JPS58170065A - Manufacture of thin film field effect transistor - Google Patents

Manufacture of thin film field effect transistor

Info

Publication number
JPS58170065A
JPS58170065A JP5142182A JP5142182A JPS58170065A JP S58170065 A JPS58170065 A JP S58170065A JP 5142182 A JP5142182 A JP 5142182A JP 5142182 A JP5142182 A JP 5142182A JP S58170065 A JPS58170065 A JP S58170065A
Authority
JP
Japan
Prior art keywords
thin film
film
gate electrode
semiconductor thin
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5142182A
Other languages
Japanese (ja)
Other versions
JPH059941B2 (en
Inventor
Mitsushi Ikeda
光志 池田
Toshio Aoki
寿男 青木
Koji Suzuki
幸治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP5142182A priority Critical patent/JPS58170065A/en
Priority to DE8282106781T priority patent/DE3279239D1/en
Priority to EP82106781A priority patent/EP0071244B1/en
Publication of JPS58170065A publication Critical patent/JPS58170065A/en
Priority to US06/779,648 priority patent/US4700458A/en
Publication of JPH059941B2 publication Critical patent/JPH059941B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To improve the operating speed of a TFT circuit and to enable to microminiaturize and integrate an element by self-aligning a gate electrode with source and drain electrodes. CONSTITUTION:A gate electrode 12 is formed by sputtering and patterning of Al on a transparent glass substrate 11, and an oxidized silicon film 13 is then formed by sputtering as a transparent gate insulating film, an indium or tin oxidized film 14a is further accumulated. Subsequently, an amorphous silicon film 14b added with P (phosphorus) is accumulated by the glow discharge decomposition of SiH4 and PH3. Then, an negative type resist 15 is coated, ultraviolet ray is exposed with the electrode 12 as a mask from the back surface of the substrate 11, a development is performed, and the resist is patterned. Then, an amorphous silicon film added with P and indium, tin oxidized film are etched to form source 141 and drain 142 electrodes which are self-aligned with the gate electrode. An amorphous silicon film 16 is then accumulated by the flow discharge decomposition of the SiH2, formed in the prescribed pattern by PEP technique. Wirings out of the source and drain regions of an element are eventually formed in the desired pattern, thereby completing a TFT.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 、!F:発明は半導体薄膜を用いた電界効果トランジス
タの製造方法忙関する。
[Detailed description of the invention] [Technical field to which the invention pertains] ,! F: The invention relates to a method of manufacturing a field effect transistor using a semiconductor thin film.

〔従来技術とその問題点〕[Prior art and its problems]

近年、多結晶又は非晶質半導体により形成された薄膜電
界効果トランジスタ(TPT)が注目されている。特に
、上記半導体薄膜が低温で形成できる場合には、薄膜半
導体装置を構成するためO基板が特に限定されず、又,
従来の露光技術、エツチング技術等のパターン形成法も
そのまま使用できる場合が多いなどの利点を有するため
、目的に応じて、多種多様の構造の半導体装置が実現で
きも。
In recent years, thin film field effect transistors (TPTs) formed from polycrystalline or amorphous semiconductors have attracted attention. In particular, when the semiconductor thin film can be formed at a low temperature, the O substrate is not particularly limited to constitute a thin film semiconductor device, and
It has the advantage that conventional pattern forming methods such as exposure technology and etching technology can often be used as is, so semiconductor devices with a wide variety of structures can be realized depending on the purpose.

これらの半導体薄膜を用いた半導体装置の機能を十分に
発揮するために、同一基板内にスイッチング素子や能動
回路素子として、と起生導体薄膜により形成されたTP
Tを設けることが多い。
In order to fully demonstrate the functions of semiconductor devices using these semiconductor thin films, TPs formed from conductive thin films are used as switching elements and active circuit elements on the same substrate.
T is often provided.

