JPH0227824B2 - - Google Patents

Info

Publication number
JPH0227824B2
JPH0227824B2 JP56002067A JP206781A JPH0227824B2 JP H0227824 B2 JPH0227824 B2 JP H0227824B2 JP 56002067 A JP56002067 A JP 56002067A JP 206781 A JP206781 A JP 206781A JP H0227824 B2 JPH0227824 B2 JP H0227824B2
Authority
JP
Japan
Prior art keywords
amorphous
film
hydrogen
glow discharge
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56002067A
Other languages
Japanese (ja)
Other versions
JPS57115823A (en
Inventor
Hisao Kondo
Masao Aiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56002067A priority Critical patent/JPS57115823A/en
Publication of JPS57115823A publication Critical patent/JPS57115823A/en
Publication of JPH0227824B2 publication Critical patent/JPH0227824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 この発明はギヤツプステート密度の少ないアモ
ルフアス半導体膜の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an amorphous semiconductor film having a low gap state density.

アモルフアス半導体膜は、低価格太陽電池用材
料や薄膜トランジスタ材料として注目されてお
り、アモルフアス・シリコン膜やアモルフアス・
シリコン・ゲルマニウム膜が研究されている。ア
モルフアス半導体膜は、ダングリングボンドに起
因するギヤツプステート密度を可能な限り小さく
することが重要であり、種々の方法が考案されて
いる。その1つは、グロー放電法によつてシラン
(SiH4)を分解する方法である。この方法を用い
るとアモルフアス・シリコン膜中に水素が含ま
れ、水素によつてダングリングボンドが消去され
て、ギヤツプステート密度が減少する利点があ
る。しかし、この方法によると、シリコン膜中に
含まれる水素量は、ダングリングボンドを消去す
るのに必要な量の100倍程度になり、アモルフア
ス膜質の不安定性の原因になるといわれている。
この欠点を補うために次の方法がある。すなわ
ち、SiH4の熱分解法によりアモルフアス・シリ
コン膜を形成したのち、水素プラズマ中で400℃
程度の温度でアニールする方法である。この方法
によると、アモルフアス・シリコン膜の表面から
水素が膜中に浸入してダングリングボンドを消去
し、ギヤツプステート密度が減少する。この方法
によると、含まれる水素量はグロー放電法の場合
の1/10以下になり、アモルフアス膜質の不安定性
が除かれる利点がある。しかし、この方法では水
素が膜表面から主に拡散によつて浸入するため、
アモルフアス膜が厚くなるとアニール時間が長く
なる欠点がある。
Amorphous semiconductor films are attracting attention as materials for low-cost solar cells and thin film transistors, and include amorphous silicon films and amorphous silicon films.
Silicon-germanium films are being researched. In an amorphous semiconductor film, it is important to minimize the gap state density caused by dangling bonds, and various methods have been devised. One method is to decompose silane (SiH 4 ) using a glow discharge method. When this method is used, hydrogen is contained in the amorphous silicon film, and the hydrogen erases dangling bonds, which has the advantage of reducing the gap state density. However, according to this method, the amount of hydrogen contained in the silicon film is about 100 times the amount required to eliminate dangling bonds, which is said to cause instability of the amorphous film.
The following method is available to compensate for this drawback. That is, after forming an amorphous silicon film by thermal decomposition of SiH 4 , it was heated at 400°C in hydrogen plasma.
This is a method of annealing at a temperature of approximately According to this method, hydrogen permeates into the film from the surface of the amorphous silicon film, erases dangling bonds, and reduces the gap state density. According to this method, the amount of hydrogen contained is less than 1/10 of that in the glow discharge method, which has the advantage of eliminating instability of the amorphous film. However, in this method, hydrogen mainly enters from the membrane surface by diffusion, so
The disadvantage is that the thicker the amorphous film, the longer the annealing time.

本発明はこのような点に鑑みてなされたもの
で、グロー放電法で形成したアモルフアス半導体
膜を熱処理したのち、水素プラズマ中でアニール
することにより、短かいアニール時間で膜質の安
定したアモルフアス半導体膜を得ることができる
製法を提案するものである。
The present invention has been made in view of these points, and involves heat-treating an amorphous semiconductor film formed by a glow discharge method and then annealing it in hydrogen plasma, thereby producing an amorphous semiconductor film with stable film quality in a short annealing time. This paper proposes a manufacturing method that can obtain the following.

