JPH01168050A - Laminated type semiconductor device - Google Patents

Laminated type semiconductor device

Info

Publication number
JPH01168050A
JPH01168050A JP32552487A JP32552487A JPH01168050A JP H01168050 A JPH01168050 A JP H01168050A JP 32552487 A JP32552487 A JP 32552487A JP 32552487 A JP32552487 A JP 32552487A JP H01168050 A JPH01168050 A JP H01168050A
Authority
JP
Japan
Prior art keywords
opening
layer
silicon
single crystal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32552487A
Other languages
Japanese (ja)
Other versions
JPH0316787B2 (en
Inventor
Kazuyuki Sugahara
和之 須賀原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP32552487A priority Critical patent/JPH01168050A/en
Priority to US07/199,439 priority patent/US5128732A/en
Publication of JPH01168050A publication Critical patent/JPH01168050A/en
Publication of JPH0316787B2 publication Critical patent/JPH0316787B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To preferably laterally epitaxially grow even in a recrystallization of third layer or higher, and to enhance the quality by reducing the area of an opening to a specific area or less, and isolating the openings of upper and lower layers at a specific distance or more. CONSTITUTION:The area of an opening is formed 9mum<2> or less, and the position of the opening of an upper layer is isolated 8mum or more with respect to the position of the opening of a lower layer. An opening 51 for aligning a third layer silicon film with the same crystal axis as that of a substrate single crystalline silicon 1 is formed in a square shape having 3mum of one side, and the position of the opening 51 is disposed at a position isolated by 8mum or more with respect to an opening 5 for a second layer. Thus, a polycrystalline silicon 62 in the opening 51 is completely melted at the time of irradiating a laser beam, a lateral epitaxial growth occurs with a single crystalline silicon 73 as a seed thereby to perform a preferably epitaxial growth, thereby enhancing its quality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体素子を立体的に多層積層する積層型
半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stacked semiconductor device in which semiconductor elements are stacked three-dimensionally in multiple layers.

〔従来の技術〕[Conventional technology]

半導体装置の高密度化、多機能化を実現するために、回
路素子を立体的に多層積層する積層型半導体装置いわゆ
る三次元回路素子を製造する試みがなされており、その
一方法として、既に形成された回路素子の上に絶縁体を
形成し、この絶縁体上に堆積された非単結晶の半導体層
にレーザ光などのエネルギー線を照射することにより、
半導体層のみを加熱、?8融し単結晶化させ、この単結
晶化された半導体層に回路素子を形成し、積層化してい
(という方法がある。
In order to realize higher density and multi-functionality of semiconductor devices, attempts have been made to manufacture stacked semiconductor devices, so-called three-dimensional circuit elements, in which circuit elements are stacked three-dimensionally in multiple layers. By forming an insulator on top of the insulator and irradiating the non-single crystal semiconductor layer deposited on the insulator with energy rays such as laser light,
Heating only the semiconductor layer? There is a method in which the semiconductor layer is melted to form a single crystal, circuit elements are formed on the single crystal semiconductor layer, and the semiconductor layer is laminated.

第2図(al〜(aは、従来の積層型半導体装置の製造
方法を示す工程別断面図である。
FIG. 2 (al~(a) is a cross-sectional view showing each step of a conventional method for manufacturing a stacked semiconductor device.

第2図(alにおいて、1は単結晶シリコン基板、Aは
通常のMOS)ランジスタ製造工程によって作製された
第1層目のMO3I−ランジスタであり、21は酸化膜
、3はゲート電極、4はソースドレイン配線である。後
の積層化のための高温熱処理に耐えられるように、ソー
スドレイン配線4はタングステンシリサイド(WSiよ
)等の高融点金属シリサイドで作られている。1層目の
回路素子への形成後、層間絶縁膜として酸化膜22を化
学的気相成長法(以下CVD法と称す)によって堆積し
、レジスト塗布、エッチバック法により表面を平坦化す
る。この酸化膜22上に基板単結晶シリコン1と同じ結
晶軸を持った争結晶シリコン層を形成するために、酸化
膜22の一部に基板シリコン1に達する1辺3μmの正
方形の開口部5を形成する。
Figure 2 (in al, 1 is a single crystal silicon substrate, A is a normal MOS) is the first layer MO3I-transistor produced by the transistor manufacturing process, 21 is an oxide film, 3 is a gate electrode, 4 is a This is the source/drain wiring. The source/drain wiring 4 is made of high-melting point metal silicide such as tungsten silicide (WSi) so that it can withstand high-temperature heat treatment for later lamination. After forming the first layer of circuit elements, an oxide film 22 is deposited as an interlayer insulating film by chemical vapor deposition (hereinafter referred to as CVD), and the surface is planarized by resist coating and etchback. In order to form a conflict crystalline silicon layer having the same crystal axis as the substrate single crystal silicon 1 on this oxide film 22, a square opening 5 with a side of 3 μm reaching the substrate silicon 1 is formed in a part of the oxide film 22. Form.

