JPH0158649B2 - - Google Patents

Info

Publication number
JPH0158649B2
JPH0158649B2 JP59206400A JP20640084A JPH0158649B2 JP H0158649 B2 JPH0158649 B2 JP H0158649B2 JP 59206400 A JP59206400 A JP 59206400A JP 20640084 A JP20640084 A JP 20640084A JP H0158649 B2 JPH0158649 B2 JP H0158649B2
Authority
JP
Japan
Prior art keywords
film
semiconductor
semiconductor film
manufacturing
antireflection films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59206400A
Other languages
Japanese (ja)
Other versions
JPS6184825A (en
Inventor
Kazuyuki Sugahara
Tadashi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59206400A priority Critical patent/JPS6184825A/en
Publication of JPS6184825A publication Critical patent/JPS6184825A/en
Publication of JPH0158649B2 publication Critical patent/JPH0158649B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体基板の製造方法、とくに絶縁
体上に半導体結晶膜を形成する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor substrate, and particularly to a method for forming a semiconductor crystal film on an insulator.

〔従来技術〕[Prior art]

半導体装置の高速化・高密度化のために半導体
活性層を多数積層するいわゆる三次元回路素子を
製造する方法において、誘電体上に半導体単結晶
膜を形成する方法が考えられている。従来この誘
電体上に半導体単結晶膜を形成する方法として、
絶縁体上に多結晶質または非晶質の半導体を堆積
し、その表面にレーザ光などのエネルギー線を照
射し、その表面層のみを加熱・融解して再結晶化
することにより単結晶の半導体膜を形成する方法
がある。このレーザ再結晶化の際、大結晶粒の半
導体層を得るために、加熱光源に対する反射防止
膜を半導体上に部分的に堆積することによつて半
導体層の温度分布を制御しておくという方法があ
る。
2. Description of the Related Art In a method of manufacturing a so-called three-dimensional circuit element in which a large number of semiconductor active layers are laminated in order to increase the speed and density of a semiconductor device, a method of forming a semiconductor single crystal film on a dielectric material has been considered. Conventionally, as a method for forming a semiconductor single crystal film on this dielectric material,
A single-crystal semiconductor is created by depositing a polycrystalline or amorphous semiconductor on an insulator, irradiating the surface with energy rays such as laser light, and heating and melting only the surface layer to recrystallize it. There is a method of forming a film. During this laser recrystallization, in order to obtain a semiconductor layer with large crystal grains, the temperature distribution of the semiconductor layer is controlled by partially depositing an antireflection film against the heating light source on the semiconductor. There is.

従来の半導体単結晶膜形成の方法を第1図によ
り説明する。第1図aは半導体基板の断面図で第
1図bはその平面図である。
A conventional method for forming a semiconductor single crystal film will be explained with reference to FIG. FIG. 1a is a sectional view of a semiconductor substrate, and FIG. 1b is a plan view thereof.

第1図において、1は基板、2は絶縁膜、3は
多結晶質または非晶質のシリコン膜、4は厚さ
500Åの窒化シリコン膜である。窒化シリコン膜
4は幅5μm、間隔10μmでストライプ状にパター
ニングされてある。第1図bのX0→Y0のよう
に、連続発振のArレーザ光を窒化シリコン膜4
のストライプに平行に走査しながら照射してシリ
コン膜3を溶融・再結晶化させる。この際、厚さ
500Åの窒化シリコン膜4は波長4880ÅのArレー
ザ光の反射防止膜として働くので、窒化シリコン
膜4の下のシリコン膜3の温度は窒化シリコン膜
のないシリコン膜の温度より高くなる。レーザ光
の照射終了後シリコン膜3は固化を始めるが、シ
リコン膜3の固化は窒化シリコン膜4のない部分
から始まり、窒化シリコン膜4の下のシリコン膜
3に及ぶ。この場合、固化再結晶化は、窒化シリ
コン膜4のないシリコン膜3の中央部から連続し
て起こるため、窒化シリコン膜4のない部分のシ
リコン膜が単結晶化する。
In Figure 1, 1 is a substrate, 2 is an insulating film, 3 is a polycrystalline or amorphous silicon film, and 4 is a thickness.
It is a 500 Å silicon nitride film. The silicon nitride film 4 is patterned into stripes with a width of 5 μm and an interval of 10 μm. As shown from X0→Y0 in Figure 1b, the continuous wave Ar laser beam is applied to the silicon nitride film
The silicon film 3 is melted and recrystallized by irradiation while scanning parallel to the stripes. At this time, the thickness
Since the 500 Å thick silicon nitride film 4 acts as an anti-reflection film for Ar laser light having a wavelength of 4880 Å, the temperature of the silicon film 3 under the silicon nitride film 4 is higher than the temperature of the silicon film without the silicon nitride film. After the laser beam irradiation is completed, the silicon film 3 begins to solidify, and the solidification of the silicon film 3 starts from the part where the silicon nitride film 4 is not present and extends to the silicon film 3 below the silicon nitride film 4. In this case, since the solidification recrystallization occurs continuously from the central part of the silicon film 3 where the silicon nitride film 4 is not present, the silicon film in the part where the silicon nitride film 4 is not present becomes single crystallized.