第1図および第2図は従来のTPTの2つの基本−造を
概略的に示す図である。これらの図においてlは基板、
2は多結晶あるいは非晶質半導体薄膜、3はゲート絶縁
膜、4はゲート電極、5,6はそれぞれソース、ドレイ
ン金属電極である。第1図のものは半導体薄膜2の同じ
面側にゲート電極4゜ソース電極5およびドレイン電極
6が設けられ、第2図のものは半導体薄膜2の下面側に
ゲート電極4、上面側にソース電極5およびドレイン電
極6が設けられている。これらのTPTは結晶シリコン
を用い九いわゆるMO8FITと類似の電気的特性を示
すが、MO8FITとの動作原還の根本的衣違いはトラ
ンジスタのチャンネルの連断条件が、MO8FITでは
PN接合の逆方向特性を利用するのに対しTPTでは半
導体薄膜2の高i抗を利用する点であ’    6 o
 f + 744゜lA#11ti#K、IEW@*K
 xる半導体表面の反転あるいはキャリヤ蓄積を利用゛
する。従って、これらのTPTを構成するためKは半導
体薄膜2の非導通状態での抵抗がチャンネル形成、時の
抵抗に比べ十分高いことが必要である。
1 and 2 are diagrams schematically showing two basic structures of a conventional TPT. In these figures, l is the substrate,
2 is a polycrystalline or amorphous semiconductor thin film, 3 is a gate insulating film, 4 is a gate electrode, and 5 and 6 are source and drain metal electrodes, respectively. The one in FIG. 1 has a gate electrode 4, a source electrode 5, and a drain electrode 6 on the same side of the semiconductor thin film 2, and the one in FIG. 2 has a gate electrode 4 on the bottom side of the semiconductor thin film 2 and a source on the top side. An electrode 5 and a drain electrode 6 are provided. These TPTs use crystalline silicon and exhibit electrical characteristics similar to those of the so-called MO8FIT, but the fundamental difference in operating principle from the MO8FIT is the connection condition of the transistor channel, whereas the MO8FIT has the reverse characteristics of the PN junction. In contrast, TPT utilizes the high i resistance of the semiconductor thin film 2.
f + 744゜lA#11ti#K, IEW@*K
This method utilizes the inversion or carrier accumulation of the semiconductor surface. Therefore, in order to construct these TPTs, it is necessary that the resistance of the semiconductor thin film 2 in the non-conducting state is sufficiently higher than the resistance during channel formation.

さて′、これらのTPTは多結晶又は非晶質半導体薄膜
を用いるため結晶半導体に比べ、キャリヤとなる電子中
正孔の移動度が低くなる0特に非晶質半導体では顕著で
ある。このため、結晶半導体材料を用いたMO8FET
に比べ、TPTの動作周波数の限界はかなり低くなって
しまう。また、このようなTPTを基板上に複数個集積
化した場合には、その動作速度は、上記動作周波数の限
界よりも一般にかなり遅くなる。これは、主に配線やト
ランジスタ構造に基づく寄生容量のための時間遅れが原
因となる。TPTでは、絶縁体の基板を使用できるため
、配線と基板間の寄生容量をさけることは容量であるが
、第1図あるいは第2図の構造では、ソース・ゲート間
あるいはドレイン・ゲート間の電極の砿なりによる寄生
容量の影響が大きい。一般に、寄生容量を有するTPT
を含む回路の動作速度を上げる丸めには、TPTのON
状態における抵抗を下げればよいが、このためにはTP
Tの電流路の幅(チャンネル幅)を大会くする必要があ
る。この場合従来構造のTPTでは、寄生容量もチャン
ネル幅に比例して増えるため、本質的な動作速度の向上
とはならない。
Now, since these TPTs use polycrystalline or amorphous semiconductor thin films, the mobility of holes in electrons serving as carriers is lower than in crystalline semiconductors, which is particularly noticeable in amorphous semiconductors. For this reason, MO8FET using crystalline semiconductor material
Compared to this, the operating frequency limit of TPT is considerably lower. Furthermore, when a plurality of such TPTs are integrated on a substrate, the operating speed thereof is generally much slower than the above-mentioned operating frequency limit. This is mainly caused by time delays due to parasitic capacitance based on wiring and transistor structures. In TPT, an insulating substrate can be used, so parasitic capacitance between the wiring and the substrate can be avoided using capacitance. The influence of parasitic capacitance due to the roundness of In general, TPT with parasitic capacitance
To increase the operating speed of circuits containing
It is only necessary to lower the resistance in the state, but for this purpose the TP
It is necessary to increase the width of the current path (channel width) of T. In this case, in the conventional TPT structure, the parasitic capacitance also increases in proportion to the channel width, so that the operating speed is not essentially improved.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、ゲート電極とソースドレイン
電極とを自己整合させてTPT回路の動作速度の向上を
図り、素子の微細化と高集積化を可能とするTPTの製
造方法を提供するものである。
In view of the above points, the present invention provides a TPT manufacturing method that improves the operating speed of a TPT circuit by self-aligning a gate electrode and a source/drain electrode, and enables miniaturization and high integration of elements. It is something.