その後第2図(IJ)に示すように、この開口部5にC
VD法およびエッチバック法により多結晶シリコン6を
埋め込む、この上に、厚さ0.5μmの多結晶シリコン
7をCVD法で形成する。その後、この多結晶シリコン
7にビーム径100μmのアルゴンレーザ光8を図中矢
印の方向に走査速度25 ell / sで走査しなが
ら照射する。レーザ光8の照射によって多結晶シリコン
7は溶融シリコン72になり、照射が終了すると固化再
結晶化する。
Thereafter, as shown in FIG. 2 (IJ), the C
Polycrystalline silicon 6 is buried by the VD method and etchback method, and polycrystalline silicon 7 with a thickness of 0.5 μm is formed thereon by the CVD method. Thereafter, this polycrystalline silicon 7 is irradiated with an argon laser beam 8 having a beam diameter of 100 μm while scanning in the direction of the arrow in the figure at a scanning speed of 25 ell/s. Polycrystalline silicon 7 becomes molten silicon 72 by irradiation with laser light 8, and solidifies and recrystallizes when the irradiation ends.

この溶融シリコン72が固化する際、基板単結晶シリコ
ン1と溶融した多結晶シリコン6を種とする横方向のエ
ピタキシャル成長が生じて、酸化膜22上の多結晶シリ
コン7は、基板単結晶シリコン1と同じ結晶軸を持った
単結晶シリコン71になる(第2図(C1)、このレー
ザ光照射による酸化膜上べの単結晶半導体層の形成機構
については、特許公開公報61−047192.61−
48470.61−118438゜61−048468
に詳しく述べられている。
When this molten silicon 72 solidifies, lateral epitaxial growth occurs using the substrate single crystal silicon 1 and the molten polycrystalline silicon 6 as seeds, and the polycrystalline silicon 7 on the oxide film 22 becomes the substrate single crystal silicon 1. Single crystal silicon 71 having the same crystal axis is formed (Fig. 2 (C1)). The formation mechanism of the single crystal semiconductor layer on the oxide film by this laser beam irradiation is described in Japanese Patent Publication No. 61-047192.61-
48470.61-118438゜61-048468
is described in detail.

次に第2図(d)に示すように、写真製版、エツチング
技術により、単結晶化した多結晶シリコン71を、MO
Sトランジスタを作製する領域の単結晶化シリコン74
および開口部5上の単結晶化シリコン73にパターニン
グする。その後、この単結晶化シリコン74上に、I層
目のMOS)ランジスタAと同様の方法によって2層目
のMOS)ランジスタBを作製する(第2図(e))。
Next, as shown in FIG. 2(d), the monocrystalline polycrystalline silicon 71 is made into MO by photolithography and etching techniques.
Single crystal silicon 74 in the region where the S transistor is to be manufactured
Then, the single crystal silicon 73 above the opening 5 is patterned. Thereafter, a second layer MOS transistor B is fabricated on this single crystal silicon 74 by the same method as the I layer MOS transistor A (FIG. 2(e)).

第2図<8)において、23は酸化膜、31はゲート電
極、41はソースドレイン配線である。ソースドレイン
配線41は1層目トランジスタAのソースドレイン配線
4と同様、高融点金属シリサイドで形成されている。
In FIG. 2<8), 23 is an oxide film, 31 is a gate electrode, and 41 is a source/drain wiring. The source/drain wiring 41 is made of refractory metal silicide, like the source/drain wiring 4 of the first layer transistor A.

