JPS61237415A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61237415A
JPS61237415A JP60079020A JP7902085A JPS61237415A JP S61237415 A JPS61237415 A JP S61237415A JP 60079020 A JP60079020 A JP 60079020A JP 7902085 A JP7902085 A JP 7902085A JP S61237415 A JPS61237415 A JP S61237415A
Authority
JP
Japan
Prior art keywords
oxide film
polycrystalline silicon
laser beam
film
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60079020A
Other languages
Japanese (ja)
Inventor
Shinji Maekawa
真司 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60079020A priority Critical patent/JPS61237415A/en
Publication of JPS61237415A publication Critical patent/JPS61237415A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Abstract

PURPOSE:To enable the stable formation of a wide single-crystal region on an amorphous insulating film by a method wherein a laser beam formed in the intensity distribution of a double peak type is disposed so that two intensity peaks are positioned outside an indent and it is applied to melt polycrystalline silicon. CONSTITUTION:A silicon oxide film 2 is formed on a silicon substrate 1. Next, indents 21 are formed in regions which are desired to be of single crystal. Polycrystalline silicon 3 and a silicon oxide film 4 as a reflection preventing film are deposited on the whole of the oxide film 2. A beam 6 of a continuously-oscillating argon laser, which is transformed so that the intensity distribution is of a double peak type, is disposed so that two intensity peaks are positioned outside a groove respectively, and it is applied along the groove. It is formed so that the temperature of the thick portions of the film 2 in the opposite outer ends of the indent of the ground oxide film 2 is higher while the temperature in the central portion is lower. When cooling is conducted, crystallization begins from the central portion of the groove wherein the temperature is the lowest, and advances toward the opposite ends of the groove in a stable manner, and thus the polycrystalline silicon in the groove is made to be of single crystal completely.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置の製造方法の改良に関するものであ
り、特にレーザビームを用いた5OI(5ilicon
 On In5ulator )技術による半導体装置
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device using a laser beam.
The present invention relates to a method for manufacturing a semiconductor device using on-inverter technology.

〈発明の概要〉 本発明はレーザビームを用いたSOI技術による半導体
装置の製造方法において、半導体基板上に酸化膜を形成
し、単結晶化したい領域を凹部にしてその底部には前記
酸化膜よりも薄い酸化膜を残し、全面に多結晶シリコン
を形成し、その全面に反射防止膜として酸化膜を形成し
、前記凹部の上方部分を覆って双峰型の強度分布に形成
したレーザビームを照射し多結晶シリコンを溶融するこ
とにより、凹部の素子形成予定領域を欠陥のない良質の
単結晶に再結晶化するようにしたものである。
<Summary of the Invention> The present invention is a method for manufacturing a semiconductor device using SOI technology using a laser beam, in which an oxide film is formed on a semiconductor substrate, a region to be made into a single crystal is made into a recess, and the bottom of the recess is formed from the oxide film. A thin oxide film is left behind, polycrystalline silicon is formed on the entire surface, an oxide film is formed on the entire surface as an anti-reflection film, and the upper part of the recess is irradiated with a laser beam forming a bimodal intensity distribution. By melting the polycrystalline silicon, the recessed region where the element is to be formed is recrystallized into a defect-free, high-quality single crystal.

〈従来の技術〉 従来より高速集積回路や3次元集積回路の実現のために
、シリコン基板上に絶縁膜を介して単結晶シリコン層を
形成するS OI (5ilicon 0nInsul
ator)技術の研究、開発が活発に行なわれている。
<Conventional technology> In order to realize high-speed integrated circuits and three-dimensional integrated circuits, SOI (5ilicon 0nInsul), which forms a single-crystal silicon layer on a silicon substrate with an insulating film interposed therebetween, has traditionally been used.
ator) technology is actively being researched and developed.