グロー放電法で形成したアモルフアス・シリコ
ン膜中に含まれる水素の結合状態は、Si−H、Si
−H2、(Si−H2)nの3種類に大別される。ダン
グリングボンドを消去するためにはSi−Hが必要
であり、Si−H2や(Si−H2)nはアモルフアス
膜内にマイクロボイドを発生し、アモルフアス膜
質を不安定にさせる原因になつていると考えられ
ている。そのため、グロー放電法で形成したアモ
ルフアス・シリコン膜中に含まれるSi−H2
(Si−H2)nを除去する必要がある。グロー放電
法で形成したアモルフアス・シリコン膜を加熱す
ると、加熱温度が350℃〜400℃の範囲と550℃〜
600℃の範囲で水素が膜から放出される。前者は
Si−H2および(Si−H2)nの分解によるもので
あり、後者はSi−Hの分解によるものである。そ
こで、グロー放電法で形成したアモルフアス膜を
先ず400℃〜550℃で加熱する。すると、Si−H2
や(Si−H2)nは分解してSiが発生するが、
Si元素の再配列によりSi−になる。アモルフアス
膜の表面近傍では水素の放出が盛んであるからSi
−の数は多いが、膜中ではSi−の数は少なくなつ
ている。この後、アモルフアス膜を水素プラズマ
中でアニールすると、水素によつてダングリング
ボンド(Si−)が消去される。この場合には、ア
モルフアス膜中にSi−Hの結合がかなり含まれて
いること、また、膜表面近傍にダングリングボン
ドが多く存在することから、アモルフアス膜が厚
い場合でもアニール時間が短くなる利点がある。
アニール時間を更に短くするためには、水素プラ
ズマに対してアモルフアス膜が負となるように外
部回路から電圧を印加した状態でアニールする方
法が考えられる。この場合には、電界の作用によ
りアモルフアス膜中での水素の拡散が促進される
ため、アニール時間が短くなる利点がある。
The bonding state of hydrogen contained in the amorphous silicon film formed by the glow discharge method is Si-H, Si
-H 2 and (Si-H 2 )n. Si-H is required to erase dangling bonds, and Si-H 2 and (Si-H 2 )n generate microvoids within the amorphous film, making the amorphous film unstable. It is believed that Therefore, it is necessary to remove Si-H 2 and (Si-H 2 )n contained in the amorphous silicon film formed by the glow discharge method. When an amorphous silicon film formed by the glow discharge method is heated, the heating temperature ranges from 350°C to 400°C and from 550°C to
Hydrogen is released from the membrane in the range of 600°C. The former is
This is due to the decomposition of Si- H2 and (Si- H2 )n, the latter being due to the decomposition of Si-H. Therefore, an amorphous film formed by a glow discharge method is first heated at 400°C to 550°C. Then, Si−H 2
(Si−H 2 )n decomposes and generates Si,
It becomes Si- due to rearrangement of Si elements. Since hydrogen is actively released near the surface of the amorphous amorphous film, Si
Although the number of - is large, the number of Si- is small in the film. Thereafter, when the amorphous film is annealed in hydrogen plasma, the dangling bonds (Si-) are erased by hydrogen. In this case, the amorphous amorphous film contains a considerable amount of Si-H bonds and there are many dangling bonds near the film surface, so the annealing time is short even if the amorphous film is thick. There is.
In order to further shorten the annealing time, a method can be considered in which annealing is performed while applying a voltage from an external circuit so that the amorphous film becomes negative with respect to hydrogen plasma. In this case, the effect of the electric field promotes the diffusion of hydrogen in the amorphous film, so there is an advantage that the annealing time is shortened.

以上述べたようにこの発明によれば、グロー放
電法で形成したアモルフアス半導体膜を400℃〜
550℃で熱処理したのち、水素プラズマ中で水素
プラズマに対してアモルフアス半導体膜が負とな
るような電圧を印加しながらアニールするので、
アニール時間を短かくすることができる。
As described above, according to the present invention, an amorphous semiconductor film formed by a glow discharge method can be
After heat treatment at 550℃, annealing is performed in hydrogen plasma while applying a voltage that makes the amorphous semiconductor film negative with respect to hydrogen plasma.
Annealing time can be shortened.

