JPH07235498A - Formation of crystalline silicon film - Google Patents

Formation of crystalline silicon film

Info

Publication number
JPH07235498A
JPH07235498A JP6024592A JP2459294A JPH07235498A JP H07235498 A JPH07235498 A JP H07235498A JP 6024592 A JP6024592 A JP 6024592A JP 2459294 A JP2459294 A JP 2459294A JP H07235498 A JPH07235498 A JP H07235498A
Authority
JP
Japan
Prior art keywords
silicon film
amorphous silicon
polycrystalline silicon
amorphous
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6024592A
Other languages
Japanese (ja)
Other versions
JP2817613B2 (en
Inventor
Noriyuki Kodama
紀行 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6024592A priority Critical patent/JP2817613B2/en
Publication of JPH07235498A publication Critical patent/JPH07235498A/en
Application granted granted Critical
Publication of JP2817613B2 publication Critical patent/JP2817613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the roughness of the surface when crystallizing amorphous silicon by laser annealing to form a polycrystalline silicon film. CONSTITUTION:An amorphous silicon film 2 on a glass substrate 1 is irradiated with KrF excimer laser light 7A, 248nm in wavelength, and its uppermost part approx. 30nm from the surface is crystallized. In the second irradiation, KrF excimer laser with a wavelength of 486nm is used. This wavelength makes the laser light 7 pass through the polycrystalline silicon film 5C and allows almost all of it to be absorbed in the amorphous silicon film 2. That selectively rises the temperature of the amorphous silicon film 2 on the base side, and melts and crystallizes it, and consequently obtains a polycrystalline silicon film 5D having a flat surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は結晶シリコン膜の形成方
法に関し、特にレーザアニール法を用いる結晶シリコン
膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a crystalline silicon film, and more particularly to a method for forming a crystalline silicon film using a laser annealing method.

【0002】[0002]

【従来の技術】結晶シリコン膜、例えば多結晶シリコン
膜は、液晶表示装置,イメージセンサ,一般の半導体装
置等に多く用いられるようになってきている。
2. Description of the Related Art A crystalline silicon film, for example, a polycrystalline silicon film has been widely used in liquid crystal display devices, image sensors, general semiconductor devices and the like.

【0003】液晶表示装置は、駆動回路として透明基板
上に形成した多結晶シリコン膜を活性層として薄膜トラ
ンジスタを形成するものであり、品質の高い液晶表示装
置を得るためには多結晶シリコン膜の結晶性を向上させ
ることが必須となっている。また、製造コストの面から
は耐熱温度600℃程度の安価なガラス基板を用いる必
要性から、プロセス温度を600℃以下とするいわゆる
低温プロセスが検討され実施されている。
A liquid crystal display device forms a thin film transistor by using a polycrystalline silicon film formed on a transparent substrate as a drive circuit as an active layer, and in order to obtain a high quality liquid crystal display device, a crystal of the polycrystalline silicon film is used. It is essential to improve the sex. Further, from the viewpoint of manufacturing cost, since it is necessary to use an inexpensive glass substrate having a heat resistant temperature of about 600 ° C., a so-called low temperature process in which the process temperature is 600 ° C. or less has been studied and implemented.

【0004】多結晶シリコン膜は主に減圧化学気相成長
(LPCVD)法で形成されるが、600℃以上の高温
プロセスとなるため、ガラス基板を用いることはできな
い。このため、非晶質シリコン膜にレーザ光を照射して
多結晶化する方法が一般に用いられている。以下図4を
用いて説明する。
A polycrystalline silicon film is mainly formed by a low pressure chemical vapor deposition (LPCVD) method, but since it is a high temperature process of 600 ° C. or higher, a glass substrate cannot be used. Therefore, a method of irradiating the amorphous silicon film with laser light to polycrystallize it is generally used. This will be described below with reference to FIG.

【0005】まず図4(a)に示すように、耐熱温度が
約600℃のガラス基板1上にLPCVD法を用い50
0℃程度の成長温度で、非晶質シリコン膜2を厚さ約1
00nm堆積する。そののち、シリコン膜に対する消衰
係数の大きい短波長レーザ、例えば、XeClエキシマ
レーザ光を照射する。非晶質シリコン膜2では、膜表面
から10nm以内の表面領域3でレーザ光がほとんど吸
収され、この領域の温度が上昇して溶融が始まる。
First, as shown in FIG. 4 (a), a glass substrate 1 having a heat resistant temperature of about 600.degree.
The amorphous silicon film 2 has a thickness of about 1 at a growth temperature of about 0 ° C.
00 nm is deposited. After that, a short wavelength laser having a large extinction coefficient with respect to the silicon film, for example, XeCl excimer laser light is irradiated. In the amorphous silicon film 2, most of the laser light is absorbed in the surface region 3 within 10 nm from the film surface, the temperature of this region rises, and melting starts.