ところが従来の方法では、反射防止膜としての
窒化シリコン膜が一方向にしかパターニングされ
ておらず、それに従つてレーザ光の走査方向が一
方向であるため、それぞれの窒化シリコン膜の下
の再結晶化したポリシリコンの結晶軸は異なつて
おり、シリコン膜の全面は単結晶に成長していな
いという問題点があつた。
However, in the conventional method, the silicon nitride film as an anti-reflection film is patterned in only one direction, and the scanning direction of the laser beam is unidirectional accordingly, so the recrystallization under each silicon nitride film There was a problem in that the crystal axes of the polysilicon that had grown were different, and the entire surface of the silicon film was not grown as a single crystal.

〔発明の概要〕[Summary of the invention]

本発明はこのような点に鑑みてなされたもので
あり、その目的とするところは、シリコン膜など
の半導体膜の端部を単結晶化した後、その単結晶
化した半導体を種として半導体膜の全面を単結晶
化する半導体基板の製造方法を提供することにあ
る。
The present invention has been made in view of these points, and its purpose is to single-crystallize the edge of a semiconductor film such as a silicon film, and then use the single-crystalline semiconductor as a seed to form a semiconductor film. An object of the present invention is to provide a method for manufacturing a semiconductor substrate in which the entire surface of the semiconductor substrate is made into a single crystal.

このような目的を達成するために本発明は、半
導体膜の端部に窒化シリコン膜などの第1の反射
防止膜を設け、その第1の反射防止膜のストライ
プに対してほぼ垂直な窒化シリコン膜などの第2
の反射防止膜のストライプを他部に設けるように
したものである。
In order to achieve such an object, the present invention provides a first antireflection film such as a silicon nitride film at the edge of a semiconductor film, and a silicon nitride film that is substantially perpendicular to the stripes of the first antireflection film. A second layer such as a membrane
The stripes of the anti-reflection film are provided on other parts.

〔発明の実施例〕[Embodiments of the invention]

本発明を実施例に基づき詳細に説明する。第2
図は本発明を適用した半導体基板の平面図を示
す。第2図a,bにおいて、5は半導体基板、3
1a,31bは絶縁体上に体積されたポリシリコ
ン膜、41a,41bはポリシリコン膜31a,
31b上に体積された厚さ500Å、幅5μm、間隔
10μmの窒化シリコン膜、42は窒化シリコン膜
41a,41bに対して垂直にパターニングされ
た幅5μm、間隔5μmの窒化シリコン膜である。
The present invention will be explained in detail based on examples. Second
The figure shows a plan view of a semiconductor substrate to which the present invention is applied. In Figures 2a and b, 5 is a semiconductor substrate;
1a and 31b are polysilicon films deposited on an insulator, 41a and 41b are polysilicon films 31a,
Thickness 500 Å, width 5 μm, spacing on 31b
A 10 μm silicon nitride film 42 is a silicon nitride film having a width of 5 μm and an interval of 5 μm patterned perpendicularly to the silicon nitride films 41a and 41b.

