KR100188099B1 - Fabrication method of thin film transistor panel for lcd - Google Patents

Fabrication method of thin film transistor panel for lcd Download PDF

Info

Publication number
KR100188099B1
KR100188099B1 KR1019950035796A KR19950035796A KR100188099B1 KR 100188099 B1 KR100188099 B1 KR 100188099B1 KR 1019950035796 A KR1019950035796 A KR 1019950035796A KR 19950035796 A KR19950035796 A KR 19950035796A KR 100188099 B1 KR100188099 B1 KR 100188099B1
Authority
KR
South Korea
Prior art keywords
energy
laser
thin film
film
film transistor
Prior art date
Application number
KR1019950035796A
Other languages
Korean (ko)
Other versions
KR970024246A (en
Inventor
진용석
Original Assignee
김광호
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자주식회사 filed Critical 김광호
Priority to KR1019950035796A priority Critical patent/KR100188099B1/en
Publication of KR970024246A publication Critical patent/KR970024246A/en
Application granted granted Critical
Publication of KR100188099B1 publication Critical patent/KR100188099B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Abstract

본 발명은 레이저를 이용하여 비정질 실리콘을 다결정 실리콘으로 변화시키면서 동시에 산화막을 형성할 수 있는 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법에 관한 것이다. 기판 위에 비정질 실리콘막을 형성하는 단계, 상기 비정질 실리콘막에 레이저를 쏘아 다결정 실리콘막으로 변화시키는 동시에 상기 다결정 실리콘막 위에 산화막을 형성하는 단계를 포함하는 제조 공정 순서를 갖는다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor substrate for a liquid crystal display device capable of simultaneously forming an oxide film while changing amorphous silicon into polycrystalline silicon using a laser. Forming an amorphous silicon film on the substrate, and forming an oxide film on the polycrystalline silicon film while simultaneously lasering the amorphous silicon film into a polycrystalline silicon film.

Description

액정 표시 장치용 박막 트랜지스터 기판의 제조 방법Manufacturing method of thin film transistor substrate for liquid crystal display device

제1도는 본 발명의 실시예에 따른 액정 표시 장치용 박막 트랜지스터 기판을 나타낸 단면도이고,1 is a cross-sectional view illustrating a thin film transistor substrate for a liquid crystal display according to an exemplary embodiment of the present invention.

제2a∼d도는 본 발명의 실시예에 따른 액정 표시 장치용 박막 트랜지스터 기판의 제조 공정 순서를 나타낸 단면도이다.2A to 2D are cross-sectional views illustrating a manufacturing process procedure of a thin film transistor substrate for a liquid crystal display according to an exemplary embodiment of the present invention.

본 발명은 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법에 관한 것으로서, 더욱 상세히 말하자면 레이저를 이용하여 비정질 실리콘을 다결정 실리콘으로 변화시키면서 동시에 산화막을 형성할 수 있는 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a thin film transistor substrate for a liquid crystal display device, and more particularly, to a method for manufacturing a thin film transistor substrate for a liquid crystal display device capable of simultaneously forming an oxide film while converting amorphous silicon into polycrystalline silicon using a laser. It is about.

일반적으로 액정 표시 장치는, 박막 트랜지스터 및 화소 전극이 형성되어 있는 다수의 화소 단위가 행렬의 형태로 형성되어 있으며, 게이트 라인 및 데이타 라인이 각각 화소 행과 화소 열을 따라 형성되어 있는 박막 트랜지스터 기판, 공통 전극이 형성되어 있는 컬러 필터 기판, 그리고 그 사이에 봉입되어 있는 액정 물질을 포함하고 있다.In general, a liquid crystal display includes a thin film transistor substrate in which a plurality of pixel units in which a thin film transistor and a pixel electrode are formed are formed in a matrix form, and a gate line and a data line are formed along a pixel row and a pixel column, respectively. It includes a color filter substrate on which a common electrode is formed, and a liquid crystal material enclosed therebetween.

이때, 상기 박막 트랜지스터 기판의 게이트 전극은 상기 게이트 라인을 통해 게이트 구동 드라이브로부터 게이트 구동 신호를 전달받아 반도체층에 채널을 형성시키고, 이에 따라 데이타 구동 드라이브로부터의 데이타 신호가 상기 데이타 라인을 통해 소스 전극에 전달되고, 반도체층과 드레인 전극을 거쳐 화소 전극에 전달된다.In this case, the gate electrode of the thin film transistor substrate receives a gate driving signal from a gate driving drive through the gate line to form a channel in the semiconductor layer, and thus a data signal from the data driving drive is a source electrode through the data line. Is transferred to the pixel electrode via the semiconductor layer and the drain electrode.