色々なSOI技術のうち特に3次元集積に適していると
考えられるのが、シリコン基板上にシリコン酸化膜を形
成し、その上に堆積した非晶質あるいは多結晶シリコン
膜にレーザビームを照射して単結晶化する。いわゆるレ
ーザ再結晶化法と呼ばれるものである。とのレーザ再結
晶化法はシリコン膜を溶融させる為に通常レーザビーム
を100μmφ 程度に絞って照射し、これをウェハー
全面に走査して再結晶化させるものであるが。
Among the various SOI technologies, one that is considered particularly suitable for three-dimensional integration is one that forms a silicon oxide film on a silicon substrate and irradiates the amorphous or polycrystalline silicon film deposited on top of it with a laser beam. to form a single crystal. This is a so-called laser recrystallization method. In the laser recrystallization method, in order to melt the silicon film, a laser beam is usually focused to a diameter of about 100 μm and irradiated, and this is scanned over the entire surface of the wafer to effect recrystallization.

この再結晶化の際に単結晶領域が形成されるためには固
液界面が溶融領域側に凹んでいることが重要であり、こ
のような凹型の固液界面を形成する手段がレーザ再結晶
化法の決め手となっている。
In order to form a single crystal region during this recrystallization, it is important that the solid-liquid interface is concave toward the melted region, and laser recrystallization is a method for forming such a concave solid-liquid interface. This is the deciding factor in the new law.

従来より提案されている方法としては、薄膜の積層構造
を工夫してレーザビームの反射率や熱伝導率を制御する
ことにより凹型の固液界面を形成するもの及び、照射す
るレーザビームの強度分布を通常のがウス分布から双峰
型の強度分布に変換することにより同様のことを達成す
るものの2つに分類される。
Conventionally proposed methods include forming a concave solid-liquid interface by controlling the reflectance and thermal conductivity of the laser beam by devising the laminated structure of thin films, and forming a concave solid-liquid interface by controlling the reflectance and thermal conductivity of the laser beam, as well as methods that create a concave solid-liquid interface. There are two types of methods that accomplish the same thing by converting the normal Oussian distribution into a bimodal intensity distribution.

〈発明が解決しようとする問題点〉 上記従来の方法においては、前者では本来凸型の固液界
面を試料構造により強制的に凹型に変換する為に、形成
できる単結晶領域の幅が約20μmと狭いという問題点
があり、また後者では強度分布を変換する方法によって
はレーザビームの強度損失が大きかったり、損失の少な
い方法でも強度分布の僅かな揺らぎにも敏感で単結晶領
域を安定に形成するのが難しく、双晶等の欠陥も発生し
やすいという問題点がある。
<Problems to be Solved by the Invention> In the above conventional method, the width of the single crystal region that can be formed is approximately 20 μm because the solid-liquid interface, which is originally convex, is forcibly converted to a concave shape by the sample structure. In addition, in the latter case, depending on the method of converting the intensity distribution, the intensity loss of the laser beam may be large, and even methods with low loss are sensitive to slight fluctuations in the intensity distribution, making it difficult to stably form a single crystal region. However, there are problems in that it is difficult to achieve this, and defects such as twins are likely to occur.

本発明は上記問題点に鑑みて創案されたもので、非晶質
絶縁膜上に幅の広い単結晶領域を安定に形成することが
可能な半導体装置の製造方法を提供することを目的とし
ている。
The present invention was devised in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can stably form a wide single crystal region on an amorphous insulating film. .

く問題点を解決するための手段〉 本発明は半導体基板上に酸化膜を形成する工程と、この
形成された酸化膜表面に凹部を形成する工程と、この加
工された酸化膜の全面に多結晶シリコンを形成する工程
と、この多結晶シリコンの表面に反射防止膜として酸化
膜を形成する工程と、双峰型の強度分布に形成したレー
ザビームをその2つの強度ピークが上記の凹部の外側に
位置するように配置して照射し多結晶シリコンを溶融す
ることにより上記の凹部の素子形成予定領域の多結晶シ
リコンを単結晶化する工程とを含んでなるように構成し
ている。
Means for Solving Problems> The present invention comprises a process of forming an oxide film on a semiconductor substrate, a process of forming a recess on the surface of the formed oxide film, and a process of forming a multilayer film over the entire surface of the processed oxide film. A process of forming crystalline silicon, a process of forming an oxide film as an antireflection film on the surface of this polycrystalline silicon, and a process of forming a laser beam with a bimodal intensity distribution so that its two intensity peaks are outside the above-mentioned recess. The method includes the step of single-crystallizing the polycrystalline silicon in the region where the element is to be formed in the recessed portion by irradiating and melting the polycrystalline silicon so as to be located at the recess.