Claims (1)

【特許請求の範囲】[Claims] 1 グロー放電法で形成したアモルフアスシリコ
ン膜を400℃乃至550℃の範囲内の温度で熱処理し
たのち、水素プラズマ中で水素プラズマに対して
アモルフアスシリコン膜が負となるように電圧を
印加しながらアニールすることを特徴とするアモ
ルフアス半導体膜の製造方法。
1 After heat-treating the amorphous silicon film formed by the glow discharge method at a temperature within the range of 400°C to 550°C, a voltage is applied in hydrogen plasma so that the amorphous silicon film becomes negative with respect to the hydrogen plasma. 1. A method for producing an amorphous semiconductor film, characterized in that annealing is performed while the film is annealed.
JP56002067A 1981-01-12 1981-01-12 Manufacture of amorphous semiconductor film Granted JPS57115823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56002067A JPS57115823A (en) 1981-01-12 1981-01-12 Manufacture of amorphous semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002067A JPS57115823A (en) 1981-01-12 1981-01-12 Manufacture of amorphous semiconductor film

Publications (2)

Publication Number Publication Date
JPS57115823A JPS57115823A (en) 1982-07-19
JPH0227824B2 true JPH0227824B2 (en) 1990-06-20

Family

ID=11518993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002067A Granted JPS57115823A (en) 1981-01-12 1981-01-12 Manufacture of amorphous semiconductor film

Country Status (1)

Country Link
JP (1) JPS57115823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277848A (en) * 1992-03-30 1993-10-26 Nissan Shatai Co Ltd Car body support device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264762B1 (en) * 1986-10-24 1992-03-25 Siemens Aktiengesellschaft Method to passivate crystal defects in a hydrogen plasma
JP2723224B2 (en) * 1987-05-15 1998-03-09 鐘淵化学工業株式会社 Amorphous semiconductor and manufacturing method thereof
JPH088371B2 (en) * 1993-03-10 1996-01-29 株式会社日立製作所 Thin film solar cell and method of manufacturing the same
JP6732821B2 (en) 2018-02-22 2020-07-29 株式会社東芝 Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277848A (en) * 1992-03-30 1993-10-26 Nissan Shatai Co Ltd Car body support device

Also Published As

Publication number Publication date
JPS57115823A (en) 1982-07-19

Similar Documents

Publication Publication Date Title
US5766344A (en) Method for forming a semiconductor
KR940016544A (en) Manufacturing Method of Semiconductor Substrate and Manufacturing Method of Solid State Imaging Device
JPS588128B2 (en) Semiconductor device manufacturing method
JPS60245172A (en) Insulated gate type semiconductor device
JPS63166220A (en) Manufacture of semiconductor device
JPH0227824B2 (en)
KR960005898A (en) Semiconductor substrate and manufacturing method
JP3203706B2 (en) Method for annealing semiconductor layer and method for manufacturing thin film transistor
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JPS5940525A (en) Growth of film
JPS61145819A (en) Heat processing method for semiconductor thin film
JP2709376B2 (en) Method for manufacturing non-single-crystal semiconductor
JPH0773094B2 (en) Method for manufacturing crystalline semiconductor thin film
JPH08139331A (en) Method of manufacturing thin film transistor
JPS6249629A (en) Semiconductor device
JPH07118444B2 (en) Heat treatment method for semiconductor thin film
JP2565684B2 (en) Method for manufacturing polycrystalline silicon thin film
JP3070088B2 (en) Method for manufacturing semiconductor device
JPH0682683B2 (en) Method of manufacturing thin film transistor
JP2592984B2 (en) Manufacturing method of silicon thin film
JPS593869B2 (en) Method for manufacturing silicon gate field effect semiconductor device
JPH0281421A (en) Forming method for polycrystalline silicon film
JP2002170892A (en) Method for manufacturing laminated gate oxide film structure
JPH0396223A (en) Forming method for soi structure
JPH065586A (en) Manufacture of thin film semiconductor substrate