又、ソース・ドレイン電極のコンタクト抵抗を下げて特
性を向上させる事を第2の目的とする。
A second purpose is to lower the contact resistance of the source/drain electrodes and improve the characteristics.

〔発明の概要〕[Summary of the invention]

本発明においては、基板上にまず所定パターンのゲート
電極を形成し、この上にゲート絶縁膜を介してソース、
ドレイン電極を形成し、そのトに半導体薄膜を堆積する
。この場合、基板とゲート絶縁膜を透明材料とし、ゲー
ト電極を不透明材料として、ゲート絶縁膜上くソース・
ドレイ/電極となる不純物添加半導体薄膜を形成する。
In the present invention, a gate electrode of a predetermined pattern is first formed on a substrate, and a source and a
A drain electrode is formed, and a semiconductor thin film is deposited on the drain electrode. In this case, the substrate and gate insulating film are made of transparent material, the gate electrode is made of opaque material, and the source and
An impurity-doped semiconductor thin film is formed to serve as a drain/electrode.

このソース、ドレイン電極を基板裏面からの露光を利用
   □してゲート電極に自己整合させてパターニング
する0即ちその上にレジストを塗布してフオトエッチン
グエ楊により基板裏面からゲート電極をマスクとして露
光し、これを現像して、不純物添加半導体膜をゲート電
極に自己整合され九ソース、ドレイン電極としてパター
ニングスル。
The source and drain electrodes are patterned using exposure from the back side of the substrate and self-aligned with the gate electrode. In other words, a resist is applied thereon and exposed from the back side of the substrate using the gate electrode as a mask. This is then developed and the impurity-doped semiconductor film is self-aligned to the gate electrode and patterned as nine source and drain electrodes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲート電極とソース、ドレイン電極と
の間の寄生容量が小さく、高速動作が可能となるだけで
なく、TPT回路の微細化、高集積化を図ることができ
、又、不純物添加半導体膜により良好なオーミックコン
タクトが取れる。
According to the present invention, the parasitic capacitance between the gate electrode and the source and drain electrodes is small, and not only high-speed operation is possible, but also miniaturization and high integration of TPT circuits can be achieved. Good ohmic contact can be made with the added semiconductor film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を#I3図(a)〜(d)を用い
て説明する。まず透明ガラス基板11上に厚さ100O
XのMのスパッター、バターニングによりゲート電極1
2を形成し、次いで透明なゲート絶縁膜としてスパッタ
ーにより厚さ3000^の酸化シリコン膜13を堆積さ
せ、更にスパッターで約1OooXのインジラム、スズ
酸化膜141を堆積させ、しかる後に8 iH4とPH
sのグロー放電分解により、P(リン)を10′9〜5
 X 10” /cd添加した厚さ30〜toooX例
えば約200 Kの非晶質シリコン膜14bを堆積させ
る。次にネガ形レジスト(東京応化OMR−83)15
を約0.5岸mコートシ、基板11の裏面よりゲート電
極12をマスクとして紫外光で露光し、現像してレジス
トをパターニングする。次いで、Pを添加し九非晶シリ
コン膜及びインジウム、スズ酸化膜をエツチングして、
ゲート電極に自己整合されたソース14、。
Hereinafter, embodiments of the present invention will be described using #I3 figures (a) to (d). First, a layer with a thickness of 100O is placed on a transparent glass substrate 11.
Gate electrode 1 is formed by sputtering and buttering of M of X.
2 is formed, then a silicon oxide film 13 with a thickness of 3000^ is deposited by sputtering as a transparent gate insulating film, and an indilum and tin oxide film 141 of approximately 100X is deposited by sputtering, and then 8 iH4 and PH
By glow discharge decomposition of s, P (phosphorus) is reduced to 10'9~5
An amorphous silicon film 14b doped with X 10"/cd and having a thickness of 30~tooX, for example, about 200K is deposited.Next, a negative resist (Tokyo Ohka OMR-83) 15
The resist is exposed to ultraviolet light from the back surface of the substrate 11 using the gate electrode 12 as a mask, and developed to pattern the resist. Next, add P and etch the amorphous silicon film and the indium and tin oxide films.
a source 14, self-aligned to the gate electrode;