【0006】レーザ光照射がさらに続くと、図4(b)
に示すように、溶融領域4が拡大し、レーザ光の照射エ
ネルギーが十分大きいと、膜全体が溶融し、図4(c)
のように、膜全体が溶融シリコン層となる。
When the laser light irradiation is further continued, FIG.
As shown in FIG. 4, when the melting region 4 expands and the irradiation energy of the laser light is sufficiently large, the entire film melts, and FIG.
, The entire film becomes a molten silicon layer.

【0007】レーザ光の照射が終わると、図4(d)に
示すように、膜が冷却され溶融シリコンが結晶化して、
多結晶シリコン膜5が形成される。
When the irradiation of the laser beam is finished, the film is cooled and the molten silicon is crystallized, as shown in FIG.
Polycrystalline silicon film 5 is formed.

【0008】以上の工程を用いて作成した多結晶シリコ
ン膜5は、通常のLPCVD法で作成されたものに比べ
て結晶欠陥が少なく、これを薄膜トランジスタの活性層
に用いることにより、トランジスタ特性を大きく向上さ
せることができる。イメージセンサ等の場合においても
ほぼ同様の工程が用いられる。
The polycrystalline silicon film 5 formed by the above steps has less crystal defects than that formed by a normal LPCVD method, and by using this as an active layer of a thin film transistor, the transistor characteristics are increased. Can be improved. Similar steps are used in the case of an image sensor and the like.

【0009】[0009]

【発明が解決しようとする課題】非晶質シリコン膜をレ
ーザアニールする場合には、溶融したシリコン層が結晶
化する時に移動するため、図4(d)に示したように、
多結晶シリコン膜5に30nm程の表面荒れやうねりが
生じる。
When the amorphous silicon film is laser-annealed, the molten silicon layer moves when crystallized. Therefore, as shown in FIG.
Surface roughness or waviness of about 30 nm occurs in the polycrystalline silicon film 5.

【0010】表面荒れを防ぐ方法として従来は、図5
(a)に示すように、非晶質シリコン膜2上に500℃
以下の低温で透明で除去が容易なシリコン酸化膜6を堆
積してキャップした後に、レーザアニールすることによ
り、表面での溶融シリコンの結晶化時の移動を防ぐ方法
が提案され実施されている。しかし、この方法では、図
5(b)にしめすように、非晶質シリコン膜の溶融時に
キャップ酸化膜6から酸素9が溶融シリコン層4内に拡
散して、多結晶シリコン膜中の酸素濃度が上昇し、トラ
ンジスタ特性を低下させるという問題がある。
As a method for preventing surface roughness, the conventional method shown in FIG.
As shown in (a), 500 ° C. is formed on the amorphous silicon film 2.
The following method has been proposed and implemented in which a transparent and easy-to-remove silicon oxide film 6 is deposited at a low temperature and capped, and then laser annealing is performed to prevent migration of molten silicon on the surface during crystallization. However, in this method, as shown in FIG. 5B, oxygen 9 diffuses from the cap oxide film 6 into the molten silicon layer 4 when the amorphous silicon film is melted, and the oxygen concentration in the polycrystalline silicon film is increased. Is increased and the transistor characteristics are deteriorated.

【0011】また、キャップ酸化膜6を用いた場合に
は、レーザ光の照射(ショット)回数が多くなるにつれ
て、溶融シリコンの移動度が大きく低下するので、ショ
ットを連続させ照射領域を移動させてウエハ全面を結晶
化する必要がある。照射領域の隅ではショットが4回重
なるが、このショットの重なる領域では酸素の拡散が多
くなるため多結晶シリコン膜の特性が低下し、トランジ
スタ特性のばらつきの原因となる。
Further, when the cap oxide film 6 is used, the mobility of the molten silicon is greatly reduced as the number of laser beam irradiations (shots) is increased. Therefore, continuous shots are used to move the irradiation region. It is necessary to crystallize the entire surface of the wafer. Shots overlap four times in the corners of the irradiation area, but oxygen diffusion increases in the area where the shots overlap, which deteriorates the characteristics of the polycrystalline silicon film and causes variations in transistor characteristics.