く作用〉 上記の如き構成により、単結晶化したい領域部分の酸化
膜の膜厚が、その両側方の酸化膜の膜厚より薄くなり、
更に双峰型の強度分布のレーザビームの強度ピーク部分
が膜厚の厚い両側方を照射することになり、単結晶化し
たい領域部分の中央部の温度が低く、凹部の外側部分の
温度が高くなる温度分布がより強調して得られ、レーザ
ビームの強度分布の多少の変化に対しても上記温度分布
特性が逆転することがなく、欠陥の無い良質の単結晶が
形成される。
Effect> With the above structure, the thickness of the oxide film in the area desired to be single crystallized becomes thinner than the thickness of the oxide film on both sides thereof,
Furthermore, the intensity peak portion of the laser beam with a bimodal intensity distribution irradiates both sides of the thick film, resulting in a lower temperature in the center of the region desired to be single crystallized and a higher temperature in the outer portion of the recess. A more emphasized temperature distribution is obtained, and the temperature distribution characteristics are not reversed even with slight changes in the intensity distribution of the laser beam, and a high-quality single crystal without defects is formed.

〈実施例〉 以下、図面を参照して本発明の実施例について詳細に説
明する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例における試料の素子形成予定領
域の断面を示す図、第2図は同試料の凹部とレーザビー
ムの強度分布の位置関係を示す図、第3図は本発明によ
る試料の温度分布を示す図である。
FIG. 1 is a diagram showing a cross section of a region where an element is to be formed in a sample according to an embodiment of the present invention, FIG. 2 is a diagram showing a positional relationship between a concave portion of the sample and the intensity distribution of a laser beam, and FIG. 3 is a diagram according to the present invention. FIG. 3 is a diagram showing the temperature distribution of a sample.

第1図においては、lはシリコン基板であり、まずこの
シリコン基板l上に1.5μm厚のシリコン酸化膜2を
形成する。次いで、単結晶化したい領域に0.2μmの
深さの凹部21,21.・・・を形成する。ここでは第
1図の断面図に示す如(、幅80μmの溝を約20 p
m離して密に並べている。
In FIG. 1, l is a silicon substrate, and first, a 1.5 μm thick silicon oxide film 2 is formed on this silicon substrate l. Next, recesses 21, 21 . . . with a depth of 0.2 μm are formed in the region where single crystallization is desired. ... to form. Here, as shown in the cross-sectional view of Fig. 1, a groove with a width of 80 μm is
They are placed closely together, spaced m apart.

溝の長さには特に制限は無い。この段差を有する酸化膜
2上の全面に多結晶シリコン3及び反射防止膜としての
シリコン酸化膜4をこの順序で例えば化学気相成長法(
CVD法)でそれぞれ0.5pm、0.2μm程度堆積
する。
There is no particular restriction on the length of the groove. A polycrystalline silicon 3 and a silicon oxide film 4 as an antireflection film are deposited on the entire surface of the oxide film 2 having the steps in this order, for example, by chemical vapor deposition (
(CVD method) to deposit approximately 0.5 pm and 0.2 μm, respectively.

次いで、例えばその強度分布が双峰型になるように変換
した連続発振のアルゴンレーザのビーム6を第2図に示
されるごとく2つの強度ピークが溝の外側にまたがるよ
うに配置して、■6ワットのパワー、約数Jの走査速度
で溝に沿って照射する。
Next, a continuous wave argon laser beam 6 whose intensity distribution has been converted to have a bimodal shape, for example, is arranged so that the two intensity peaks span the outside of the groove, as shown in FIG. Irradiate along the groove with a power of Watts and a scanning speed of about a few J.