이와 같은 액정 표시 장치는 액티브 영역으로 사용하는 채널층을 다결정 실리콘을 사용하여 형성할 수 있는데, 먼저 비정질 실리콘을 적층한 후 다결정 실리콘으로 변화시킬 수 있다.In such a liquid crystal display, a channel layer used as an active region may be formed using polycrystalline silicon. First, amorphous silicon may be laminated and then changed into polycrystalline silicon.

상기 다결정 실리콘막 상부에는 절연막을 형성하는데 이 절연막의 형성 방법은 PECVD 방식과 APCVD방식 그리고 ECRCVD등을 일반적으로 사용한다. 이와 같은 CVD방식은 저온에서 박막 트랜지스터를 형성할 수 있는 장점이 있으나, 액티브층인 다결정 실리콘층과의 계면 상태가 좋지 않다. 즉, 산화막 형성이 산소 원자의 확산에 의해 이루어진 계면 상태가 열산화막에 의한 절연막에 비해 CVD 산화막에 의한 절연막은 원자 결함을 가지기 때문에 계면 상태가 좋지 않은 문제점이 있다.An insulating film is formed on the polycrystalline silicon film, and a method of forming the insulating film generally uses a PECVD method, an APCVD method, and an ECRCVD method. Such a CVD method has the advantage of forming a thin film transistor at a low temperature, but the interface state with the active layer polycrystalline silicon layer is not good. That is, the interface state in which the oxide film is formed by diffusion of oxygen atoms has a problem in that the interface state is not good because the insulating film by the CVD oxide film has atomic defects as compared with the insulating film by the thermal oxide film.

그러므로 본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로 저온 공정으로 비정질 실리콘을 다결정 실리콘으로 변화시킬 수 있으며 이 비정질 실리콘막 위에 동시에 절연막을 형성할 수 있는 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법을 제공하기 위한 것이다.Therefore, the present invention is to solve the above-mentioned problems, and to manufacture a thin film transistor substrate for a liquid crystal display device capable of changing amorphous silicon into polycrystalline silicon in a low temperature process and simultaneously forming an insulating film on the amorphous silicon film. It is to provide.

이러한 목적을 달성하기 위한 본 발명의 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법은, 기판 위에 비정질 실리콘막을 형성하는 단계, 상기 비정질 실리콘막에 레이저를 쏘아 다결정 실리콘막으로 변화시키는 동시에 상기 다결정 실리콘막 위에 산화막을 형성하는 단계를 포함한다.A method of manufacturing a thin film transistor substrate for a liquid crystal display device according to the present invention for achieving the above object comprises the steps of forming an amorphous silicon film on a substrate, by firing a laser on the amorphous silicon film to change to a polycrystalline silicon film and on the polycrystalline silicon film Forming an oxide film.

절연 특성을 향상시키기 위해 상기 산화막 위에 CVD 방법으로 보조 산화막을 형성하는 단계를 더 포함할 수 있다.The method may further include forming an auxiliary oxide layer on the oxide layer by a CVD method to improve insulation characteristics.

첨부한 도면을 참고로 하여, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세하게 설명한다.With reference to the accompanying drawings, it will be described in detail an embodiment of the present invention to be easily carried out by those skilled in the art.

제1도 본 발명의 실시예에 따른 액정 표시 장용 박막 트랜지스터 기판을 나타낸 단면도이고, 제2a∼e도는 본 발명의 실시예에 따른 액정 표시 장치용 박막 트랜지스터 기판의 제조 공정 순서를 나타낸 단면도이다.1 is a cross-sectional view showing a liquid crystal display thin film transistor substrate according to an embodiment of the present invention, Figures 2a to e is a cross-sectional view showing a manufacturing process procedure of a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.

먼저, 제2a도에 도시한 바와 같이, 기판(1) 위에 비정질 실리콘막(2)을 형성한다.First, as shown in FIG. 2A, an amorphous silicon film 2 is formed on the substrate 1.

이때 PECVD 또는 LPCVD 방법을 사용하고 그 두께는 400Å 내지 600Å 정도로 형성한다.At this time, the PECVD or LPCVD method is used and the thickness is formed to about 400 kPa to 600 kPa.

다음, 제2b도에 도시한 바와 같이, 상기 비정질 실리콘막(2)에 레이저(4)를 쏜다.Next, as shown in FIG. 2B, the laser 4 is directed to the amorphous silicon film 2.