次に第2図(f)に示すように、2層目の回路素子Bの
形成後、層間絶縁膜(酸化膜)24をCVD法により堆
積し、レジスト塗布、エッチバック法により表面を平坦
化する。その後、単結晶化シリコン73上に開口部を設
け、1層目の場合と同様に多結晶シリコンを開口部に埋
め込み、次にこの上に多結晶シリコンをCVD法により
堆積した後、レーザ光の照射によりこれらの多結晶シリ
コンを単結晶化シリコン61.75にする。その後は第
2図(g)に示すように、I層目、2層目の場合と同様
に、単結晶化シリコン75上に3層目のMOSトランジ
スタCを作製する。
Next, as shown in FIG. 2(f), after forming the second layer of circuit element B, an interlayer insulating film (oxide film) 24 is deposited by CVD method, and the surface is planarized by resist coating and etchback method. do. After that, an opening is formed on the single crystal silicon 73, polycrystalline silicon is buried in the opening as in the case of the first layer, polycrystalline silicon is deposited thereon by CVD method, and then laser light is applied. By irradiation, these polycrystalline silicons are converted into monocrystalline silicon 61.75. Thereafter, as shown in FIG. 2(g), a third layer MOS transistor C is fabricated on the single crystal silicon 75 in the same manner as in the case of the I-th layer and the second layer.

以上のようにして、3層構造の三次元回路素子が作製さ
れる。
In the manner described above, a three-dimensional circuit element having a three-layer structure is manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の積層型半導体装置では、3M目の回路素子Cのた
めに多結晶シリコンを基板単結晶シリコン1と同じ結晶
軸を持った単結晶シリコン75にするための開口部が、
2層目の回路素子Bのための開口部5の真上に設けられ
ている。このような場合、シリコンは酸化膜に比べて熱
伝導率が大きいため、開口部内の多結晶シリコンは温度
の上昇が小さくて熔融せず、この結果横方向のエピタキ
シャル成長が起こらないという問題点があった。
In the conventional stacked semiconductor device, the opening for converting the polycrystalline silicon into single crystal silicon 75 having the same crystal axis as the substrate single crystal silicon 1 for the 3Mth circuit element C is
It is provided directly above the opening 5 for the second layer circuit element B. In such a case, silicon has a higher thermal conductivity than an oxide film, so the polycrystalline silicon within the opening will not melt due to a small temperature rise, resulting in the problem that lateral epitaxial growth will not occur. Ta.

さらに、この現象は層間絶縁膜が厚くなるほど顕著にな
り、3層目の再結晶化において開口部内の多結晶シリコ
ンを溶融することは不可能であった。
Furthermore, this phenomenon becomes more pronounced as the interlayer insulating film becomes thicker, and it was impossible to melt the polycrystalline silicon within the opening during recrystallization of the third layer.

この問題を解決するために、開口部を小さくして熱伝導
を低く抑えようという試みがなされているが、開口部内
多結晶シリコンを溶融させるには、開口部の大きさは0
.5μm以下でなければならず、開口部を形成するため
のプロセスの信顛性に問題を残している。
In order to solve this problem, attempts have been made to keep the heat conduction low by making the opening smaller, but in order to melt the polycrystalline silicon inside the opening, the opening size is 0.
.. It must be less than 5 μm, leaving problems with the reliability of the process for forming the opening.

この発明は上記のような問題点を解消するためになされ
たもので、良好な横方向エピタキシャル成長ができ、基
板と同じ結晶軸を持った半導体層を各層に持つ積層型半
導体装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a stacked semiconductor device in which good lateral epitaxial growth is possible and each layer has a semiconductor layer having the same crystal axis as the substrate. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る積層型半導体装置は、開口部の面積を9
μm2以下とし、上層の開口部の位置を下層の開口部の
位置に対し8μm以上離したものである。
In the stacked semiconductor device according to the present invention, the area of the opening is 9
The openings in the upper layer are separated by 8 μm or more from the openings in the lower layer.

〔作用〕[Effect]

この発明においては、上層の開口部を下層の開口部より
8μm以上離して設けることにより、再結晶化時の熱放
散が防止され、良好な横方向のエピタキシャル成長が可
能となる。
In this invention, by providing the opening in the upper layer at least 8 μm apart from the opening in the lower layer, heat dissipation during recrystallization is prevented and good lateral epitaxial growth is possible.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。なお
この実施例の説明において、従来の技術の説明と重複す
る部分については適宜その説明を省略する。
An embodiment of the present invention will be described below with reference to the drawings. In the description of this embodiment, the description of parts that overlap with the description of the conventional technology will be omitted as appropriate.