ドレイン142 電極を形成する。次にSiH4のグロ
ー放電分解くより、lXl0’〜1011Ω・1 厚さ
5oooXの非晶質シリコン膜16を堆積させ、これを
PiiP技術により所定のパターンに形成し、最後にソ
ースドレインの素子領域外の配線部を所望のパターンに
形成してTPTを完成させる0 ここで1、良好なす−ンツクコンタクトを得る上では低
、1 1抵抗層は30〜1oooXあれば良い。酸化シリコン
やインジウム、スズ酸化膜等の導電膜は透明体であるが
、上記非晶質シリコン膜も光分光を透過させ度域は45
00X @度以下であるが、〜toooXの非晶質シリ
コンであれば充分コントラスト高くレジストを感光させ
る事が出来た。従ってソース、ドレイン電極を精度良く
形成す゛る事が出来る。
A drain 142 electrode is formed. Next, by glow discharge decomposition of SiH4, an amorphous silicon film 16 of 1X10' to 1011Ω·1 and a thickness of 5oooX is deposited, this is formed into a predetermined pattern by PiiP technology, and finally outside the source/drain element region. The wiring portion is formed in a desired pattern to complete the TPT.0Here, 1. In order to obtain a good bond contact, the resistance layer should be 30 to 100X. Conductive films such as silicon oxide, indium, and tin oxide films are transparent, but the amorphous silicon film also transmits light spectroscopy and has a power range of 45 degrees.
Although it is less than 00X@ degree, if it is an amorphous silicon of ~tooX, it was possible to expose the resist with sufficiently high contrast. Therefore, source and drain electrodes can be formed with high precision.

以上説明し九事から明らかな様に、本発明によればソー
ス、ドレイ/電極とゲート電極間の重なり部分をほぼな
くすことができるため、これら電極間の寄生容量を最少
にし、TPT回路の動作速度を著しく向トすることがで
きる。また、ソース、ドレイン電極はゲート電極をマス
クとする基板裏面からの露光により容易にゲート電極に
自己整合させることができる。従ってまたTPT回路の
素子の微細化、高集積化を図ることができる。
As is clear from the above explanation and nine points, according to the present invention, the overlapping portion between the source, drain/electrode, and gate electrode can be almost eliminated, so that the parasitic capacitance between these electrodes can be minimized and the operation of the TPT circuit Speed can be significantly increased. In addition, the source and drain electrodes can be easily self-aligned to the gate electrode by exposure from the back surface of the substrate using the gate electrode as a mask. Therefore, the elements of the TPT circuit can be miniaturized and highly integrated.