このとき、試料の温度分布は第3図に示すように下地酸
化膜2の凹部の外画端の膜2の厚くなった部分の温度が
より高くなり、中央部の温度がより低(・なるように形
成され、この結果、冷却時に温度の最も低い溝の中央部
から結晶化が始まり、溝の両端に向かって安定に結晶化
が行なわれる。
At this time, as shown in Figure 3, the temperature distribution of the sample is such that the temperature of the thickened part of the film 2 at the outer edge of the concave part of the base oxide film 2 is higher, and the temperature of the central part is lower (. As a result, during cooling, crystallization begins from the center of the groove where the temperature is lowest and stably crystallizes toward both ends of the groove.

なお、第8図において、7は亜粒界、8は単結晶領域で
ある。
In addition, in FIG. 8, 7 is a subgrain boundary, and 8 is a single crystal region.

上記した再結晶化法により溝内の多結晶シリコンは完全
に単結晶化する。
By the recrystallization method described above, the polycrystalline silicon in the trench is completely turned into a single crystal.

尚照射するレーザビームは通常のがウス分布をいかなる
方法で双峰型の分布に変換しても構わず。
Note that the laser beam to be irradiated may be converted from a normal Gaussian distribution to a bimodal distribution by any method.

又2本のレーザビームを用いても良いが、第4図に示さ
れるごとく本発明者が先に特願昭59−220684号
として提案したフレネルの複プリズムを2個用いてM字
型の強度分布を得る方法を用いてもよい。
Alternatively, two laser beams may be used, but as shown in FIG. A method of obtaining a distribution may also be used.

即ち、第4図において、4I及び42はそれぞれ頂角θ
のフレネルの複プリズムと称せられる光学部材であり、
フレネルの複プリズム41及び42は頂角θの形成され
た面が対向するように配置されると共に頂角θの形成さ
れた面と反対側の面41aと42aが平行に保持される
ように配置されている。
That is, in FIG. 4, 4I and 42 are the apex angles θ, respectively.
It is an optical member called a Fresnel biprism,
The Fresnel double prisms 41 and 42 are arranged so that the surfaces formed with the apex angle θ face each other, and the surfaces 41a and 42a on the opposite side to the surface formed with the apex angle θ are held parallel. has been done.

このような構成により、第5図(alに示す如き入射光
としてのガウス分布のレーザ光5は第1のフレネルの複
プリズム41によって中央で分割され、出射面41bか
らの出射光が第2のフレネルの複プリズム42の入射面
42Cに入射され、出射面41cからの出射光が入射面
42bに入射され、第1のフレネルの複プリズム41に
よって中央で分割されたレーザ光が、その左右位置を入
れ換えた形に第2のフレネルの複プリズム42によって
合成され、中央部が低くその両端にピークを持つ第5図
(blに示す如きM字型(双峰型〕の強度分布のレーザ
光6に変換される。
With such a configuration, the laser beam 5 having a Gaussian distribution as the incident light as shown in FIG. The laser light is incident on the incident surface 42C of the Fresnel double prism 42, the light emitted from the output surface 41c is incident on the entrance surface 42b, and the laser beam split at the center by the first Fresnel double prism 41 determines its left and right positions. The transposed form is synthesized by the second Fresnel biprism 42, and the laser beam 6 has an M-shaped (bimodal) intensity distribution as shown in FIG. converted.

このような本発明者が先に提案したフレネルの複プリズ
ムを2個用いてM字型の強度分布を得る方法は本発明に
用いて、より好適である。
The method of obtaining an M-shaped intensity distribution using two Fresnel compound prisms, which was previously proposed by the present inventor, is more suitable for use in the present invention.