このポリシリコン膜上に連続発振のArレーザ
光をビーム径100μm程度に絞つて走査しながら
照射する。この場合まず第1に、レーザ光の中心
が2本の窒化シリコン膜41a,41bの中心に
一致するようにX1→Y1の方向に走査しながら照
射する。すると2本の窒化シリコン膜41a,4
1bにはさまれた下の領域のポリシリコン膜31
aが単結晶化する。この後写真食刻技術によつ
て、窒化シリコン膜41a,41bを除去する。
第2図bに除去された後の半導体基板の平面図を
示す。この半導体基板に対してレーザ光をX2→
Y2の方向に走査しながら照射する。すると窒化
シリコン膜42にはさまれた下の領域のポリシリ
コン膜31bが単結晶化する。この場合単結晶化
したポリシリコン膜31aを種として再結晶化が
始まつているので、シリコン膜全面が単結晶化す
る。
This polysilicon film is irradiated with continuous wave Ar laser light while scanning with a beam diameter of about 100 μm. In this case, first of all, the laser beam is irradiated while scanning in the direction of X1→Y1 so that the center of the laser beam coincides with the center of the two silicon nitride films 41a and 41b. Then, the two silicon nitride films 41a, 4
Polysilicon film 31 in the lower region sandwiched between 1b
a becomes a single crystal. Thereafter, the silicon nitride films 41a and 41b are removed by photolithography.
FIG. 2b shows a plan view of the semiconductor substrate after removal. X2→
Irradiate while scanning in the Y2 direction. Then, the polysilicon film 31b in the lower region sandwiched between the silicon nitride films 42 becomes a single crystal. In this case, since recrystallization has started using the single crystallized polysilicon film 31a as a seed, the entire surface of the silicon film becomes single crystallized.

なお上記実施例では途中で窒化シリコン膜41
a,41bを除去したが、窒化シリコン膜42の
間隔が窒化シリコン膜41a,41bの間隔より
小さい場合、ポリシリコン膜31bはポリシリコ
ン膜31aに比べて低いレーザパワーで単結晶化
する。したがつてこのような場合はX2→Y2の方
向のレーザ光照射をX1→Y1の方向の照射よりも
低いレーザパワーで行なえば窒化シリコン膜41
a,41bは除去する必要はない。
Note that in the above embodiment, the silicon nitride film 41 is
a and 41b are removed, but if the distance between the silicon nitride films 42 is smaller than the distance between the silicon nitride films 41a and 41b, the polysilicon film 31b is single crystallized with a lower laser power than the polysilicon film 31a. Therefore, in such a case, if the laser beam irradiation in the X2→Y2 direction is performed with a lower laser power than the irradiation in the X1→Y1 direction, the silicon nitride film 41
There is no need to remove a and 41b.

また上記実施例においては、窒化シリコン膜4
1a,41bと窒化シリコン膜42とを形成した
後、レーザ光を照射し単結晶化することとした
が、窒化シリコン膜42は、窒化シリコン膜41
a,41bと共に形成せずに、窒化シリコン膜4
1a,41b間のポリシリコン膜31aが単結晶
化し窒化シリコン膜41a,41bを除去した後
に形成してもよい。
Further, in the above embodiment, the silicon nitride film 4
After forming 1a and 41b and the silicon nitride film 42, it was decided to irradiate laser light and make it into a single crystal.
Silicon nitride film 4 is not formed together with a and 41b.
It may be formed after the polysilicon film 31a between 1a and 41b is monocrystalized and the silicon nitride films 41a and 41b are removed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、半導体膜の端部に
第1の反射防止膜を設けその第1の反射防止膜の
ストライプに対してほぼ垂直な第2の反射防止膜
のストライプを他部に設けることにより、半導体
膜の端部を再結晶化により単結晶化した後その単
結晶化した半導体を種として半導体膜の全面を再
結晶化するようにしたので、半導体膜の全面を単
結晶にできる効果がある。
As described above, the present invention provides a first anti-reflective film at the edge of a semiconductor film, and a second anti-reflective film stripe that is substantially perpendicular to the first anti-reflective film stripe at the other end. By using this method, the edge of the semiconductor film is recrystallized to become a single crystal, and then the single crystallized semiconductor is used as a seed to recrystallize the entire surface of the semiconductor film. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来の方法を適用した場合における
半導体基板の断面図、第1図bは従来の方法を適
用した場合における半導体基板の平面図、第2図
a,bは本発明を適用した場合における半導体基
板の平面図である。 5…半導体基板、31a,31b…ポリシリコ
ン膜、41a,41b…窒化シリコン膜。
FIG. 1a is a cross-sectional view of a semiconductor substrate when the conventional method is applied, FIG. 1b is a plan view of the semiconductor substrate when the conventional method is applied, and FIGS. FIG. 5...Semiconductor substrate, 31a, 31b...Polysilicon film, 41a, 41b...Silicon nitride film.