이때 엑시머 레이저를 사용하고, 레이저 에너지는 200mJ/cm2으로 바람직하게는 300mJ/cm2의 크기로 한다.At this time, an excimer laser is used, and the laser energy is 200 mJ / cm 2 and preferably 300 mJ / cm 2 .

레이저에 의해 상기 비정질 실리콘막(2)은 순간적으로 용융되었다가 식으면서 결정화가 시작되면, 150mJ/cm2내지 250mJ/cm2바람직하게로는 200mJ/cm2정도로 레이저의 에너지를 낮추어 조사한다. 이때 분위기는 수증기 또는 02로 한다. 이 과정에서 동시에 제2c도에 도시한 바와 같이, 상기 다결정 실리콘막(3) 표면에는 수백Å의 산화막(6)이 형성된다. 이 과정에서, 다결정 실리콘막(3)의 표면 거칠기가 현저하게 줄어들 뿐 아니라, 외부 불순물의 영향을 받지 않기 때문에 이 산화막(6)은 CVD 방법에 의해 형성된 CVD 산화막에 비해 우수한 계면 특성을 갖는다. 따라서 누설 전류가 억제되고 브레이크 다운 현상을 억제한다.When the amorphous silicon film 2 is instantaneously melted and cooled by a laser and crystallization starts, cooling is performed by lowering the energy of the laser to about 150 mJ / cm 2 to 250 mJ / cm 2, preferably 200 mJ / cm 2 . At this time, the atmosphere is water vapor or 0 2 . In this process, as shown in FIG. 2C at the same time, several hundreds of oxide oxide films 6 are formed on the surface of the polycrystalline silicon film 3. In this process, not only the surface roughness of the polycrystalline silicon film 3 is significantly reduced, but also is not affected by external impurities, the oxide film 6 has superior interfacial properties as compared to the CVD oxide film formed by the CVD method. Therefore, leakage current is suppressed and breakdown phenomenon is suppressed.

다음, 제2d도에 도시한 바와 같이, 상기 산화막(6) 위에 CVD 방법으로 보조산화막(7)을 더 형성하여 절연막의 신뢰도를 높인다. 이때 상기 레이저에 의해 형성된 산화막(6)과 상기 CVD 방법에 의해 형성된 보조 산화막(7)의 두께의 합은 1000Å 이하가 바람직하다.Next, as shown in FIG. 2D, the auxiliary oxide film 7 is further formed on the oxide film 6 by the CVD method to increase the reliability of the insulating film. At this time, the sum of the thicknesses of the oxide film 6 formed by the laser and the auxiliary oxide film 7 formed by the CVD method is preferably 1000 Pa or less.

그러므로 본 발명은 400℃이하의 저온 공정이 가능하여 유리 기판을 사용할 수 있어 제조 비용을 낮출 수 있고, 절연막과 채널층과의 접합 계면 상태를 양호하게 얻을 수 있어 절연 효과를 증대시킬 수 있다.Therefore, in the present invention, a low temperature process of 400 ° C. or lower is possible, and thus, a glass substrate can be used, and thus manufacturing cost can be lowered, and the bonding interface state between the insulating film and the channel layer can be obtained satisfactorily and the insulation effect can be increased.

Claims (7)