上記した双峰型の強度分布を持つレーザビームを用いれ
ば、平坦な連続膜においても多結晶シリコンの溶融領域
のうち周辺領域を除いて単結晶化されることが知られて
いるが、レーザビームの強度分布の揺らぎ、あるいは長
期にわたっての経時変化に敏感で結晶が乱れやすく、単
結晶化された領域に於いても積層欠陥、双晶等の欠陥も
多(見られる。
It is known that by using a laser beam with the above-mentioned bimodal intensity distribution, even in a flat continuous film, the melted region of polycrystalline silicon can be turned into a single crystal except for the peripheral region. It is sensitive to fluctuations in the intensity distribution or to long-term changes over time, and its crystals are easily disordered, and even in single-crystal regions, many defects such as stacking faults and twins are observed.

例えば、第6図は平坦な連続膜を用い、双峰型の強度分
布を持つレーザビームを照射して多結晶シリコンを単結
晶させた場合の試料の再結晶化の状態を示す断面図であ
り、第7図は再結晶化の状態を示す平面図であり、双峰
型の強度分布を持つレーザビームを連続膜に照射したと
きの温度分布と亜粒界の発生の様子を示したものであり
、第6図及び第7図において、1はシリコン基板、2は
シリコン酸化膜、3は多結晶シリコン膜、7は亜粒界、
8は単結晶領域、9は多結晶領域、10は未溶融多結晶
領域である。
For example, FIG. 6 is a cross-sectional view showing the state of recrystallization of a sample when a flat continuous film is used and polycrystalline silicon is made into a single crystal by irradiation with a laser beam having a bimodal intensity distribution. , Figure 7 is a plan view showing the state of recrystallization, and shows the temperature distribution and the occurrence of subgrain boundaries when a continuous film is irradiated with a laser beam with a bimodal intensity distribution. 6 and 7, 1 is a silicon substrate, 2 is a silicon oxide film, 3 is a polycrystalline silicon film, 7 is a subgrain boundary,
8 is a single crystal region, 9 is a polycrystalline region, and 10 is an unfused polycrystalline region.

上記第6図及び第7図に示すように、平坦な連続膜の場
合、溝の両端の温度勾配が緩やかになる領域で温度分布
の揺らぎが発生しやす(、両端から中央部に向って亜粒
界7の発生がしばしば見られる。
As shown in Figures 6 and 7 above, in the case of a flat continuous film, fluctuations in temperature distribution tend to occur in the region where the temperature gradient at both ends of the groove is gentle (from both ends to the center). Occurrence of grain boundaries 7 is often observed.

これに対して、本発明の方法によれば第3図に示したよ
うに亜粒界7の発生は試料の酸化膜2の厚い凸部だけに
限られ、単結晶領域8にまで侵入することはない。
On the other hand, according to the method of the present invention, as shown in FIG. 3, the generation of subgrain boundaries 7 is limited to the thick convex portions of the oxide film 2 of the sample, and does not penetrate into the single crystal region 8. There isn't.

また、本発明の方法によれば、レーザビームの強度分布
の経時変化に対して許容範囲が大きく強度ピークの位置
が溝部をまたぐように保持されてさえいれば、欠陥の無
い良質の単結晶を形成することができる。例えば、第8
図に示すようにレーザビームの強度分布が破線で示すが
ウス分布に比べて緩やかな場合でも段差部の下地絶縁膜
2の膜厚の違いにより、凹部とその外側との温度差が、
より強調されて発生し、安定な単結晶化ができる。
Furthermore, according to the method of the present invention, there is a large tolerance for changes in the intensity distribution of the laser beam over time, and as long as the position of the intensity peak is maintained so as to straddle the groove, a high-quality single crystal with no defects can be produced. can be formed. For example, the 8th
As shown in the figure, even when the intensity distribution of the laser beam is gentler than the Oussian distribution (as shown by the broken line), the temperature difference between the recess and the outside is
It is generated more strongly and stable single crystallization is possible.