【0012】本発明の目的は、トランジスタ特性のばら
つきを少くするための結晶シリコン膜の形成方法を提供
することにある。
An object of the present invention is to provide a method for forming a crystalline silicon film for reducing variations in transistor characteristics.

【0013】本発明の他の目的は、表面荒れのない結晶
シリコン膜の形成方法を提供することにある。
Another object of the present invention is to provide a method for forming a crystalline silicon film without surface roughness.

【0014】[0014]

【課題を解決するための手段】第1の発明の結晶シリコ
ン膜、例えば多結晶シリコン膜の形成方法は、基板上に
形成された非晶質シリコン膜にレーザ光を照射して結晶
化する結晶シリコン膜の形成方法において、非晶質シリ
コン膜における消衰係数が結晶シリコン膜における消衰
係数より大きな波長のレーザ光を用いることを特徴とす
るものである。
According to a first aspect of the present invention, there is provided a method of forming a crystalline silicon film, for example, a polycrystalline silicon film, in which an amorphous silicon film formed on a substrate is irradiated with laser light to crystallize. The method for forming a silicon film is characterized in that laser light having a wavelength whose extinction coefficient in the amorphous silicon film is larger than that in the crystalline silicon film is used.

【0015】第2の発明の結晶シリコン膜、例えば多結
晶シリコン膜の形成方法は、基板上に形成された非晶質
シリコン膜にレーザ光を照射して結晶化する結晶シリコ
ン膜の形成方法において、非晶質シリコン膜における消
衰係数の大きなレーザ光を非晶質シリコン膜に照射して
該非晶質シリコン膜の表面のみを結晶化した後に、結晶
シリコン膜における消衰係数が小さく非晶質シリコン膜
における消衰係数が大きなレーザ光を照射して、前記非
晶質シリコン膜全体を結晶化することを特徴とするもの
である。
The method of forming a crystalline silicon film, for example, a polycrystalline silicon film, of the second invention is a method of forming a crystalline silicon film in which an amorphous silicon film formed on a substrate is irradiated with laser light to be crystallized. After irradiating the amorphous silicon film with laser light having a large extinction coefficient in the amorphous silicon film to crystallize only the surface of the amorphous silicon film, the extinction coefficient in the crystalline silicon film is small and amorphous. It is characterized in that the entire amorphous silicon film is crystallized by irradiating a laser beam having a large extinction coefficient on the silicon film.

【0016】[0016]

【実施例】次に本発明を図面を用いて説明する。図1
(a),(b)は本発明の第1の実施例を説明するため
の基板の断面図である。
The present invention will be described below with reference to the drawings. Figure 1
(A), (b) is sectional drawing of the board | substrate for demonstrating the 1st Example of this invention.

【0017】まず図1(a)に示すように、ガラス基板
上1にLPCVD法を用いて、非晶質シリコン膜2を1
00nmの厚さに堆積したのち、その上にキャップ酸化
膜6を100nmの厚さに堆積した。次に非晶質シリコ
ン膜における消衰係数の大きい波長のレーザ光を照射す
る。
First, as shown in FIG. 1A, an amorphous silicon film 2 is formed on a glass substrate 1 by LPCVD.
After depositing to a thickness of 00 nm, a cap oxide film 6 was deposited thereon to a thickness of 100 nm. Next, laser light having a wavelength having a large extinction coefficient in the amorphous silicon film is irradiated.

【0018】図2に結晶シリコン膜および非晶質シリコ
ン膜に対する消衰係数kをしめす。波長400nmから
500nmの間では、非晶質シリコン膜の消衰係数が結
晶シリコン膜の消衰係数に比べて大きいので、この波長
領域のレーザ光を多結晶シリコン膜に照射すると、ほと
んど吸収されずに下地の基板へ透過し、非晶質シリコン
膜に照射すると、表面から数10nm程度の深さでほと
んど吸収される。
FIG. 2 shows the extinction coefficient k for the crystalline silicon film and the amorphous silicon film. In the wavelength range of 400 nm to 500 nm, the extinction coefficient of the amorphous silicon film is larger than that of the crystalline silicon film. Therefore, when the polycrystalline silicon film is irradiated with laser light in this wavelength region, it is hardly absorbed. When it is transmitted to the underlying substrate and irradiated to the amorphous silicon film, it is almost absorbed at a depth of several tens nm from the surface.