第1図は、この発明の一実施例による積層型半導体装置
を説明するための断面図である。この図において、1は
基板単結晶シリコンであり、(100)面ま゛たはこれ
に近い主面を持つシリコンである。22.24は層間酸
化膜、51は3jii目のシリコン膜を基板単結晶シリ
コン1と同じ結晶軸にするための開口部で1辺3μmの
正方形である。
FIG. 1 is a cross-sectional view for explaining a stacked semiconductor device according to an embodiment of the present invention. In this figure, reference numeral 1 denotes a single crystal silicon substrate, which has a (100) plane or a principal plane close to this plane. 22 and 24 are interlayer oxide films, and 51 is a square opening with a side of 3 μm for making the 3JIIth silicon film have the same crystal axis as the single crystal silicon substrate 1.

61.73は単結晶化シリコン、62は開口部51に埋
め込まれた多結晶シリコン、76は多結晶シリコン、A
は1層目トランジスタ、Bは2層目トランジスタである
。第1図は、第2図(f)の、レーザ光を照射する前の
工程に対応している。また第1図において、3層目のた
めの開口部51の位置は、2層目のための開口部5に対
して8μm離れたところにある。
61. 73 is monocrystalline silicon, 62 is polycrystalline silicon embedded in the opening 51, 76 is polycrystalline silicon, A
is a first layer transistor, and B is a second layer transistor. FIG. 1 corresponds to the step before laser beam irradiation in FIG. 2(f). Further, in FIG. 1, the position of the opening 51 for the third layer is 8 μm apart from the opening 5 for the second layer.

さて、開口部5と51を離した構造としたときの、多結
晶シリコン76にレーザ光を照射した場合のシミュレー
ション結果を第3図に示す。第3図(b)は、第3図(
a)に示すように開口部径が2μm。
Now, FIG. 3 shows simulation results when polycrystalline silicon 76 is irradiated with laser light when the openings 5 and 51 are separated from each other. Figure 3(b) is the same as Figure 3(b).
As shown in a), the opening diameter is 2 μm.

層間酸化膜の厚さが4μm (IJiあたり2μm)。The thickness of the interlayer oxide film is 4 μm (2 μm per IJi).

2層目の半導体層(単結晶化シリコン73)及び3層目
の半導体N(多結晶シリコン76)の厚さがそれぞれ0
.5μmとした場合の、レーザ光照射時の開口部間距離
Xと層間酸化膜上からの多結晶シリコン62の溶融深さ
Yとの関係を示すものである。第3図より、開口部間距
離Xが8μmを越えると、溶融深さYは2μm以上にな
ることがわかる。層間酸化膜上端から2μmの距離に単
結晶化シリコン73があるため、溶融深さYが2μm以
上になる開口部間距離X8μm以上で、横方向のエピタ
キシャル成長が起こる。
The thickness of the second semiconductor layer (monocrystalline silicon 73) and the third semiconductor layer (polycrystalline silicon 76) is 0, respectively.
.. This figure shows the relationship between the distance X between openings during laser beam irradiation and the melting depth Y of polycrystalline silicon 62 from above the interlayer oxide film when the distance is 5 μm. From FIG. 3, it can be seen that when the distance X between the openings exceeds 8 μm, the melting depth Y becomes 2 μm or more. Since the single crystal silicon 73 is located at a distance of 2 μm from the upper end of the interlayer oxide film, epitaxial growth in the lateral direction occurs when the distance between the openings is 8 μm or more and the melting depth Y is 2 μm or more.

以上の結果より、第1図においては、開口部51を下層
の開口部5に対し8μmRLでいるため、レーザ光照射
時に開口部51内の多結晶シリコン62は完全に溶融し
、単結晶化シリコン73を種とした横方向エピタキシャ
ル成長が生じ、多結晶シリコン62.76は基板単結晶
シリコン1と同じ結晶軸を持った単結晶シリコンとなる
。後は、従来の例で述べた方法で、単結晶化した多結晶
シリコン76に3層目のトランジスタを形成する。
From the above results, in FIG. 1, since the opening 51 is 8 μm RL with respect to the opening 5 in the lower layer, the polycrystalline silicon 62 inside the opening 51 is completely melted during laser beam irradiation, and the single crystal silicon Lateral epitaxial growth occurs using 73 as a seed, and the polycrystalline silicon 62 and 76 become single crystal silicon having the same crystal axis as the substrate single crystal silicon 1. After that, a third layer transistor is formed in the single crystal polycrystalline silicon 76 using the method described in the conventional example.

