the case of low-temperature processing, there is no need to irradiate the energy beam locally;
The amount of irradiation is controlled by a shutter (b).

波長が245nmの紫外線に対する結晶シリコンの吸収
係数αは、前出のアモルファスシリコンのそれと同じく
、10cIR以上であるから、レーザ光(3)が結晶シ
リコン膜(2)内へ進入する深さdtは前出実施例の場
合と同じく、10nmとなる。
The absorption coefficient α of crystalline silicon for ultraviolet rays with a wavelength of 245 nm is 10 cIR or more, as is the case with the aforementioned amorphous silicon, so the depth dt at which the laser beam (3) enters the crystalline silicon film (2) is As in the case of the previous example, the thickness is 10 nm.

一方、結晶シリコンの熱拡散係数りは、アモルファスシ
リコンのそれに比べて非常に大きく、0.9 cm” 
/s@eであって、レーザ光の照射時間τを1゜n I
I@e とすれば、この7時間内に熱が拡散する距離d
hは、前出(1)式から、1.9μmとなる。従って、
本実施例においては、結晶シリコン膜(2)の厚さが1
.9μmを越える場合、レーザ光照射時間中に結晶シリ
コン膜(2)のみが局部的に加熱され、基板(1)への
熱拡散はない。
On the other hand, the thermal diffusivity of crystalline silicon is much larger than that of amorphous silicon, 0.9 cm.
/s@e, and the laser beam irradiation time τ is 1゜n I
If I@e, then the distance d that heat diffuses within the last 7 hours is
From equation (1) above, h is 1.9 μm. Therefore,
In this example, the thickness of the crystalline silicon film (2) is 1
.. If it exceeds 9 μm, only the crystalline silicon film (2) is locally heated during the laser beam irradiation time, and there is no heat diffusion to the substrate (1).

また、レーザ光(3)の所要エネルギー密度は前出(2
)式から求めることができる。
In addition, the required energy density of the laser beam (3) is
) can be obtained from the formula.

シリコン膜(2)の表面を融点の1415℃まで加熱す
るためKは、無反射コーティングによってRキ0として
、比熱C,= 0.7 、密度ρ=2.33であるから
、Ep =0.43 J /eye” のエネルギーが必要となる・ 光誘起欠陥等の除去のためのエネルギービーム(2)の
照射条件は結晶シリコン膜(2)の到達温度が劣化しな
い範囲の上限の600℃の場合、照射時間が1μl@七
以上となる。
In order to heat the surface of the silicon film (2) to its melting point of 1415°C, K is Rki0 due to the anti-reflection coating, specific heat C, = 0.7, density ρ = 2.33, and Ep = 0. Energy of 43 J/eye” is required. The irradiation conditions for the energy beam (2) for removing photo-induced defects, etc. are 600°C, which is the upper limit of the range in which the temperature reached by the crystalline silicon film (2) does not deteriorate. , the irradiation time is 1 μl@7 or more.

本実施例においても、前述の実施例におけると同様の効
果が得られる。
In this embodiment as well, the same effects as in the above-mentioned embodiments can be obtained.

以上、被処理半導体がシリコンである場合について説明
したが、ガリウム砒素(GaAm)の場合には、し・−
デ光のノ臂ルス照射によって、AMの放出を抑制するこ
とができる。
Above, we have explained the case where the semiconductor to be processed is silicon, but in the case of gallium arsenide (GaAm),...
AM emission can be suppressed by irradiating the arm with delight.

更に、本発明方法によれば、短波長レーザ光のノ臂ルス
照射によって、処理の深さを極めて小さくすることがで
きるため、所謂3次元集積回路の製造に好適である。
Further, according to the method of the present invention, the depth of processing can be made extremely small by irradiating the arm with short wavelength laser light, so that it is suitable for manufacturing so-called three-dimensional integrated circuits.

〔発明の効果〕〔Effect of the invention〕

以上詳述のように1本発明によれば、レーザ光の短時間
照射によって、処理領域を局限することができると共に
、被処理半導体中の有用物質の放出を抑制することがで
きる。
As described in detail above, according to one aspect of the present invention, by short-time irradiation with laser light, the processing area can be localized, and the release of useful substances in the semiconductor to be processed can be suppressed.

更に、比較的低温長時間の処理を行なうことによって、
レーザ光照射による半導体の欠陥が除去され、良好な特
性の半導体薄膜が得られる。
Furthermore, by processing at relatively low temperatures for a long time,
Defects in the semiconductor due to laser beam irradiation are removed, and a semiconductor thin film with good characteristics is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体薄膜の熱処理方法の一実施
例を説明するための半導体装置の断面図、第2図及び第
3図は本発明の一実施例の説明に供する線図、第4図は
本発明の他の実施例の説明に供する線図、第5図は本発
明の更に他の実施例を示す構成図である。 (2)は半導体薄膜、(3)はエネルギービーム(レー
ザ光)、斡はエネルギービームである。 第1図 第2図
FIG. 1 is a cross-sectional view of a semiconductor device for explaining an embodiment of the heat treatment method for a semiconductor thin film according to the present invention, FIGS. 2 and 3 are diagrams for explaining an embodiment of the present invention, and FIG. The figure is a diagram for explaining another embodiment of the invention, and FIG. 5 is a configuration diagram showing still another embodiment of the invention. (2) is a semiconductor thin film, (3) is an energy beam (laser light), and 斡 is an energy beam. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  半導体薄膜に吸収されるレーザ光を短時間照射して、
上記半導体薄膜の所定領域を所定の高温に加熱した後、
上記半導体薄膜を比較的長時間に亘つて比較的低温度で
加熱することを特徴とする半導体薄膜の熱処理方法。
By irradiating a laser beam that is absorbed by a semiconductor thin film for a short period of time,
After heating a predetermined region of the semiconductor thin film to a predetermined high temperature,
A method for heat treatment of a semiconductor thin film, which comprises heating the semiconductor thin film at a relatively low temperature for a relatively long period of time.
JP59268809A 1984-12-20 1984-12-20 Heat treatment method for semiconductor thin film Expired - Lifetime JPH07118444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59268809A JPH07118444B2 (en) 1984-12-20 1984-12-20 Heat treatment method for semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59268809A JPH07118444B2 (en) 1984-12-20 1984-12-20 Heat treatment method for semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS61145818A true JPS61145818A (en) 1986-07-03
JPH07118444B2 JPH07118444B2 (en) 1995-12-18