【0019】そこで、波長486nmのKrFエキシマ
レーザ光を用いて、非晶質シリコン膜2を結晶化した。
レーザ光7の照射は、照射領域が重なるようにした。つ
まり、レーザ光照射の重ね合わせ領域の多結晶シリコン
膜は溶融せず、非晶質シリコン膜2のみの溶融し結晶化
がおこるように、照射エネルギーを400mJ/cm2
程度に設定した。
Therefore, the amorphous silicon film 2 was crystallized using KrF excimer laser light having a wavelength of 486 nm.
The irradiation of the laser light 7 was such that the irradiation areas overlap. That is, the irradiation energy is set to 400 mJ / cm 2 so that the polycrystalline silicon film in the overlapping region of the laser light irradiation does not melt but only the amorphous silicon film 2 melts and crystallizes.
Set to about.

【0020】第1回目の照射によりその領域8Aの非晶
質シリコン膜2は多結晶シリコン膜5Aとなり、第2回
の照射によりその領域8Bの非晶質シリコン膜2は、図
1(b)に示すように、多結晶シリコン膜5Bとなる。
By the first irradiation, the amorphous silicon film 2 in the region 8A becomes a polycrystalline silicon film 5A, and by the second irradiation, the amorphous silicon film 2 in the region 8B becomes as shown in FIG. As shown in, the polycrystalline silicon film 5B is formed.

【0021】この場合、レーザ照射の重なる領域の多結
晶シリコン膜は溶融しないために、キャップ酸化膜6か
ら、多結晶シリコン膜5A,5Bへの酸素の拡散は起こ
らず、多結晶シリコン膜の特性の低下は起こらない。つ
まり、レーザ照射領域が重なって照射されても、多結晶
シリコン膜の特性ばらつきは起こらないことになる。従
ってこの多結晶シリコン膜を用いて液晶表示装置やイメ
ージセンサのトランジスタを作った場合、トランジスタ
の特性のばらつきを小さくすることができる。
In this case, since the polycrystalline silicon film in the region where the laser irradiation overlaps is not melted, oxygen does not diffuse from the cap oxide film 6 to the polycrystalline silicon films 5A and 5B, and the characteristics of the polycrystalline silicon film. Does not occur. That is, even if the laser irradiation areas are overlapped and irradiated, the characteristic variation of the polycrystalline silicon film does not occur. Therefore, when a transistor of a liquid crystal display device or an image sensor is formed by using this polycrystalline silicon film, it is possible to reduce variations in characteristics of the transistor.

【0022】図3(a)〜(c)は本発明の第2の実施
例を説明するための基板の断面図である。
3 (a) to 3 (c) are sectional views of the substrate for explaining the second embodiment of the present invention.

【0023】まず図3(a)に示すように、ガラス基板
1上に、LPCVD法により非晶質シリコン膜2を10
0nmの厚さに堆積したのち、波長248nmのKrF
エキシマレーザを光7Aを照射した。この波長のレーザ
光では、図2に示したように、非晶質及び結晶シリコン
膜における消衰係数が大きく、エネルギーはほぼ表面か
ら10nm以内で全て吸収される。照射エネルギーを、
200mJ/cm2 程度に設定することにより非晶質シ
リコン膜2の表面から30nm程度を結晶化し、多結晶
シリコン膜5Cを形成した。この多結晶シリコン膜の表
面は、膜全体が溶融しないので、比較的平坦で荒れは少
ない。
First, as shown in FIG. 3 (a), an amorphous silicon film 2 is formed on a glass substrate 1 by LPCVD to form 10
After depositing to a thickness of 0 nm, KrF with a wavelength of 248 nm
The excimer laser was irradiated with light 7A. As shown in FIG. 2, the laser light of this wavelength has a large extinction coefficient in the amorphous and crystalline silicon films, and all the energy is absorbed within about 10 nm from the surface. Irradiation energy,
By setting about 200 mJ / cm 2, about 30 nm was crystallized from the surface of the amorphous silicon film 2 to form a polycrystalline silicon film 5C. The surface of the polycrystalline silicon film is relatively flat and is not rough because the entire film is not melted.