Claims (1)

【特許請求の範囲】 1 絶縁体上に形成された被着非晶質または被着
多結晶質の半導体膜上に2本以上の帯状の第1の
反射防止膜を形成し、前記第1の反射防止膜に対
し所定角度をなす多数の帯状の第2の反射防止膜
を前記半導体膜上に形成し、前記第1の反射防止
膜間の半導体膜に光線を照射することにより半導
体膜を溶融し、溶融後の再結晶化により単結晶化
した後前記第1の反射防止膜を除去し、その後前
記第2の反射防止膜間の半導体膜に光線を照射す
ることにより半導体膜を溶融し、溶融後の前記単
結晶化された半導体を種とする再結晶化により単
結晶化することを特徴とする半導体基板の製造方
法。 2 第1、第2の反射防止膜は、互いになす角が
ほぼ垂直であることを特徴とする特許請求の範囲
第1項記載の半導体基板の製造方法。 3 光線は、連続発振のアルゴンガスレーザのレ
ーザ光線であることを特徴とする特許請求の範囲
第1項又は第2項記載の半導体基板の製造方法。 4 絶縁体上に形成された被着非晶質または被着
多結晶質の半導体膜上に2本以上の帯状の第1の
反射防止膜のみを形成し、前記第1の反射防止膜
間の半導体膜に光線を照射することにより半導体
膜を溶融し、溶融後の再結晶化により単結晶化し
た後前記第1の反射防止膜を除去し、その後前記
除去された第1の反射防止膜に対し所定角度をな
す多数の帯状の第2の反射防止膜を前記半導体膜
上に形成し、前記第2の反射防止膜間の半導体膜
に光線を照射することにより半導体膜を溶融し、
溶融後の前記単結晶化された半導体を種とする再
結晶化により単結晶化することを特徴とする半導
体基板の製造方法。 5 第1、第2の反射防止膜は、互いになす角が
ほぼ垂直であることを特徴とする特許請求の範囲
第4項記載の半導体基板の製造方法。 6 光線は、連続発振のアルゴンガスレーザのレ
ーザ光線であることを特徴とする特許請求の範囲
第4項又は第5項記載の半導体基板の製造方法。 7 絶縁体上に形成された被着非晶質または被着
多結晶質の半導体膜上に2本以上の帯状の第1の
反射防止膜を形成し、前記第1の反射防止膜に対
し所定角度をなす多数の帯状の第2の反射防止膜
を前記半導体膜上に形成し、前記第1の反射防止
膜間の半導体膜に光線を照射することにより半導
体膜を溶融し、溶融後の再結晶化により単結晶と
なし、その後前記第2の反射防止膜間の半導体膜
に光線を照射することにより半導体膜を溶融し、
溶融後の前記単結晶化された半導体を種とする再
結晶化により単結晶となすことを特徴とする半導
体基板の製造方法。 8 第1、第2の反射防止膜は、互いになす角が
ほぼ垂直であることを特徴とする特許請求の範囲
第7項記載の半導体基板の製造方法。 9 光線は、連続発振のアルゴンガスレーザのレ
ーザ光線であることを特徴とする特許請求の範囲
第7項又は第8項記載の半導体基板の製造方法。 10 第2の反射防止膜は、その間隔が第1の反
射防止膜の間隔より狭いことを特徴とする特許請
求の範囲第7項、第8項又は第9項記載の半導体
基板の製造方法。
[Scope of Claims] 1. Two or more strip-shaped first antireflection films are formed on an amorphous or polycrystalline semiconductor film formed on an insulator, and A large number of band-shaped second antireflection films forming a predetermined angle with respect to the antireflection film are formed on the semiconductor film, and the semiconductor film is melted by irradiating the semiconductor film between the first antireflection films with a light beam. and removing the first anti-reflection film after converting it into a single crystal by recrystallization after melting, and then melting the semiconductor film by irradiating the semiconductor film between the second anti-reflection films with a light beam, A method for manufacturing a semiconductor substrate, comprising recrystallizing the melted single-crystalized semiconductor as a seed to form a single crystal. 2. The method of manufacturing a semiconductor substrate according to claim 1, wherein the angles formed by the first and second antireflection films are substantially perpendicular to each other. 3. The method of manufacturing a semiconductor substrate according to claim 1 or 2, wherein the light beam is a laser beam of a continuous wave argon gas laser. 4 Forming only two or more strip-shaped first antireflection films on an amorphous or polycrystalline semiconductor film formed on an insulator, and forming a first antireflection film in the form of two or more strips between the first antireflection films. The semiconductor film is melted by irradiating the semiconductor film with a light beam, the semiconductor film is made into a single crystal by recrystallization after the melting, and the first anti-reflection film is removed, and then the first anti-reflection film that has been removed is On the other hand, a large number of band-shaped second antireflection films forming a predetermined angle are formed on the semiconductor film, and the semiconductor film is melted by irradiating the semiconductor film between the second antireflection films with a light beam,
A method for manufacturing a semiconductor substrate, comprising recrystallizing the melted single-crystalized semiconductor as a seed to form a single crystal. 5. The method of manufacturing a semiconductor substrate according to claim 4, wherein the first and second antireflection films have substantially perpendicular angles to each other. 6. The method of manufacturing a semiconductor substrate according to claim 4 or 5, wherein the light beam is a laser beam of a continuous wave argon gas laser. 7 Forming two or more strip-shaped first antireflection films on an amorphous or polycrystalline semiconductor film formed on an insulator, and forming a first antireflection film in a predetermined manner with respect to the first antireflection film. A large number of angular band-shaped second anti-reflection films are formed on the semiconductor film, the semiconductor film is melted by irradiating the semiconductor film between the first anti-reflection films, and the semiconductor film is re-melted. A single crystal is formed by crystallization, and then the semiconductor film is melted by irradiating the semiconductor film between the second antireflection films with a light beam,
A method for manufacturing a semiconductor substrate, comprising recrystallizing the melted single-crystal semiconductor as a seed to form a single crystal. 8. The method of manufacturing a semiconductor substrate according to claim 7, wherein the first and second antireflection films have substantially perpendicular angles to each other. 9. The method of manufacturing a semiconductor substrate according to claim 7 or 8, wherein the light beam is a laser beam of a continuous wave argon gas laser. 10. The method of manufacturing a semiconductor substrate according to claim 7, 8, or 9, wherein the distance between the second antireflection films is narrower than the distance between the first antireflection films.
JP59206400A 1984-10-03 1984-10-03 Manufacture of semiconductor substrate Granted JPS6184825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206400A JPS6184825A (en) 1984-10-03 1984-10-03 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206400A JPS6184825A (en) 1984-10-03 1984-10-03 Manufacture of semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS6184825A JPS6184825A (en) 1986-04-30
JPH0158649B2 true JPH0158649B2 (en) 1989-12-13