Family

ID=17463558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59268809A Expired - Lifetime JPH07118444B2 (en) 1984-12-20 1984-12-20 Heat treatment method for semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH07118444B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325913A (en) * 1986-07-17 1988-02-03 Nec Corp Manufacuture of semiconductor thin film
JPH06188268A (en) * 1992-12-16 1994-07-08 Casio Comput Co Ltd Manufacture of thin film transistor
JPH06216044A (en) * 1993-01-20 1994-08-05 Nec Corp Manufacture of semiconductor thin film

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104217A (en) * 1980-12-22 1982-06-29 Toshiba Corp Surface heat treatment
JPS57138129A (en) * 1981-02-19 1982-08-26 Matsushita Electric Ind Co Ltd Manufacture of amorphous thin-film
US4370175A (en) * 1979-12-03 1983-01-25 Bernard B. Katz Method of annealing implanted semiconductors by lasers
JPS5860530A (en) * 1981-10-06 1983-04-11 Toshiba Corp Manufacture of semiconductor film
JPS5892227A (en) * 1981-11-28 1983-06-01 Mitsubishi Electric Corp Gettering for crystal defect
JPS5893216A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor device
JPS58134476A (en) * 1982-02-05 1983-08-10 Mitsubishi Electric Corp Thin film transistor
JPS58170065A (en) * 1982-03-31 1983-10-06 Toshiba Corp Manufacture of thin film field effect transistor
JPS58197717A (en) * 1982-05-13 1983-11-17 Toshiba Corp Preparation of semiconductor device
JPS58206163A (en) * 1982-05-27 1983-12-01 Toshiba Corp Manufacture of thin film semiconductor device
JPS59181531A (en) * 1983-03-31 1984-10-16 Oki Electric Ind Co Ltd Formation of diffusion region

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370175A (en) * 1979-12-03 1983-01-25 Bernard B. Katz Method of annealing implanted semiconductors by lasers
JPS57104217A (en) * 1980-12-22 1982-06-29 Toshiba Corp Surface heat treatment
JPS57138129A (en) * 1981-02-19 1982-08-26 Matsushita Electric Ind Co Ltd Manufacture of amorphous thin-film
JPS5860530A (en) * 1981-10-06 1983-04-11 Toshiba Corp Manufacture of semiconductor film
JPS5892227A (en) * 1981-11-28 1983-06-01 Mitsubishi Electric Corp Gettering for crystal defect
JPS5893216A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor device
JPS58134476A (en) * 1982-02-05 1983-08-10 Mitsubishi Electric Corp Thin film transistor
JPS58170065A (en) * 1982-03-31 1983-10-06 Toshiba Corp Manufacture of thin film field effect transistor
JPS58197717A (en) * 1982-05-13 1983-11-17 Toshiba Corp Preparation of semiconductor device
JPS58206163A (en) * 1982-05-27 1983-12-01 Toshiba Corp Manufacture of thin film semiconductor device
JPS59181531A (en) * 1983-03-31 1984-10-16 Oki Electric Ind Co Ltd Formation of diffusion region

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325913A (en) * 1986-07-17 1988-02-03 Nec Corp Manufacuture of semiconductor thin film
JPH06188268A (en) * 1992-12-16 1994-07-08 Casio Comput Co Ltd Manufacture of thin film transistor
JPH06216044A (en) * 1993-01-20 1994-08-05 Nec Corp Manufacture of semiconductor thin film
JPH0828337B2 (en) * 1993-01-20 1996-03-21 日本電気株式会社 Method for manufacturing semiconductor thin film

Also Published As

Publication number Publication date
JPH07118444B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
JPH0582442A (en) Manufacture of polycrystalline semiconductor thin film
JPH01187814A (en) Manufacture of thin film semiconductor device
JP2997375B2 (en) Method for manufacturing polycrystalline silicon thin film
JP3669384B2 (en) Method for forming a doping layer in a semiconductor substrate
JPH02148831A (en) Laser annealing method
JPS62186531A (en) Method and apparatus for manufacturing integrated circuit structure with smooth boundary surface
JPS61145818A (en) Heat processing method for semiconductor thin film
JPS59211221A (en) Heat treatment of ion implanted semiconductor
JPS61116820A (en) Annealing method for semiconductor
JP3203706B2 (en) Method for annealing semiconductor layer and method for manufacturing thin film transistor
JP2007115927A (en) Heat treatment method
JPH02119122A (en) Manufacture of low resistive polycrystalline semiconductor thin film
JPH0420254B2 (en)
JP2696818B2 (en) Semiconductor layer crystal growth method
JPS633447B2 (en)
JP2698363B2 (en) Manufacturing method of polycrystalline silicon thin film
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JPS6231111A (en) Manufacture of crystalline semiconductor thin film
JPH025295B2 (en)
JPH0227824B2 (en)
JPH11121375A (en) Manufacture of semiconductor device
JPS6122623A (en) Manufacture of semiconductor element
JPS60240118A (en) Manufacture of si semiconductor
JPH03284831A (en) Forming method for semiconductor thin-film
JPS5837919A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term