【0024】更に2回目の照射では、波長486nmの
KrFエキシマレーザ光7を用いた。この波長では、結
晶シリコン膜での消衰係数が小さく、ほぼ透明なので、
レーザ光7は多結晶シリコン膜5Cを透過する。しか
し、非晶質シリコン膜での消衰係数は大きいため、レー
ザ光7は非晶質シリコン膜2と多結晶シリコン膜5Cの
界面から40nm以内の領域でほとんど全て吸収され
る。つまり、2回目の照射では、下地側の非晶質部分が
選択的に温度上昇でき、溶融、結晶化することになり、
図3(c)に示すように、表面荒れの小さい多結晶シリ
コン膜5Dが形成できる。
Further, in the second irradiation, KrF excimer laser light 7 having a wavelength of 486 nm was used. At this wavelength, the extinction coefficient of the crystalline silicon film is small and almost transparent, so
The laser light 7 passes through the polycrystalline silicon film 5C. However, since the amorphous silicon film has a large extinction coefficient, almost all of the laser light 7 is absorbed in a region within 40 nm from the interface between the amorphous silicon film 2 and the polycrystalline silicon film 5C. In other words, in the second irradiation, the amorphous portion on the base side can be selectively raised in temperature, melted and crystallized,
As shown in FIG. 3C, a polycrystalline silicon film 5D having a small surface roughness can be formed.

【0025】以上述べたように、第2の実施例では、第
1回目の照射により形成された表面の多結晶シリコン膜
5Cがキャップ層になり、表面荒れを10nm以下に抑
制することができる。しかも従来のキャップ酸化膜を用
いたとき問題となった、酸素のシリコン膜中への混入は
起こらないという利点がある。また、1回目の照射に際
し、結晶シリコンでの消衰係数が高いレーザ光を用いる
と、照射を繰り返しても、結晶化した領域が広がらない
ようにできるので、照射のかさなる領域での結晶性のば
らつきを低減させることができる。
As described above, in the second embodiment, the polycrystalline silicon film 5C on the surface formed by the first irradiation serves as a cap layer, and the surface roughness can be suppressed to 10 nm or less. Moreover, there is an advantage that oxygen is not mixed into the silicon film, which is a problem when the conventional cap oxide film is used. Further, when laser light having a high extinction coefficient in crystalline silicon is used for the first irradiation, the crystallized region can be prevented from expanding even if irradiation is repeated, so that the crystallinity in a region where irradiation is large can be prevented. Variation can be reduced.

【0026】この第2の実施例の方法は、シリコンの非
晶質部分にのみ吸収されるレーザ光を用いるという特徴
を生かし、結晶性が良好でなく、非晶質相を持つ多結晶
シリコン膜の膜質改善にも適用できる。例えばプラズマ
CVD法で形成された多結晶シリコン膜では、下地基板
側に非晶質に近い結晶性の良好でない領域が存在する。
この多結晶シリコン膜に波長486nmのKrFエキシ
マレーザを照射することにより、非晶質相に近い領域の
みを選択的にアニールして、結晶性を改善することがで
きる。
The method of the second embodiment takes advantage of the fact that the laser beam absorbed only in the amorphous portion of silicon is used, and the polycrystalline silicon film having an amorphous phase with poor crystallinity. It can also be applied to improve the film quality. For example, in a polycrystalline silicon film formed by the plasma CVD method, a region having poor crystallinity close to amorphous exists on the base substrate side.
By irradiating this polycrystalline silicon film with a KrF excimer laser having a wavelength of 486 nm, only the region close to the amorphous phase can be selectively annealed to improve the crystallinity.

【0027】尚、上記実施例においてはガラス基板上に
多結晶シリコン膜を形成する場合について説明したが、
石英等他の絶縁基板を用いてもよいことは勿論である。
In the above embodiment, the case where the polycrystalline silicon film is formed on the glass substrate has been described.
Of course, other insulating substrates such as quartz may be used.