更に第9図に示すようにレーザビームの強度、分布が小
さな乱れを有している場合でも凹部から基板への安定な
熱の流れによりスムーズな温度分布が形成され、単結晶
の成長が可能となる。また下地酸化膜に凹部を設けて単
結晶化する方法も従来より行なわれているが、それらは
ガウス分布あるいはそれにちがい強度分布のレーザビー
ムを用いており、この場合凹部の膜厚が厚くなるに連れ
て単結晶化が困難になる。例えば1.5 %m厚のシリ
コン酸化膜の場合、凹部を設けて単結晶化できる幅はI
Oμm程度であるが、本発明の実施例のごとく双峰型の
強度分布のレーザビームと組み合わせることにより、初
めて厚い酸化膜上にも幅の広い単結晶領域を形成するこ
とができる。
Furthermore, as shown in Figure 9, even when the intensity and distribution of the laser beam have small disturbances, a smooth temperature distribution is formed due to the stable flow of heat from the recess to the substrate, making it possible to grow a single crystal. Become. In addition, conventional methods have been used to create single crystals by forming recesses in the underlying oxide film, but these methods use a laser beam with a Gaussian distribution or a similar intensity distribution, and in this case, as the film thickness in the recesses increases, As a result, single crystallization becomes difficult. For example, in the case of a silicon oxide film with a thickness of 1.5%m, the width that can be made into a single crystal by providing a recess is I
Although the width is approximately 0 μm, a wide single crystal region can be formed even on a thick oxide film for the first time by combining it with a laser beam having a bimodal intensity distribution as in the embodiment of the present invention.

〈発明の効果〉 以上詳細に説明したように、本発明の方法によればSO
■構造の大面積の単結晶半導体が安定に得られ、かかる
領域に高性能の半導体素子を形成することができ、更に
は三次元集積回路の実現を可能にする等の種々の効果が
ある。
<Effects of the Invention> As explained in detail above, according to the method of the present invention, SO
(2) A large-area single-crystal semiconductor with a structure can be stably obtained, high-performance semiconductor elements can be formed in such a region, and there are various effects such as making it possible to realize a three-dimensional integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に於ける試料の素子形成予定領
域の断面を示す図、第2図は試料の凹部とレーザビーム
の強度分布の位置関係を示す図、第3図は本発明による
試料の温度分布を示す図、第4図はフレネルの複プリズ
ムの構成をレーザ光の光路と共に示す図、第5図(a)
は変換前のガウス分布のレーザ光の強度分布を示す図、
第5図(blは変換後のM字型のレーザ光の強度分布を
示す図、第6図は双峰型の強度分布のレーザビームを連
続膜に照射したときの試料の再結晶化の状態を示す断面
図、第7図は同試料の再結晶化の状態を示す平面図、第
8図はガウス分布に比して緩やかなレーザビームの強度
分布を示す図、第9図は小さな乱れを有しているレーザ
ビームの強度分布を示す図である。 l・・・シリコン基板、2・・・シリコン酸化膜、21
゜21・・・凹部、8・・・多結晶シリコン膜、4・・
・反射防止膜、5・・・ガウス分布のレーザビーム、6
・・・M字型分布の強度分布に変換されたレーザビーム
。 代理人 弁理士 福 士 愛 彦(他2名)第1図 〜2 第2図 第3図 第4図             第5図第6図 fi! 第8図 第7図 イカ二 ! 第9図
FIG. 1 is a diagram showing a cross section of a region of a sample where an element is to be formed in an embodiment of the present invention, FIG. 2 is a diagram showing the positional relationship between the recessed part of the sample and the intensity distribution of a laser beam, and FIG. 3 is a diagram showing the present invention. Figure 4 shows the structure of the Fresnel biprism together with the optical path of the laser beam, Figure 5 (a)
is a diagram showing the intensity distribution of a Gaussian laser beam before conversion,
Figure 5 (bl is a diagram showing the intensity distribution of the M-shaped laser beam after conversion, Figure 6 is the state of recrystallization of the sample when a continuous film is irradiated with a laser beam with a bimodal intensity distribution. Figure 7 is a plan view showing the state of recrystallization of the sample, Figure 8 is a diagram showing the intensity distribution of the laser beam, which is gentler than the Gaussian distribution, and Figure 9 is a diagram showing the intensity distribution of the laser beam, which shows small disturbances. It is a diagram showing the intensity distribution of a laser beam having: l...Silicon substrate, 2...Silicon oxide film, 21
゜21... Concavity, 8... Polycrystalline silicon film, 4...
・Anti-reflection film, 5...Gaussian distribution laser beam, 6
...Laser beam converted into an M-shaped intensity distribution. Agent Patent Attorney Aihiko Fukushi (and 2 others) Figures 1-2 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 fi! Figure 8 Figure 7 Squid two! Figure 9