なお、上記実施例では3層構造の積層型半導体装置の例
を示したが、本発明は3層以上であれば何層であっても
同様の効果を奏する。
In the above embodiment, an example of a stacked semiconductor device having a three-layer structure was shown, but the present invention can produce the same effect regardless of the number of layers as long as there are three or more layers.

また、各層に作製される素子も上記実施例のようなMO
3型トランジスタに限定されず、また開口部の形も正方
形に限定されない。
In addition, the elements fabricated in each layer are also MO
The present invention is not limited to type 3 transistors, and the shape of the opening is not limited to square.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、開口部の面積を9μ
m”以下にし、かつ上層と下層の開口1部を8μm以上
離して設けたので、3層目以上の再結晶化においても良
好な横方向のエピタキシャル成長が可能となり、高品質
の積層型半導体装置が得られる効果がある。
As described above, according to the present invention, the area of the opening can be reduced to 9μ.
m'' or less, and the openings in the upper and lower layers are separated by 8 μm or more, making it possible to achieve good lateral epitaxial growth even in recrystallization of the third or higher layers, resulting in high-quality stacked semiconductor devices. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による積層型半導体装置を
示す断面図、第2図は従来の積層型半導体装置を示す工
程別断面図、第3図は開口部間距離と溶融深さの関係の
シミュレーション結果を説明するための図である。 1は基板単結晶シリコン、22.24は層間酸化膜、5
.51は開口部、61.73は単結晶化シリコン、62
.76は多結晶シリコン、Aは1層目トランジスタ、B
は2層目トランジスタ、Cは3層目トランジスタ。 なお、図中、同一符号は同一、又は相当部分を示す。 特許出願人 工業技術院長 飯塚幸三 坊1図 3:グー〆2fj 4:AIIJ!A 3/クク〃!〃 22.24 :41を隻にノ 23 : Jilt〜1 5.51 :ダDfi5 61.73装置4h恐fングJン 62.76:−9Jめbングフン A:i、##メノンシ2り B:24E〆りンン7り 02図 第2図
FIG. 1 is a cross-sectional view showing a stacked semiconductor device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a conventional stacked semiconductor device by process, and FIG. 3 is a cross-sectional view showing the distance between openings and the melting depth. It is a figure for explaining the simulation result of a relationship. 1 is the substrate single crystal silicon, 22.24 is the interlayer oxide film, 5
.. 51 is an opening, 61.73 is single crystal silicon, 62
.. 76 is polycrystalline silicon, A is the first layer transistor, B
is the second layer transistor, and C is the third layer transistor. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent applicant: Director of the Agency of Industrial Science and Technology Kozo Iizuka 1 Figure 3: Goo〆2fj 4: AIIJ! A 3/Kuku! 〃 22.24: 41 to ship ノ23: Jilt ~ 1 5.51: DaDfi5 61.73 device 4h fear Jn 62.76: -9J Meb ngfun A: i, ## Menonshi 2ri B :24E〆Rinnn7ri02Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子を上下層間を電気的に分離するための
層間絶縁膜を介して立体的に積層してなり、かつ、上記
層間絶縁膜に設けられた開口部に半導体を埋め込み、該
層間絶縁膜上に基板半導体単結晶と同じ結晶軸を持った
半導体単結晶層を形成し、該単結晶層上に2層目以上の
半導体素子を形成してなる積層型半導体装置において、 上記開口部はその面積が9μm^2以下であり、かつ、
そのうちの3層目以上の素子形成のための開口部は直下
の層の開口部に対し8μm以上離れて連結されるもので
あることを特徴とする積層型半導体装置。
(1) Semiconductor elements are stacked three-dimensionally through an interlayer insulating film for electrically separating the upper and lower layers, and a semiconductor is buried in an opening provided in the interlayer insulating film, and the interlayer insulating film is In a stacked semiconductor device in which a semiconductor single crystal layer having the same crystal axis as the substrate semiconductor single crystal is formed on a film, and a second or higher layer of semiconductor elements is formed on the single crystal layer, the opening is Its area is 9 μm^2 or less, and
A stacked semiconductor device characterized in that an opening for forming an element in a third or higher layer is connected to an opening in a layer immediately below at a distance of 8 μm or more.
(2)上記半導体基板は(100)面またはこれに近い
主面を持つシリコンからなることを特徴とする特許請求
の範囲第1項記載の積層型半導体装置。
(2) The stacked semiconductor device according to claim 1, wherein the semiconductor substrate is made of silicon having a (100) plane or a main surface close to this plane.
JP32552487A 1987-05-30 1987-12-24 Laminated type semiconductor device Granted JPH01168050A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32552487A JPH01168050A (en) 1987-12-24 1987-12-24 Laminated type semiconductor device
US07/199,439 US5128732A (en) 1987-05-30 1988-05-27 Stacked semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32552487A JPH01168050A (en) 1987-12-24 1987-12-24 Laminated type semiconductor device