【0028】[0028]

【発明の効果】以上述べたように第1の本発明は、非晶
質シリコン膜におけるの消衰係数が結晶シリコン膜の消
衰係数より大きな波長のレーザ光を用いて、非晶質シリ
コンのみが溶融するエネルギー密度で、基板上に形成さ
れた非晶質シリコン膜をレーザアニールすることによ
り、レーザ照射の重なる多結晶シリコン膜の領域は溶融
させずに、非晶質シリコン膜のみを結晶化できるため、
従来のようにキャップ酸化膜からの酸素のシリコン膜中
への拡散を防止できるため、特性のばらつきの少い多結
晶シリコン膜を容易に形成できる。この為トランジスタ
の特性のばらつきも小さくできる。
As described above, according to the first aspect of the present invention, only amorphous silicon is obtained by using laser light having a wavelength whose extinction coefficient in the amorphous silicon film is larger than that of the crystalline silicon film. The amorphous silicon film formed on the substrate is laser-annealed with an energy density that melts the laser beam to crystallize only the amorphous silicon film without melting the region of the polycrystalline silicon film where laser irradiation overlaps. Because you can
Since oxygen can be prevented from diffusing into the silicon film from the cap oxide film as in the conventional case, a polycrystalline silicon film with less variation in characteristics can be easily formed. Therefore, variations in transistor characteristics can be reduced.

【0029】また第2の本発明は、非晶質シリコンを結
晶化する工程で、非晶質シリコン膜の消衰係数の大きな
レーザ光を非晶質シリコン膜に照射して、その表面を結
晶化した後に、結晶シリコン膜での消衰係数が小さく非
晶質シリコン膜の消衰係数が大きなレーザ光を照射し
て、非晶質シリコン膜を選択的にアニールし膜全体を結
晶化することにより、表面荒れの少い多結晶シリコン膜
を容易に形成できるという効果がある。
In the second aspect of the present invention, in the step of crystallizing amorphous silicon, the amorphous silicon film is irradiated with laser light having a large extinction coefficient, and the surface is crystallized. After crystallization, irradiate laser light with a small extinction coefficient in the crystalline silicon film and a large extinction coefficient in the amorphous silicon film to selectively anneal the amorphous silicon film to crystallize the entire film. As a result, there is an effect that a polycrystalline silicon film with less surface roughness can be easily formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための基板の
断面図。
FIG. 1 is a sectional view of a substrate for explaining a first embodiment of the present invention.

【図2】結晶シリコン膜及び非晶質シリコン膜に対する
光の波長と消衰係数との関係を示す図。
FIG. 2 is a diagram showing a relationship between a wavelength of light and an extinction coefficient for a crystalline silicon film and an amorphous silicon film.

【図3】本発明の第2の実施例を説明するための基板の
断面図。
FIG. 3 is a sectional view of a substrate for explaining a second embodiment of the present invention.

【図4】従来の多結晶シリコン膜の形成方法を説明する
ための基板の断面図。
FIG. 4 is a cross-sectional view of a substrate for explaining a conventional method for forming a polycrystalline silicon film.

【図5】従来の他の多結晶シリコン膜の形成方法を説明
するための基板の断面図。
FIG. 5 is a sectional view of a substrate for explaining another conventional method for forming a polycrystalline silicon film.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 非晶質シリコン膜 3 表面領域 4 溶融領域 5,5A〜5D 多結晶シリコン膜 6 キャップ酸化膜 7,7A レーザ光 8A,8B 照射領域 9 酸素 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Amorphous silicon film 3 Surface area 4 Melting area 5, 5A-5D Polycrystalline silicon film 6 Cap oxide film 7, 7A Laser light 8A, 8B Irradiation area 9 Oxygen

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された非晶質シリコン膜に
レーザ光を照射して結晶化する結晶シリコン膜の形成方
法において、非晶質シリコン膜における消衰係数が結晶
シリコン膜における消衰係数より大きな波長のレーザ光
を用いることを特徴とする結晶シリコン膜の形成方法。
1. A method of forming a crystalline silicon film, comprising irradiating a laser beam to an amorphous silicon film formed on a substrate to crystallize the amorphous silicon film, wherein the extinction coefficient of the amorphous silicon film is equal to that of the crystalline silicon film. A method for forming a crystalline silicon film, which comprises using a laser beam having a wavelength larger than a coefficient.
【請求項2】 基板上に形成された非晶質シリコン膜に
レーザ光を照射して結晶化する結晶シリコン膜の形成方
法において、非晶質シリコン膜における消衰係数の大き
なレーザ光を非晶質シリコン膜に照射して該非晶質シリ
コン膜の表面のみを結晶化した後に、結晶シリコン膜に
おける消衰係数が小さく非晶質シリコン膜における消衰
係数が大きなレーザ光を照射して、前記非晶質シリコン
膜全体を結晶化することを特徴とする結晶シリコン膜の
形成方法。
2. A method for forming a crystalline silicon film in which an amorphous silicon film formed on a substrate is irradiated with a laser beam to crystallize the amorphous silicon film, the laser beam having a large extinction coefficient in the amorphous silicon film is amorphous. After irradiating the surface of the amorphous silicon film to crystallize only the amorphous silicon film, laser light having a small extinction coefficient in the crystalline silicon film and a large extinction coefficient in the amorphous silicon film is irradiated, A method for forming a crystalline silicon film, characterized by crystallizing the entire crystalline silicon film.
JP6024592A 1994-02-23 1994-02-23 Method for forming crystalline silicon film Expired - Lifetime JP2817613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6024592A JP2817613B2 (en) 1994-02-23 1994-02-23 Method for forming crystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6024592A JP2817613B2 (en) 1994-02-23 1994-02-23 Method for forming crystalline silicon film