更に、ソース、ドレイン電極をチャネル領域の半導体薄
膜と良好にオーミックコンタクトさせる事が出来る。し
かも不純物を添加した低抵抗半導体薄膜を形成してから
レジストを塗布するので歩留りも良い。例えば、レジス
トパターン形成後、CVD法等で堆積した低抵抗半導体
薄膜をリフトオフさせる事も考えられるが、熱によって
、レジストが硬化したり半導体薄膜が汚染する等の問題
が予想される。又、半導体薄膜のIJラフトフに好適な
レジストの断面形状を裏面露光で精度良く形成するのも
難しいO なお、本発明は上記実施例に限定されない。
Furthermore, the source and drain electrodes can be brought into good ohmic contact with the semiconductor thin film in the channel region. Moreover, since the resist is applied after forming a low-resistance semiconductor thin film doped with impurities, the yield is also good. For example, it is conceivable to lift off a low-resistance semiconductor thin film deposited by CVD or the like after forming a resist pattern, but problems such as hardening of the resist and contamination of the semiconductor thin film are expected due to heat. Furthermore, it is difficult to accurately form a cross-sectional shape of a resist suitable for IJ rafting of a semiconductor thin film by backside exposure. Note that the present invention is not limited to the above embodiments.

例えば半導体薄膜は、これを通してレジストを露光で−
るものであれば曳い。例えば、非晶質半導体薄膜14b
1iSiに限らず、’:’e +Gex8 ’ s−8
,S l xc t x等の化合物であってもよく、更
に高い比抵抗を有すルCd8.Zn8e、Zn8等の半
導体薄膜や、多結晶8i等これらの多結晶半導体薄膜で
あってもよい0またソース、ドレイ/電極は必ずしも積
層構造である必1!Hないし、上記実施例を変形して例
えば第4図に示すようにPドープ非晶質シリコン@14
bを主体としてMo膜やインジウム、スズ酸化膜等の導
電性膜141を補助的に使う構造としてもよい。又、ゲ
ート絶縁膜はS iozに限らず84mN4やそれ以外
の透明絶縁膜体で4bよいし、ゲート電極は不透明な導
電材料であればなんでもよい0
For example, a semiconductor thin film can be exposed to light through a resist.
If you can, pull it. For example, the amorphous semiconductor thin film 14b
Not limited to 1iSi, ':'e +Gex8' s-8
, S l xc t x and the like, and Cd8. It may be a semiconductor thin film such as Zn8e or Zn8, or a polycrystalline semiconductor thin film such as polycrystalline 8i. Also, the source, drain/electrode must have a laminated structure! H or by modifying the above embodiment, for example, as shown in FIG. 4, P-doped amorphous silicon@14
It is also possible to adopt a structure in which conductive film 141 such as Mo film, indium, tin oxide film, etc. is used as an auxiliary, with B as the main component. In addition, the gate insulating film is not limited to SIOZ, but may be 84mN4 or other transparent insulating film material, and the gate electrode may be made of any opaque conductive material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来構造のTPTの断面図、第3
図(a)〜(d)は本発明の一実施例のTPTの製造工
程を示す断面図、第4図は他の実施例によるTPTの断
面図である。 図に於いて、 11・・・透明ガラス、12・・・ゲート電極(AJ)
。 13・・・ゲート絶縁膜、14F・・透明導電膜、14
b・・・不純物添加弗晶質シリコン膜、14、・・ソー
ス電極、14□・・・ドレイン電極、15・・・レジス
ト膜、 16・・・非晶質シリコン膜。 第1図 第2図 第3図
Figures 1 and 2 are cross-sectional views of TPT with conventional structure;
Figures (a) to (d) are cross-sectional views showing the manufacturing process of a TPT according to one embodiment of the present invention, and FIG. 4 is a cross-sectional view of a TPT according to another embodiment. In the figure, 11...Transparent glass, 12...Gate electrode (AJ)