Claims (1)

【特許請求の範囲】 1、半導体基板上に酸化膜を形成する工程と、該形成さ
れた酸化膜表面に凹部を形成する工程と、該加工された
酸化膜の全面に多結晶シリコンを形成する工程と、 該多結晶シリコンの表面に反射防止膜として酸化膜を形
成する工程と、 双峰型の強度分布に形成したレーザビームをその2つの
強度ピークが上記凹部の外側に位置するように配置して
照射して多結晶シリコンを溶融することにより上記凹部
の素子形成予定領域の多結晶シリコンを単結晶化する工
程と を含んでなることを特徴とする半導体装置の製造方法。
[Claims] 1. A step of forming an oxide film on a semiconductor substrate, a step of forming a recess on the surface of the formed oxide film, and a step of forming polycrystalline silicon on the entire surface of the processed oxide film. a step of forming an oxide film as an antireflection film on the surface of the polycrystalline silicon; and arranging a laser beam formed with a bimodal intensity distribution so that its two intensity peaks are located outside the recessed portion. 1. A method for manufacturing a semiconductor device, comprising the step of single-crystallizing the polycrystalline silicon in the region where an element is to be formed in the recessed portion by irradiating the polycrystalline silicon with irradiation light to melt the polycrystalline silicon.
JP60079020A 1985-04-13 1985-04-13 Manufacture of semiconductor device Pending JPS61237415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079020A JPS61237415A (en) 1985-04-13 1985-04-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079020A JPS61237415A (en) 1985-04-13 1985-04-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61237415A true JPS61237415A (en) 1986-10-22

Family

ID=13678255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079020A Pending JPS61237415A (en) 1985-04-13 1985-04-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61237415A (en)

Similar Documents

Publication Publication Date Title
US4870031A (en) Method of manufacturing a semiconductor device
EP0184290B1 (en) Process for the production of semiconductor devices using a dual peak laser beam
JPS62206816A (en) Manufacture of semiconductor crystal layer
JPH027415A (en) Formation of soi thin film
JPS61237415A (en) Manufacture of semiconductor device
JPH06140321A (en) Method of crystallizing of semiconductor film
JPS6254910A (en) Manufacturing semiconductor device
JPS62250629A (en) Manufacture of semiconductor device
JPH0158649B2 (en)
JPS63142810A (en) Manufacture of semiconductor device
JPH03250620A (en) Manufacture of semiconductor device
JPS6233415A (en) Manufacture of single crystal semiconductor film
JPH027414A (en) Formation of soi thin film
JPS6239009A (en) Soi substrate forming method
JPH0453124A (en) Manufacture and apparatus for single-crystal silicon thin film
JPH0449250B2 (en)
JPS62179112A (en) Formation of soi structure
JPS63169022A (en) Manufacture of soi substrate
JPH01297814A (en) Manufacture of single crystal
JPS61234026A (en) Growing method for semiconductor single crystal
JPS634607A (en) Manufacture of soi substrate
JPH0611025B2 (en) Method for manufacturing semiconductor single crystal film
JPS5840822A (en) Formation of semiconductor single crystal film
JPH04246819A (en) Manufacture of semiconductor thin film
JPS6281710A (en) Laser scanning optical system device