Family

ID=16522726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206400A Granted JPS6184825A (en) 1984-10-03 1984-10-03 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS6184825A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737672B2 (en) * 2000-08-25 2004-05-18 Fujitsu Limited Semiconductor device, manufacturing method thereof, and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JPS6184825A (en) 1986-04-30

Similar Documents

Publication Publication Date Title
US4870031A (en) Method of manufacturing a semiconductor device
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
JPS61244020A (en) Oriented monocrystalline silicon film with restricted defecton insulation support
US4714684A (en) Method of forming single crystal layer on dielectric layer by controlled rapid heating
JPH027415A (en) Formation of soi thin film
US4565599A (en) Graphoepitaxy by encapsulation
JPH0158649B2 (en)
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPH03250620A (en) Manufacture of semiconductor device
JPH0693428B2 (en) Method for manufacturing multilayer semiconductor substrate
JPS59154016A (en) Formation of thin film crystal
JPS6236381B2 (en)
JPH03228324A (en) Growth of thin polycrystalline si film
JPS6254910A (en) Manufacturing semiconductor device
JPS62250629A (en) Manufacture of semiconductor device
JPS5885519A (en) Manufacture of semiconductor device
JPS61237415A (en) Manufacture of semiconductor device
JPH0611025B2 (en) Method for manufacturing semiconductor single crystal film
JPS59123224A (en) Manufacture of semiconductor device
JPS5939023A (en) Manufacture of semiconductor thin film
JPH0693429B2 (en) Method for manufacturing multilayer semiconductor substrate
JPH0722120B2 (en) Method for manufacturing semiconductor device
JPS60158616A (en) Manufacture of semiconductor device
JPS60236212A (en) Single-crystallization

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term