. 13... Gate insulating film, 14F... Transparent conductive film, 14
b... Impurity-doped fluoric silicon film, 14... Source electrode, 14□... Drain electrode, 15... Resist film, 16... Amorphous silicon film. Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)透明基板上にゲート電極を形成し、このゲート電
極を覆う様にゲート飴縁膜を形成する工程と、その上に
ソース・ドレイン電極となる不純物添加半導体薄膜及び
レジスト膜をこの願に積層形成する工程と、基板裏面か
ら露光するフォトエッチングエ8!により不純物添加半
導体薄膜をゲート電極に自整合してパターニングする1
楊と、この不純物添加半導体薄膜から成るソース・ドレ
イン電極と重なる様にゲート絶縁膜上に半導体薄膜を被
着する1鶏とを具備してなる事を特徴とする薄膜電界効
果トランジスタの製造方法。
(1) The process of forming a gate electrode on a transparent substrate and forming a gate film to cover the gate electrode, and then forming an impurity-doped semiconductor thin film and a resist film that will become source/drain electrodes on top of the gate electrode. Step 8 of laminating layers and photo-etching to expose from the back side of the substrate! Patterning the impurity-doped semiconductor thin film in self-alignment with the gate electrode 1
A method for manufacturing a thin film field effect transistor, comprising: a layer and a layer for depositing a semiconductor thin film on a gate insulating film so as to overlap the source/drain electrodes made of the impurity-doped semiconductor thin film.
(2)ゲート絶縁膜形成後、透明導電膜を被着してから
不純物添加半導体薄膜を形成する事を特徴とする特許 果トランジスタの製造方法◇
(2) A patented method for manufacturing a transistor, which is characterized in that after forming a gate insulating film, a transparent conductive film is deposited, and then an impurity-doped semiconductor thin film is formed.
(3)半導体薄膜は非晶質又は多結晶半導体である事を
特徴とする前記特許請求の範囲#Il項記載の薄膜電界
効果トランジスタの製造方法。 +4) 膜Jl30〜toooXの非晶質シリコンによ
り不純物添加半導体薄膜を形成する事を特徴とする前記
特許請求の範囲第1項記載の薄膜電界効果トランジスタ
の製造方法。
(3) The method for manufacturing a thin film field effect transistor according to claim #Il, wherein the semiconductor thin film is an amorphous or polycrystalline semiconductor. +4) The method for manufacturing a thin film field effect transistor according to claim 1, characterized in that the impurity-doped semiconductor thin film is formed from amorphous silicon of films J130 to toooX.
JP5142182A 1981-07-27 1982-03-31 Manufacture of thin film field effect transistor Granted JPS58170065A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5142182A JPS58170065A (en) 1982-03-31 1982-03-31 Manufacture of thin film field effect transistor
DE8282106781T DE3279239D1 (en) 1981-07-27 1982-07-27 Thin-film transistor and method of manufacture therefor
EP82106781A EP0071244B1 (en) 1981-07-27 1982-07-27 Thin-film transistor and method of manufacture therefor
US06/779,648 US4700458A (en) 1981-07-27 1985-09-24 Method of manufacture thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142182A JPS58170065A (en) 1982-03-31 1982-03-31 Manufacture of thin film field effect transistor