기판 위에 비정질 실리콘막을 형성하는 단계, 상기 비정질 실리콘막에 레이저를 조사하여 다결정 실리콘막으로 결정화시킴과 동시에 상기 다결정 실리콘막 표면에 산화막을 형성하는 단계를 포함하며, 상기 레이저는 제1에너지로부터 제2에너지로 점차 낮추어 조사하고, 상기 결정화는 상기 제1에너지로부터 상기 제2에너지 내에서 이루어지며, 상기 산화막은 상기 제2에너지에서 형성되는 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법.Forming an amorphous silicon film on a substrate, irradiating the amorphous silicon film with a laser to crystallize it into a polycrystalline silicon film, and simultaneously forming an oxide film on the surface of the polycrystalline silicon film, wherein the laser generates a second energy from the first energy. And gradually lowering the energy to energy, the crystallization is performed within the second energy from the first energy, and the oxide film is formed at the second energy. 제1항에서, 상기 산화막 위에 CVD 방법으로 보조 산화막을 형성하는 단계를 더 포함하는 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법.The method of claim 1, further comprising forming an auxiliary oxide layer on the oxide layer by a CVD method. 제1항에서, 상기 비정질 실리콘의 두께는 CVD 방법을 사용하여 두께가 400Å 내지 600Å 정도로 형성되는 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법.The method of claim 1, wherein the amorphous silicon has a thickness of about 400 μs to 600 μs using a CVD method. 제1항에서, 상기 레이저는 엑시머 레이저를 사용하는 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법.The method of claim 1, wherein the laser uses an excimer laser. 제4항에서, 상기 레이저의 제1에너지는 200mJ/cm2내지 400mJ/cm2의 크기인 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법.The method of claim 4, wherein the first energy of the laser is 200 mJ / cm 2 to 400 mJ / cm 2 . 제5항에서, 상기 레이저의 제2에너지는 150mJ/cm2내지 250mJ/cm2의 크기인 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법.The method of claim 5, wherein the second energy of the laser is 150 mJ / cm 2 to 250 mJ / cm 2 . 제1항에서, 상기 산화막 형성시 분위기는 수증기 또는 02인 것으로 하는 액정 표시 자레용 박막 트랜지스터 기판의 제조 방법.The method of claim 1, wherein an atmosphere of forming the oxide layer is water vapor or 0 2 .
KR1019950035796A 1995-10-17 1995-10-17 Fabrication method of thin film transistor panel for lcd KR100188099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950035796A KR100188099B1 (en) 1995-10-17 1995-10-17 Fabrication method of thin film transistor panel for lcd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950035796A KR100188099B1 (en) 1995-10-17 1995-10-17 Fabrication method of thin film transistor panel for lcd

Publications (2)

Publication Number Publication Date
KR970024246A KR970024246A (en) 1997-05-30
KR100188099B1 true KR100188099B1 (en) 1999-07-01

Family

ID=19430406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950035796A KR100188099B1 (en) 1995-10-17 1995-10-17 Fabrication method of thin film transistor panel for lcd

Country Status (1)

Country Link
KR (1) KR100188099B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623251B1 (en) 2004-02-19 2006-09-18 삼성에스디아이 주식회사 Method of fabricating a polysilicon thin film and thin film transistor using the polysilicon thin film fabricated by the same method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3658213B2 (en) * 1998-11-19 2005-06-08 富士通株式会社 Manufacturing method of semiconductor device
JP4101409B2 (en) * 1999-08-19 2008-06-18 シャープ株式会社 Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623251B1 (en) 2004-02-19 2006-09-18 삼성에스디아이 주식회사 Method of fabricating a polysilicon thin film and thin film transistor using the polysilicon thin film fabricated by the same method

Also Published As

Publication number Publication date
KR970024246A (en) 1997-05-30

Similar Documents

Publication Publication Date Title
US9806096B2 (en) Semiconductor device and method for manufacturing the same
EP1054452B1 (en) Method for fabricating a TFT
US6555422B1 (en) Thin film transistor and method of manufacturing the same
KR100250851B1 (en) Production of polycrystalline silicon thin film transistor
US5763904A (en) Non-single crystal semiconductor apparatus thin film transistor and liquid crystal display apparatus
KR930020197A (en) Electronic device manufacturing method and electronic device manufactured by this method
JPH0519830B2 (en)
CN100356506C (en) Crystal mask, amorphous silicon crystallization method and method of manufacturing array base plate using same
US6759628B1 (en) Laser annealing apparatus
US6596572B1 (en) Method of fabricating a thin-film transistor having a plurality of island-like regions
US20040235276A1 (en) Method of fabricating polysilicon film by excimer laser crystallization process
KR100188099B1 (en) Fabrication method of thin film transistor panel for lcd
US6165810A (en) Method of manufacturing semiconductor device and display device
JP3386192B2 (en) Semiconductor device and manufacturing method thereof
JPH08116067A (en) Semiconductor device, display device and manufacture of display device
JPH10199808A (en) Method of crystallizing silicon film
US20040058076A1 (en) Method for fabricating polysilicon layer
KR100304824B1 (en) Polysilicon thin film transistor liquid crystal display
US7271410B2 (en) Active matrix circuit
JP3386713B2 (en) Method for manufacturing active matrix display device
KR20020060113A (en) Method for providing transparent substrate having protection layer on crystalized polysilicon layer, method for forming polysilicon active layer thereof and method for manufacturing polysilicon tft using the same
JPH07235498A (en) Formation of crystalline silicon film
JPH0915637A (en) Manufacture of electro-optical display device
JP2003273015A (en) Method of manufacturing semiconductor device
JPH1098192A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080104

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee