JPS6233415A - Manufacture of single crystal semiconductor film - Google Patents

Manufacture of single crystal semiconductor film

Info

Publication number
JPS6233415A
JPS6233415A JP17460185A JP17460185A JPS6233415A JP S6233415 A JPS6233415 A JP S6233415A JP 17460185 A JP17460185 A JP 17460185A JP 17460185 A JP17460185 A JP 17460185A JP S6233415 A JPS6233415 A JP S6233415A
Authority
JP
Japan
Prior art keywords
film
longitudinal
single crystal
polycrystalline
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17460185A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sugahara
和之 須賀原
Tadashi Nishimura
正 西村
Shigeru Kusunoki
茂 楠
Yasuaki Inoue
靖朗 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17460185A priority Critical patent/JPS6233415A/en
Publication of JPS6233415A publication Critical patent/JPS6233415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make it possible to single-crystallize the polycrystalline or amorphous semiconductor film of large area and high quality located on the first insulating film by a method wherein the single crystal semiconductor film, having the substrate of a longitudinal aperture part as a seed and the equal crystal axis distribution, is formed on the first insulating film while the polycrystalline or amorphous film is being melted successively. CONSTITUTION:When a laser beam 7 having specific power is scanningly applied to a thin oxide film 4 and a longitudinal tungsten film 5 from a longitudinal aperture part to the direction indicated by the arrow in the diagram, a polycrystalline silicon film 3 is melted and a melted part 30 is formed. Using the single crystal silicon substrate 1 of a longitudinal aperture part 6 as a seed, an epitaxial growth wherein the direction of crystal axle of said seed is taken over is generated continuously. As the direction vertical to the scanning direction the the temperature distribution in scanning direction of the melted part and the like of the polycrystalline silicon film 3 can be controlled on a thick oxide film 2 by the longitudinal tungsten film 5, the state of solidification and recrystallization is generated continuously from the solid-to-liquid interface of the melted part of the polycrystalline silicon film 3 on the region located under each longitudinal tungsten film 5 toward the region having no longitudinal tungsten film 5, and the appearance of a crystal grain boundary can be suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は単結晶半導体膜の製造方法に関し、特に単結
晶半導体基板と、該基板上に形成される厚い絶縁膜と、
該厚い絶縁膜上に形成される多結晶または非晶質半導体
膜とから構成される試料を、連続発振のレーザ光で照射
しながら走査して上記半導体膜を溶融させ、下地単結晶
半導体基板を種として上記絶縁膜上に単結晶半導体膜を
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a single crystal semiconductor film, and particularly to a single crystal semiconductor substrate, a thick insulating film formed on the substrate,
A sample consisting of a polycrystalline or amorphous semiconductor film formed on the thick insulating film is scanned while being irradiated with a continuous wave laser beam to melt the semiconductor film and to form a base single crystal semiconductor substrate. The present invention relates to a method of manufacturing a single crystal semiconductor film on the above insulating film as a seed.

[従来の技術] 従来、絶縁膜上への単結晶半導体膜の製造方法として第
4図に示すものがあった。図において、1oは試料であ
る。単結晶シリコン基板1は(100)面を主面とし、
この主面上に二酸化シリコン摸からなる厚い酸化膜2が
形成されている。厚い酸化膜2はその一部に紙面に垂直
に伸びる長手状開口部6を有し、この部分で単結晶シリ
コン基板1は厚い酸化膜2表面までn出している。長手
状開口部6上および厚い酸化膜2上に多結晶シリコン膜
3が化学的気相成長法(以下、cVD法と称する)で形
成されている。多結晶シリコン膜3にレーザ光7が照射
され、これによってこの多結晶シリコン膜はJ融される
。7oはレーザ光7のレーザ照射面である。長手状開口
部6上および厚い酸化膜2上にレーザ光7による多結晶
シリコン膜3の溶融部30が形成されている。また、厚
い酸化膜2上に、溶融部3oが単結晶シリコン基板1の
面方位をなぞって単結晶化されたシリコン脹31が形成
されている。レーザ光7は矢印8方向に多結晶シリコン
膜3上面を走査する。
[Prior Art] Conventionally, there has been a method shown in FIG. 4 for manufacturing a single crystal semiconductor film on an insulating film. In the figure, 1o is a sample. Single-crystal silicon substrate 1 has a (100) plane as a main surface,
A thick oxide film 2 made of silicon dioxide is formed on this main surface. The thick oxide film 2 has a longitudinal opening 6 extending perpendicularly to the plane of the paper in a part thereof, and the single crystal silicon substrate 1 extends n to the surface of the thick oxide film 2 in this part. A polycrystalline silicon film 3 is formed on the longitudinal opening 6 and on the thick oxide film 2 by chemical vapor deposition (hereinafter referred to as cVD). The polycrystalline silicon film 3 is irradiated with a laser beam 7, whereby the polycrystalline silicon film is J-melted. 7o is a laser irradiation surface of the laser beam 7. A melted portion 30 of the polycrystalline silicon film 3 is formed on the longitudinal opening 6 and on the thick oxide film 2 by the laser beam 7 . Further, on the thick oxide film 2, a silicon bulge 31 is formed in which the molten portion 3o traces the plane direction of the single crystal silicon substrate 1 and is made into a single crystal. Laser light 7 scans the upper surface of polycrystalline silicon film 3 in the direction of arrow 8 .

しかして、厚い酸化膜2上への半導体単結晶膜の製造に
際し、長手状開口部6上および厚い酸化膜2上の多結晶
シリコン膜3をレーザ光7の照射によって溶融させ、さ
らにこの溶融を長手状開口部6の単結晶シリコン基板1
の表面まQ及ぼせることにより、固化の際に長手状開口
部6の単結晶シリコン基板1を14とするエピタキシャ
ル成長が土じて多結晶シリコン膜3が単結晶化する。し
たかって、レーザ光7で多結晶シリコン膜3を照射しな
がら矢印8方向に走査すると、多結晶シリコン摸3が溶
融されて溶融部30が形成され、この溶融部から走査方
向にエピタキシャル成長が連続して生じ、絶縁膜として
の厚い酸化膜2上にまで単結晶膜を成長させることがで
きる。
Therefore, when manufacturing a semiconductor single crystal film on the thick oxide film 2, the polycrystalline silicon film 3 on the longitudinal opening 6 and on the thick oxide film 2 is melted by irradiation with the laser beam 7, and this melting is further prevented. Single crystal silicon substrate 1 with longitudinal opening 6
By extending Q to the surface of the polycrystalline silicon film 3, the epitaxial growth of the single crystal silicon substrate 1 in the longitudinal opening 6 is disrupted during solidification, and the polycrystalline silicon film 3 becomes single crystal. Therefore, when the polycrystalline silicon film 3 is scanned in the direction of the arrow 8 while being irradiated with the laser beam 7, the polycrystalline silicon pattern 3 is melted to form a melted part 30, and epitaxial growth continues from this melted part in the scanning direction. A single crystal film can be grown even on the thick oxide film 2 as an insulating film.

[発明が解決しようとする問題点] しかしながら、かかる従来の単結晶半導体膜の製造方法
では、レーザ光7によって溶融した多結晶シリコン膜3
の溶融部30が長手状開口部6から離れると、厚い酸化
膜2から単結晶シリコン基板1への熱の流れが支配的に
なって固化、再結晶化が開口部6から連続的に起こらな
くなり、このため、長手状開口部6からのエピタキシャ
ルな単結晶は100〜200μm程度しか成長しないと
いう問題点があった。
[Problems to be Solved by the Invention] However, in such a conventional method for manufacturing a single crystal semiconductor film, the polycrystalline silicon film 3 melted by the laser beam 7
When the molten part 30 moves away from the longitudinal opening 6, the flow of heat from the thick oxide film 2 to the single crystal silicon substrate 1 becomes dominant, and solidification and recrystallization no longer occur continuously from the opening 6. Therefore, there was a problem in that the epitaxial single crystal from the elongated opening 6 grew only about 100 to 200 μm.

また、レーザ光7の走査方向に垂直な横方向の熱分布を
制御していないことから、レーザ光7のパワー分布の小
さな揺ぎでもエピタキシャルな単結晶成長が止まること
がおる。この機構について第5図(A)、(B)を参照
してさらに説明すると、レーザ光7のパワー分布は第5
図(A、)のように通常正規分布またはそれに近い形を
しており、このようなレーザ光7で多結晶シリコンII
I 3の溶融、11結晶化を行なった場合、多結晶シリ
コン膜3およびそのr8M部30内の温度分布は第5図
(△)のレーザ光7のパワー分布と同様な分布になる。
Further, since the heat distribution in the lateral direction perpendicular to the scanning direction of the laser beam 7 is not controlled, even small fluctuations in the power distribution of the laser beam 7 may stop epitaxial single crystal growth. To further explain this mechanism with reference to FIGS. 5(A) and 5(B), the power distribution of the laser beam 7 is
As shown in Figure (A), it usually has a normal distribution or a shape close to it.
When I 3 is melted and crystallized 11, the temperature distribution within the polycrystalline silicon film 3 and its r8M portion 30 becomes a distribution similar to the power distribution of the laser beam 7 shown in FIG. 5 (Δ).

したがって、レーザ光7による多結晶シリコンl!J3
の走査にl’l’なって固液界面9は第5図(B)の点
線のように移動し、いかにエピタキシャル成長を長手状
開口部6から連続させてきても結晶化の方向10が徐々
にレーザ照射面70の中心を通る走査方向になるため、
結晶粒界が出現し、単結晶化はできないという問題点が
あった。
Therefore, polycrystalline silicon l! by laser beam 7! J3
The solid-liquid interface 9 moves as shown by the dotted line in FIG. Since the scanning direction passes through the center of the laser irradiation surface 70,
There was a problem in that grain boundaries appeared and single crystallization was not possible.

この発明は上記のような問題点を解消するためになされ
たもので、絶縁膜上に大面積でかつ高品質の単結晶化を
可能にする単結晶半導体膜の製造方法を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a single-crystal semiconductor film that enables formation of a large-area, high-quality single crystal on an insulating film. do.

[問題点を解決するための手段コ この発明にかかる単結晶半導体膜のvJib方法は、単
結晶半導体基板と、この基板上に形成され、少なくとも
その一部分に基板が露出する長手状開口部を有する第1
絶縁膜と、上記基板上d3よび長手状開口部上に形成さ
れる多結晶または非晶質半導体+1Qとから構成される
試料において、多結晶または非晶質半導体膜上に第2W
A縁膜を形成し、第2絶縁摸上に、互いに間隔を隔てか
つ長手状開口部と交差する方向に複数の長手状反射膜を
形成し、光源からの光で第2絶縁宍および長手状反射膜
を長手状間口部からこの長手状反射膜の長手方向に照射
しながら走査し、これによって多結晶ま1;は非晶質半
導体喚を順次溶融させながら、長手状開口部の上記基板
を種とする結晶軸方向の等しい単結晶半導体膜をv81
絶縁脱上に形成する方法である。
[Means for Solving the Problems] The vJib method for a single crystal semiconductor film according to the present invention includes a single crystal semiconductor substrate and a longitudinal opening formed on the substrate through which the substrate is exposed at least in part. 1st
In a sample composed of an insulating film and a polycrystalline or amorphous semiconductor +1Q formed on the substrate d3 and the longitudinal opening, a second W is formed on the polycrystalline or amorphous semiconductor film.
A edge film is formed, and a plurality of longitudinal reflective films are formed on the second insulating panel at intervals and in a direction intersecting the longitudinal opening. The reflective film is scanned while being irradiated in the longitudinal direction of the longitudinal reflective film from the longitudinal opening, thereby sequentially melting the polycrystalline or amorphous semiconductor layer while the substrate in the longitudinal opening is heated. A single crystal semiconductor film with the same crystal axis direction as a seed is v81
This is a method of forming on top of insulation.

[作用コ この発明においては、試料を光源からの光で照射しなが
ら走査するとき、光源からの光が長手状反射膜で反射さ
れ、長手拭反fJ31jJ下の領域の多結晶または非晶
質半導体膜の溶融部等の温度は、長手状反射膜のない領
域の多結晶または非晶質半導体膜の溶融部等の温度より
低く保たれ、このため固化、再結晶化は長手状反射膜下
の領域から長手状反射膜のない領域に向って連続的に起
こる。また、第2絶縁膜は、多結晶または非晶質半導体
膜の溶融、再結晶化の際に長手状反射膜の原子がこの多
結晶または非晶質半導体膜中に不純物として潰入するの
を防ぐ。
[Function] In this invention, when scanning a sample while irradiating it with light from a light source, the light from the light source is reflected by the longitudinal reflective film, and the polycrystalline or amorphous semiconductor in the region under the longitudinal wiping film fJ31jJ is The temperature of the melted part of the film is kept lower than the temperature of the melted part of the polycrystalline or amorphous semiconductor film in the area without the longitudinal reflective film, so that solidification and recrystallization are less likely to occur under the longitudinal reflective film. This occurs continuously from the area to the area where there is no longitudinal reflective film. The second insulating film also prevents atoms of the longitudinal reflective film from being squeezed into the polycrystalline or amorphous semiconductor film as impurities during melting and recrystallization of the polycrystalline or amorphous semiconductor film. prevent.

し*施例] 以下、この発明の実施例を図について説明する。*Example] Embodiments of the present invention will be described below with reference to the drawings.

なお、この実施例の説明において、従来の技術の説明と
重複する部分については適宜その説明を省略する。
In the description of this embodiment, the description of parts that overlap with the description of the conventional technology will be omitted as appropriate.

第1図、第2図、および第3図は、この発明の実m例で
ある単結晶半導体膜の製造方法を説明するための平面図
、第1図のA−AI!1部分拡大断面図、および第1図
の8−Ba部分拡大断面図である。この実施例は、以下
の点を除いて従来の単結晶半導体膜の製造方法と同じで
ある。すなわち、試料10の多結晶シリコン1113上
に膜厚が500A程度の薄い酸化1114がCVD法で
形成されている・また、震い酸化M4上に、互いに間隔
を隔てかつ長手状開口部6の長子方向とほぼ直角な方向
に、膜厚が3000λ程度の複数の長手状タングステン
膜5がCVD法で形成されており、各長手状タングステ
ン膜5の長手方向の端部は、長手抗開白部6上 い幅だけ互いに隔てられている.70は連続発振のレー
ザ光7のレーザ照射面であり、このレーザ照射面に複数
本の長子状タングステンs5が含まれる。
1, 2, and 3 are plan views for explaining a method for manufacturing a single crystal semiconductor film that is an example of the present invention, and A-AI in FIG. FIG. 1 is a partially enlarged cross-sectional view, and a partially enlarged cross-sectional view taken along line 8-Ba in FIG. This example is the same as the conventional method for manufacturing a single crystal semiconductor film except for the following points. That is, on the polycrystalline silicon 1113 of the sample 10, a thin oxide 1114 with a film thickness of about 500 Å is formed by the CVD method. Also, on the oxidized oxide M4, the eldest of the longitudinal openings 6 are spaced apart from each other. A plurality of longitudinal tungsten films 5 having a film thickness of approximately 3000λ are formed by CVD in a direction substantially perpendicular to the direction, and the longitudinal end of each longitudinal tungsten film 5 is formed into a longitudinal anti-whitening portion 6. They are separated from each other by the upper width. 70 is a laser irradiation surface of the continuous wave laser beam 7, and this laser irradiation surface includes a plurality of long-grain tungsten s5.

しかして、一定パワーのレーザ光7で薄い酸化膜4およ
び長手状タングステン膜5を長手状開口部6から矢印8
方向に照射しながら走査すると、多結晶シリコンII 
3が溶融されて溶融部30が形成され、この溶融部から
長手状開口部6の単結晶シリコン基板1を種としてその
結晶軸方向を受は継いだエピタキシャル成長が連続して
生じ、このエピタキシャル成長はレーザ光7の矢印8方
向への走査に伴なって厚い酸化ll12上をその方向に
進んでいく。このとき、長手状タングステン膜5はレー
ザ光7の反射膜として働くため、各長手状タングステン
j115下のamの多結晶シリコンlI3の溶融部等の
温度は長手状タングステンl15のないgAil!の多
結晶シリコン族3の溶融部等の濃度より低く保たれ、ま
た、長手状タングステン膜5は熱伝導率が大きいため、
熱の流れはこの長手状タングステン膜によってその長子
方向に長手状開口部6に向って起こる。このように、長
手状タングステン1!II5により厚い酸化!!2上で
多結晶シリコン族3の溶融部等の走査方向に垂直な方向
および走査方向の温度分布が制御されるため、固化再結
晶化は各長手状タングステン膜5下の領域の多結晶シリ
コンs3の溶融部の固液界面から長手状タングステン膜
5のない領域に向って連続的に起こり、結晶粒界の出現
が抑えられる。また、レーザ光7の走査に伴なって多結
晶シリコン族3の溶融部の固液界面は全体として走査方
向に移動していくため、エピタキシャル成長が厚い酸化
12上に進んでいくことになる。また、薄い酸化M4は
、多結晶シリコン膜3の溶融再結晶化の際に長手状タン
グステン115の原子が単結晶化されたシリコン膜中に
不純物として混入することを防ぐ。このようにして、長
手状関口部6の単結晶シリコン基板1よりその結晶軸方
向をエピタキシャルに受は継いだ高品質の単結晶シリコ
ン膜を厚い酸化ll12上に大面積で形成することがで
きる。
Thus, the thin oxide film 4 and the elongated tungsten film 5 are removed from the elongated opening 6 by the laser beam 7 with a constant power.
When scanning while irradiating in the direction, polycrystalline silicon II
3 is melted to form a molten part 30, and from this molten part epitaxial growth occurs continuously in the direction of the crystal axis using the single crystal silicon substrate 1 of the longitudinal opening 6 as a seed, and this epitaxial growth is performed using a laser beam. As the light 7 scans in the direction of the arrow 8, it travels over the thick oxide 112 in that direction. At this time, since the elongated tungsten film 5 acts as a reflective film for the laser beam 7, the temperature of the melted portion of the am polycrystalline silicon lI3 under each elongated tungsten j115 is lower than that of gAil! without the elongated tungsten l15. The concentration is kept lower than that of the melted portion of polycrystalline silicon group 3, and since the elongated tungsten film 5 has high thermal conductivity,
Heat flow occurs through this elongated tungsten film in its longitudinal direction towards the elongated opening 6. In this way, elongated tungsten 1! Thicker oxidation by II5! ! Since the temperature distribution in the direction perpendicular to the scanning direction and in the scanning direction of the melted portion of the polycrystalline silicon group 3 is controlled on the polycrystalline silicon s3 in the region under each longitudinal tungsten film 5, solidification and recrystallization This occurs continuously from the solid-liquid interface of the molten part toward the region where there is no elongated tungsten film 5, and the appearance of grain boundaries is suppressed. Further, as the laser beam 7 scans, the solid-liquid interface of the molten portion of the polycrystalline silicon group 3 moves in the scanning direction as a whole, so that epitaxial growth progresses on the thick oxide 12. Further, the thin oxide M4 prevents atoms of the elongated tungsten 115 from being mixed as impurities into the single-crystal silicon film when the polycrystalline silicon film 3 is melted and recrystallized. In this way, a high-quality single-crystal silicon film epitaxially inherited from the single-crystal silicon substrate 1 of the elongated entrance portion 6 in its crystal axis direction can be formed over a large area on the thick oxide 112.

なお、上記実施例では、レーザ光の反射膜としてタング
ステン膜を用いる場合について示したが、反G’1ll
lとしては、レーザ光を反射しかつシリコンの融点(1
420℃)より高い融点を持つ金属膜であればその材質
を問うものではなく、たとえば、モリブデン護、チタン
躾、またはこれら高融点金属のシリサイド膜を用いても
よく、これらの場合にも上記実施例と同様の効果を秦す
る。
In addition, in the above embodiment, a case was shown in which a tungsten film was used as a reflection film for laser light, but anti-G'1ll
1 reflects the laser beam and the melting point of silicon (1
The material does not matter as long as the metal film has a melting point higher than 420°C (420°C); for example, molybdenum film, titanium film, or a silicide film of these high-melting-point metals may be used, and the above-mentioned method may also be used in these cases. Qin effect similar to the example.

また、上記実施例では、多結晶シリコン膜と反射膜との
間に薄い酸化膜を設ける場合について示したが、多結晶
シリコン膜と反射膜との間に設ける模としては、多結晶
シリコン膜の溶融再結晶化の際に反射膜の原子が74I
Fa晶化されたシリコン膜中に不純物として混入するこ
とを防ぐことができる膜であればよく、たとえば、窒化
シリコン膜を設けてもよく、この場合にも上記実施例と
同様の効果を奏する。
Furthermore, in the above embodiment, a case where a thin oxide film is provided between the polycrystalline silicon film and the reflective film is shown, but as a model in which a thin oxide film is provided between the polycrystalline silicon film and the reflective film, it is possible to provide a thin oxide film between the polycrystalline silicon film and the reflective film. During melt recrystallization, atoms in the reflective film become 74I.
Any film may be used as long as it can prevent the incorporation of impurities into the Fa crystallized silicon film; for example, a silicon nitride film may be provided, and in this case, the same effect as in the above embodiment can be achieved.

また、上記実施例では、厚い酸化膜上の多結晶シリコン
膜を単結晶化する場合について示したが、単結晶化する
躾としては、他の多結晶半導体膜や非晶質半導体膜であ
ってもよく、これらの場合にも上記実施例と同様の効果
を奏する。
In addition, although the above example shows the case where a polycrystalline silicon film on a thick oxide film is made into a single crystal, the method for making a polycrystalline silicon film on a thick oxide film into a single crystal is also applicable to other polycrystalline semiconductor films or amorphous semiconductor films. Also in these cases, the same effects as in the above embodiments can be achieved.

また、上記実施例では、多結晶シリコン膜が二酸化シリ
コン膜上に形成されている場合について示したが、多結
晶シリコン膜は他の絶縁膜上に形成されていてもよく、
この場合にも上記実施例と同様の効果を奏する。
Further, in the above embodiment, the case where the polycrystalline silicon film is formed on the silicon dioxide film is shown, but the polycrystalline silicon film may be formed on another insulating film.
In this case as well, the same effects as in the above embodiment can be achieved.

[発明の効果コ 以上のようにこの発明によれば、単結晶半導体基板と、
この基板上に形成され、少なくともその一部分に基板が
露出する長手状開口部を有する第1絶縁膜と、上記基板
上および長手状開口部上に形成される多結晶または非晶
質半導体膜とから構成される試料において、多結晶また
は非晶質半導体膜上に第2絶縁膜を形成し、第2絶縁膜
上に、互いに間隔を隔てかつ長手状開口部と交差する方
向に複数の長手状反射膜を形成し、光源からの光で第2
絶縁膜および長手状反射膜を長手状開口部からこの長手
状反射膜の長手方向に照射しながら走査し、これによっ
て多結晶または非晶質半導体膜を順次溶融させながら、
長手状開口部の上記基板を種とする結晶軸方向の等しい
単結晶半導体膜を第1絶縁膜上に形成するようにしたの
で、第1絶縁膜上で多結晶または非晶質半導体膜の溶融
部等の走査方向に!!!直な方向および走査方向の濃度
分布を制御することができ、このため、長手状開口部か
らのエピタキシャル成長が容易に行なわれて、第1絶縁
膜上の多結晶または非晶質半導体膜を大面積かつ高品質
で単結晶化することができる。
[Effects of the Invention] As described above, according to the present invention, a single crystal semiconductor substrate,
a first insulating film formed on the substrate and having a longitudinal opening through which the substrate is exposed in at least a portion thereof; and a polycrystalline or amorphous semiconductor film formed on the substrate and the longitudinal opening. In the sample configured, a second insulating film is formed on a polycrystalline or amorphous semiconductor film, and a plurality of longitudinal reflections are formed on the second insulating film at intervals and in a direction intersecting the longitudinal opening. A film is formed and the second layer is exposed to light from the light source.
The insulating film and the longitudinal reflective film are scanned while being irradiated from the longitudinal opening in the longitudinal direction of the longitudinal reflective film, thereby sequentially melting the polycrystalline or amorphous semiconductor film.
Since a single crystal semiconductor film with the same crystal axis direction is formed on the first insulating film using the substrate having the longitudinal opening as a seed, the polycrystalline or amorphous semiconductor film can be melted on the first insulating film. In the scanning direction of the section! ! ! The concentration distribution in the vertical direction and the scanning direction can be controlled. Therefore, epitaxial growth from the longitudinal opening can be easily performed, and the polycrystalline or amorphous semiconductor film on the first insulating film can be grown over a large area. And it can be made into a single crystal with high quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、および第3図は、この発明の実施例で
ある単結晶半導体膜の1造方法を説明するための平面図
、第1図のA−A1部分拡大断面図、および第1図の8
−B線部分拡大断面図である。 第4図は、従来の単結晶半導体膜の製造方法を説明する
ための断面図である。 第5図(A>、(B)は単結晶半導体膜の製造方法にお
けるレーザ光のパワー分布および多結晶シリコン膜の単
結晶化の様子を示す図である。 図において、1は単結晶シリコン基板、2は厚い酸化膜
、3は多結晶シリコン膜、30は溶融部、31は単結晶
化されたシリコン膜、4は薄い酸化膜、5は長手状タン
グステン膜、6は長手状開口部、7はレーザ光、10は
試料、70はレーザ照射面である。 なお、各図中同一符号は同一または相当部分を示す。 代理人   大  岩  増  雄 弔4図 も5図
1, 2, and 3 are a plan view for explaining a method for manufacturing a single crystal semiconductor film according to an embodiment of the present invention, a partial enlarged sectional view taken along line A-A1 in FIG. 1, and FIG. 8 in Figure 1
-B is a partially enlarged sectional view. FIG. 4 is a cross-sectional view for explaining a conventional method for manufacturing a single crystal semiconductor film. 5A and 5B are diagrams showing the power distribution of laser light and the state of single crystallization of a polycrystalline silicon film in the method for manufacturing a single crystal semiconductor film. In the figures, 1 is a single crystal silicon substrate. , 2 is a thick oxide film, 3 is a polycrystalline silicon film, 30 is a melted part, 31 is a single crystal silicon film, 4 is a thin oxide film, 5 is a longitudinal tungsten film, 6 is a longitudinal opening, 7 is the laser beam, 10 is the sample, and 70 is the laser irradiation surface. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Yusuke Oiwa Figures 4 and 5

Claims (4)

【特許請求の範囲】[Claims] (1)光源からの光で試料を照射しながら走査して、該
試料に含まれる多結晶または非晶質半導体膜を単結晶化
する方法であつて、 前記試料は、 単結晶半導体基板と、 前記基板上に形成され、少なくともその一部分に該基板
が露出する長手状開口部を有する第1絶縁膜と、 前記基板上および前記長手状開口部上に形成される前記
多結晶または非晶質半導体膜とから構成され、 前記多結晶または非晶質半導体膜上に第2絶縁膜を形成
する工程と、 前記第2絶縁膜上に、互いに間隔を隔てかつ前記長手状
開口部と交差する方向に複数の長手状反射膜を形成する
工程と、 前記光源からの光で前記第2絶縁膜および前記長手状反
射膜を前記長手状開口部から該長手状反射膜の長手方向
に照射しながら走査し、これによつて前記多結晶または
非晶質半導体膜を順次溶融させながら、前記長手状開口
部の前記基板を種とする結晶軸方向の等しい単結晶半導
体膜を前記第1絶縁膜上に形成する工程とを含む単結晶
半導体膜の製造方法。
(1) A method of scanning a sample while irradiating it with light from a light source to single-crystallize a polycrystalline or amorphous semiconductor film contained in the sample, the sample comprising: a single-crystal semiconductor substrate; a first insulating film formed on the substrate and having a longitudinal opening through which the substrate is exposed in at least a portion thereof; and the polycrystalline or amorphous semiconductor formed on the substrate and the longitudinal opening. forming a second insulating film on the polycrystalline or amorphous semiconductor film; forming a plurality of longitudinal reflective films; scanning the second insulating film and the longitudinal reflective film with light from the light source while irradiating the longitudinal reflective films from the longitudinal openings; By this, while sequentially melting the polycrystalline or amorphous semiconductor film, a single crystal semiconductor film having the same crystal axis direction is formed on the first insulating film using the substrate in the longitudinal opening as a seed. A method for manufacturing a single crystal semiconductor film, comprising the steps of:
(2)前記光源はアルゴンレーザである特許請求の範囲
第1項記載の単結晶半導体膜の製造方法。
(2) The method for manufacturing a single crystal semiconductor film according to claim 1, wherein the light source is an argon laser.
(3)前記単結晶半導体基板はシリコン基板であり、 前記第1絶縁膜は二酸化シリコン膜であり、前記第2絶
縁膜は、窒化シリコン膜、または酸化シリコン膜、また
は窒化シリコン膜と酸化シリコン膜との2重膜である特
許請求の範囲第1項記載の単結晶半導体膜の製造方法。
(3) The single crystal semiconductor substrate is a silicon substrate, the first insulating film is a silicon dioxide film, and the second insulating film is a silicon nitride film, a silicon oxide film, or a silicon nitride film and a silicon oxide film. 2. A method for producing a single crystal semiconductor film according to claim 1, which is a double film of a single crystal semiconductor film.
(4)前記長手状反射膜は、高融点金属膜、または高融
点金属シリサイド膜である特許請求の範囲第1項記載の
単結晶半導体膜の製造方法。
(4) The method for manufacturing a single crystal semiconductor film according to claim 1, wherein the longitudinal reflective film is a high melting point metal film or a high melting point metal silicide film.
JP17460185A 1985-08-06 1985-08-06 Manufacture of single crystal semiconductor film Pending JPS6233415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17460185A JPS6233415A (en) 1985-08-06 1985-08-06 Manufacture of single crystal semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17460185A JPS6233415A (en) 1985-08-06 1985-08-06 Manufacture of single crystal semiconductor film