Publications (2)

Publication Number Publication Date
JPS58170065A true JPS58170065A (en) 1983-10-06
JPH059941B2 JPH059941B2 (en) 1993-02-08

Family

ID=12886454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142182A Granted JPS58170065A (en) 1981-07-27 1982-03-31 Manufacture of thin film field effect transistor

Country Status (1)

Country Link
JP (1) JPS58170065A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192368A (en) * 1984-03-14 1985-09-30 Toshiba Corp Manufacture of amorphous silicon semiconductor device
JPS60195977A (en) * 1984-03-16 1985-10-04 Fujitsu Ltd Manufacture of thin film transistor
JPS61145818A (en) * 1984-12-20 1986-07-03 Sony Corp Heat processing method for semiconductor thin film
JPS6328070A (en) * 1986-07-21 1988-02-05 Matsushita Electric Ind Co Ltd Thin-film field-effect transistor and its manufacture
JP2002343970A (en) * 2001-05-10 2002-11-29 Koninkl Philips Electronics Nv Method for manufacturing thin film transistor, thin film transistor manufactured by using the method, and liquid crystal display panel
JP2006049577A (en) * 2004-08-04 2006-02-16 Sony Corp Field effect transistor
JP2006086502A (en) * 2004-09-15 2006-03-30 Lg Philips Lcd Co Ltd Organic thin film transistor, substrates for liquid crystal display device, and method for manufacturing the same
US7872263B2 (en) 2005-09-14 2011-01-18 Industrial Technology Research Institute Substrate structure for a thin film transistor
JP2011035411A (en) * 2010-10-06 2011-02-17 Sony Corp Field effect transistor
WO2011129227A1 (en) * 2010-04-14 2011-10-20 シャープ株式会社 Semiconductor device, process for production of semiconductor device, and display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730881A (en) * 1980-07-31 1982-02-19 Suwa Seikosha Kk Active matrix substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730881A (en) * 1980-07-31 1982-02-19 Suwa Seikosha Kk Active matrix substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192368A (en) * 1984-03-14 1985-09-30 Toshiba Corp Manufacture of amorphous silicon semiconductor device
JPS60195977A (en) * 1984-03-16 1985-10-04 Fujitsu Ltd Manufacture of thin film transistor
JPS61145818A (en) * 1984-12-20 1986-07-03 Sony Corp Heat processing method for semiconductor thin film
JPH07118444B2 (en) * 1984-12-20 1995-12-18 ソニー株式会社 Heat treatment method for semiconductor thin film
JPS6328070A (en) * 1986-07-21 1988-02-05 Matsushita Electric Ind Co Ltd Thin-film field-effect transistor and its manufacture
JP2002343970A (en) * 2001-05-10 2002-11-29 Koninkl Philips Electronics Nv Method for manufacturing thin film transistor, thin film transistor manufactured by using the method, and liquid crystal display panel
JP2006049577A (en) * 2004-08-04 2006-02-16 Sony Corp Field effect transistor
JP2006086502A (en) * 2004-09-15 2006-03-30 Lg Philips Lcd Co Ltd Organic thin film transistor, substrates for liquid crystal display device, and method for manufacturing the same
US7872263B2 (en) 2005-09-14 2011-01-18 Industrial Technology Research Institute Substrate structure for a thin film transistor
WO2011129227A1 (en) * 2010-04-14 2011-10-20 シャープ株式会社 Semiconductor device, process for production of semiconductor device, and display device
US9035295B2 (en) 2010-04-14 2015-05-19 Sharp Kabushiki Kaisha Thin film transistor having an oxide semiconductor thin film formed on a multi-source drain electrode
JP2011035411A (en) * 2010-10-06 2011-02-17 Sony Corp Field effect transistor

Also Published As

Publication number Publication date
JPH059941B2 (en) 1993-02-08

Similar Documents

Publication Publication Date Title
US4942441A (en) Thin film semiconductor device and method of manufacturing the same
US4700458A (en) Method of manufacture thin film transistor
US7800177B2 (en) Thin film transistor plate and method of fabricating the same
JP3535307B2 (en) Semiconductor device
KR100192347B1 (en) Structure and fabrication method of liquid crystal display device
JPS58170065A (en) Manufacture of thin film field effect transistor
JPH09186345A (en) Array circuit
JPS599941A (en) Thin-film semiconductor device and its manufacture
TWI715344B (en) Active device substrate and manufacturing method thereof
JPH04348077A (en) Thin-film transistor
JPH0546106B2 (en)
JPH08330593A (en) Manufacture of thin film transistor
JPS5918874B2 (en) hand tai souchi no seizou houhou
JPS5833872A (en) Manufacture of thin film field effect transistor
JPS6230375A (en) Thin film transistor and manufacture thereof
JPS597231B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPH059940B2 (en)
JP3419073B2 (en) Thin film transistor, method of manufacturing the same, and active matrix liquid crystal display device
JP3179160B2 (en) Semiconductor device and manufacturing method thereof
JPH09307115A (en) Thin film transistor
JPH0677486A (en) Thin-film transistor element
JPS60192368A (en) Manufacture of amorphous silicon semiconductor device
JPS58190058A (en) Manufacture of thin film field effect transistor
JP3099450B2 (en) Semiconductor device and manufacturing method thereof
JPH06181312A (en) Manufacture of semiconductor device