Publications (2)

Publication Number Publication Date
JPH01168050A true JPH01168050A (en) 1989-07-03
JPH0316787B2 JPH0316787B2 (en) 1991-03-06

Family

ID=18177838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32552487A Granted JPH01168050A (en) 1987-05-30 1987-12-24 Laminated type semiconductor device

Country Status (1)

Country Link
JP (1) JPH01168050A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606186A (en) * 1993-12-20 1997-02-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit including opposed substrates of different semiconductor materials and method of manufacturing the semiconductor integrated circuit
JP2005203780A (en) * 2004-01-12 2005-07-28 Samsung Electronics Co Ltd Node-contact structure, semiconductor device having the same, wiring structure thereof, and manufacturing method thereof
JP2005203777A (en) * 2004-01-12 2005-07-28 Samsung Electronics Co Ltd Semiconductor integrated circuit for adopting laminated node-contact structure and laminated thin-film transistor, and manufacturing method thereof
JP2007081066A (en) * 2005-09-13 2007-03-29 Seiko Epson Corp Semiconductor device, manufacturing method thereof, electro-optical device, and electronic apparatus
KR100803694B1 (en) * 2007-01-25 2008-02-20 삼성전자주식회사 Semiconductor device and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606186A (en) * 1993-12-20 1997-02-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit including opposed substrates of different semiconductor materials and method of manufacturing the semiconductor integrated circuit
JP2005203780A (en) * 2004-01-12 2005-07-28 Samsung Electronics Co Ltd Node-contact structure, semiconductor device having the same, wiring structure thereof, and manufacturing method thereof
JP2005203777A (en) * 2004-01-12 2005-07-28 Samsung Electronics Co Ltd Semiconductor integrated circuit for adopting laminated node-contact structure and laminated thin-film transistor, and manufacturing method thereof
JP2007081066A (en) * 2005-09-13 2007-03-29 Seiko Epson Corp Semiconductor device, manufacturing method thereof, electro-optical device, and electronic apparatus
KR100803694B1 (en) * 2007-01-25 2008-02-20 삼성전자주식회사 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0316787B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
US4448632A (en) Method of fabricating semiconductor devices
KR20060127772A (en) Method of manufacturing semiconductor thin film, electronic device, and liquid crystal display device
US5128732A (en) Stacked semiconductor device
JPH01168050A (en) Laminated type semiconductor device
JPH07105338B2 (en) Method for manufacturing semiconductor device
JPH0526341B2 (en)
JPS63169755A (en) Manufacture of laminating type semiconductor device
JPH0438140B2 (en)
JPS6144785A (en) Manufacture of thin film of semiconductor single crystal
JPS6342417B2 (en)
JP3325629B2 (en) Method for manufacturing semiconductor device
JPH0573324B2 (en)
JPS63300510A (en) Laminated semiconductor device
JPS6262056B2 (en)
JPH0376017B2 (en)
JPS63265469A (en) Manufacture of semiconductor device
JP2745055B2 (en) Method for manufacturing single crystal semiconductor thin film
JPH023301B2 (en)
JPH01264214A (en) Manufacture of semiconductor device
JPS63265464A (en) Manufacture of semiconductor device
JPH043459A (en) Manufacture of laminated semiconductor device
JPH0236050B2 (en)
JPH0257337B2 (en)
JPS6362893B2 (en)
JPS6229910B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term