Publications (1)

Publication Number Publication Date
JPS6233415A true JPS6233415A (en) 1987-02-13

Family

ID=15981426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17460185A Pending JPS6233415A (en) 1985-08-06 1985-08-06 Manufacture of single crystal semiconductor film

Country Status (1)

Country Link
JP (1) JPS6233415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250620A (en) * 1990-02-27 1991-11-08 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2009231712A (en) * 2008-03-25 2009-10-08 Sumitomo Heavy Ind Ltd Laser beam machining method and semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108313A (en) * 1982-12-13 1984-06-22 Mitsubishi Electric Corp Manufacture of semiconductor single crystal layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108313A (en) * 1982-12-13 1984-06-22 Mitsubishi Electric Corp Manufacture of semiconductor single crystal layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250620A (en) * 1990-02-27 1991-11-08 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2009231712A (en) * 2008-03-25 2009-10-08 Sumitomo Heavy Ind Ltd Laser beam machining method and semiconductor device

Similar Documents

Publication Publication Date Title
JPS63102265A (en) Manufacture of semiconductor device
JPS6233415A (en) Manufacture of single crystal semiconductor film
JPH06140321A (en) Method of crystallizing of semiconductor film
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JPS6352407A (en) Manufacture of semiconductor substrate
JPS6147627A (en) Manufacture of semiconductor device
JPH0652712B2 (en) Semiconductor device
JP2566663B2 (en) Method for manufacturing semiconductor single crystal film
JPH03250620A (en) Manufacture of semiconductor device
JPS60161396A (en) Manufacture of silicon thin film
JPS6236807A (en) Manufacture of single-crystal thin film
JPS5919311A (en) Manufacture of semiconductor device
JP2525101B2 (en) Method for manufacturing polycrystalline semiconductor film
JPS61212012A (en) Method for forming soi structure
JPH0149003B2 (en)
JPS5919312A (en) Manufacture of semiconductor device
JPS61106484A (en) Substrate for semiconductor device and its preparation
JPH084066B2 (en) Semiconductor single crystal growth method
JPH0334847B2 (en)
JPS6379953A (en) Production of thin single crystal film
JPS62206812A (en) Manufacture of semiconductor device
JPS6038809A (en) Manufacture of semiconductor device
JPS6189621A (en) Manufacture of semiconductor device
JPS62208620A (en) Manufacture of semiconductor device
JPS63315587A (en) Process for forming single crystal thin film