Publications (2)

Publication Number Publication Date
JPH07235498A true JPH07235498A (en) 1995-09-05
JP2817613B2 JP2817613B2 (en) 1998-10-30

Family

ID=12142433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6024592A Expired - Lifetime JP2817613B2 (en) 1994-02-23 1994-02-23 Method for forming crystalline silicon film

Country Status (1)

Country Link
JP (1) JP2817613B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338873A (en) * 2000-03-21 2001-12-07 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
WO2003034503A1 (en) * 2001-10-15 2003-04-24 Samsung Electronics Co., Ltd. A thin film transistor using polysilicon and a method for manufacturing the same
KR100555195B1 (en) * 1998-11-19 2006-03-03 샤프 가부시키가이샤 A method of manufacturing a semiconductor device and the semiconductor device
KR100817879B1 (en) * 2001-06-01 2008-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of manufacturing a semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290443A (en) * 1991-03-19 1992-10-15 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290443A (en) * 1991-03-19 1992-10-15 Seiko Epson Corp Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555195B1 (en) * 1998-11-19 2006-03-03 샤프 가부시키가이샤 A method of manufacturing a semiconductor device and the semiconductor device
JP2001338873A (en) * 2000-03-21 2001-12-07 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
KR100817879B1 (en) * 2001-06-01 2008-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of manufacturing a semiconductor device
WO2003034503A1 (en) * 2001-10-15 2003-04-24 Samsung Electronics Co., Ltd. A thin film transistor using polysilicon and a method for manufacturing the same

Also Published As

Publication number Publication date
JP2817613B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JPS62104117A (en) Manufacture of semiconductor thin film
JP2000068520A (en) Semiconductor thin film, manufacture thereof and manufacturing device, and semiconductor element and manufacture thereof
TW200425296A (en) Method of fabricating polysilicon film by excimer laser crystallization process
US7071083B2 (en) Method of fabricating polysilicon film by excimer laser crystallization process
JP2002261015A (en) Semiconductor thin film, method of manufacturing it, manufacturing device, semiconductor element and method of manufacturing it
JPH1050607A (en) Manufacture of semiconductor device
JP2005197656A (en) Method for forming polycrystalline silicon film
JP2997375B2 (en) Method for manufacturing polycrystalline silicon thin film
JP2817613B2 (en) Method for forming crystalline silicon film
JP3031789B2 (en) Thin film semiconductor device and method for manufacturing the same
JP3221251B2 (en) Amorphous silicon crystallization method and thin film transistor manufacturing method
JPH0917729A (en) Manufacture of semiconductor device
JPH10125923A (en) Semiconductor element and its manufacture
JPH06140321A (en) Method of crystallizing of semiconductor film
JPH07326769A (en) Plane display use thin film transistor
JP3210313B2 (en) Method for improving characteristics of polycrystalline silicon thin film
JPH0945926A (en) Formation of polycrystalline semiconductor thin film, thin film transistor and its manufacture
JPH08293464A (en) Manufacture of semiconductor substrate and semiconductor device
JPH0773094B2 (en) Method for manufacturing crystalline semiconductor thin film
KR100188099B1 (en) Fabrication method of thin film transistor panel for lcd
JP3386713B2 (en) Method for manufacturing active matrix display device
CN107799398B (en) Manufacturing method of polycrystalline silicon thin film, transistor, substrate and laser equipment
JPH05315362A (en) Manufacture of semiconductor device and liquid crystal display device
JPH10163112A (en) Manufacture of semiconductor device
JPH11102863A (en) Manufacture of polycrystalline semiconductor film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100324

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120324

EXPY Cancellation because of completion of term