JPS6236807A - Manufacture of single-crystal thin film - Google Patents

Manufacture of single-crystal thin film

Info

Publication number
JPS6236807A
JPS6236807A JP17581785A JP17581785A JPS6236807A JP S6236807 A JPS6236807 A JP S6236807A JP 17581785 A JP17581785 A JP 17581785A JP 17581785 A JP17581785 A JP 17581785A JP S6236807 A JPS6236807 A JP S6236807A
Authority
JP
Japan
Prior art keywords
single crystal
thin film
soi
polycrystalline
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17581785A
Other languages
Japanese (ja)
Inventor
Kikuo Kusukawa
喜久雄 楠川
Osamu Okura
理 大倉
Hideo Sunami
英夫 角南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17581785A priority Critical patent/JPS6236807A/en
Publication of JPS6236807A publication Critical patent/JPS6236807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a large area single-crystal film with superior quality by reducing the splashing of polycrystalline or amorphous silicon of the SOI section with the scanning direction of an energy beam and the form of pattern of the SOI. CONSTITUTION:The heat source or sample is scanned so that the scanning direction of the energy source will be formed with inclination of more than 10 deg. and less than 90 deg. or more than -10 deg. and less than -90 deg. from the vertical direction with respect to the boundary between the polycrystalline silicon (amorphous silicon) on the exposed surface of a substrate and the insulation film, thereby preventing the splashing of a polycrystalline film that can be easily produced near the boundary between the SIO section and the seed section. Thus, growth of crystal is facilitated to allow the formation of a large area single crystal growth region.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は単結晶薄膜の製造方法に関し、特に半導体基板
表面に被着された絶縁膜上の非晶質薄膜にレーザ光等の
エネルギービームを照射して良質の単結晶薄膜を製造す
る方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a single crystal thin film, and in particular to a method for producing a single crystal thin film, in particular a method of irradiating an amorphous thin film on an insulating film deposited on the surface of a semiconductor substrate with an energy beam such as a laser beam. This invention relates to a method for producing high quality single crystal thin films.

〔発明の背景〕[Background of the invention]

従来、単結晶薄膜の形成には、特開昭56−73607
号に記載のように結晶成長の種を有するブリッジングエ
ピタキシーにおいて、熱源の走査方向およびSOIパタ
ーンの形状については配慮されていなかった。そのため
、801部とシード部の境界近傍に多結晶シリコンが急
激の熱変化により飛散を生じ易かった。
Conventionally, for the formation of single crystal thin films, Japanese Patent Application Laid-Open No. 56-73607
In bridging epitaxy using seeds for crystal growth as described in the above issue, no consideration was given to the scanning direction of the heat source and the shape of the SOI pattern. Therefore, polycrystalline silicon was likely to scatter near the boundary between the 801 part and the seed part due to sudden thermal changes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、絶縁膜上の単結晶膜の製造に関し、従
来の問題を解決し、良質の大面積単結晶簿膜を得る方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the conventional problems in manufacturing a single crystal film on an insulating film and to provide a method for obtaining a high-quality, large-area single crystal film.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明はSOI部とシード部
の多結晶もしくは非晶質シリコンの下層に存在する単結
晶シリコン基板と絶縁膜の熱伝導率の違いで生じる多結
晶もしくは非晶質シリコン膜の融解の差で生じるSOI
部の多結晶もしくは非晶質シリコンの飛散をエネルギー
ビームの走査方向およびSOIのパターン形状によって
低減するものである。
In order to achieve the above object, the present invention has developed a method to solve the problem of polycrystalline or amorphous silicon that is generated due to the difference in thermal conductivity between the single crystal silicon substrate and the insulating film that exist under the polycrystalline or amorphous silicon in the SOI part and the seed part. SOI caused by differences in film melting
The scattering of polycrystalline or amorphous silicon in the area is reduced by changing the scanning direction of the energy beam and the pattern shape of the SOI.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。まず、単結晶シリコン
(100)基板1上の一部に周知のl、0CO3酸化法
により厚さ0.4μmの酸化膜2を形成した。この後、
SiH4の熱分解により厚さく3) 0.35μmの多結晶シリコン膜3を形成した。
The present invention will be explained in detail below. First, an oxide film 2 having a thickness of 0.4 μm was formed on a portion of a single crystal silicon (100) substrate 1 by a well-known l,0CO3 oxidation method. After this,
A polycrystalline silicon film 3 having a thickness of 3) 0.35 μm was formed by thermal decomposition of SiH4.

この試料を第1図に示す。その後、連続発振アルゴンイ
オンレーザ光4を図のように走査5しながら照射し、上
記多結晶シリコン膜3の単結晶化を行った。照射条件は
、試料基板温度を500℃とし、ビーム直径100μm
、照射パワー5〜15W、ビーム走査速度1〜100 
rs / sとした。この照射によって多結晶シリコン
膜3の全部及び単結晶シリコン基板1の表面部分が一旦
融解し、再同化過程に於て単結晶成長が単結晶シリコン
基板1表面(シード部)から酸化膜2上の領域(SOI
部)へと横方向に進み、酸化膜2上の領域が単結晶化さ
れる。この時シード部とSOI部の多結晶シリコン膜が
融解するに必要なパワーは、6Wおよび7Wであり、絶
縁膜2上の多結晶シリコン膜3の単結晶化には7W以上
のレーザパワーが必要である。次に、9W、1 cs 
/ sのレーザ条件でパターン形状の異なるSOIに照
射した。
This sample is shown in FIG. Thereafter, continuous wave argon ion laser light 4 was irradiated while scanning 5 as shown in the figure, thereby converting the polycrystalline silicon film 3 into a single crystal. The irradiation conditions were a sample substrate temperature of 500°C and a beam diameter of 100 μm.
, irradiation power 5-15W, beam scanning speed 1-100
rs/s. By this irradiation, the entire polycrystalline silicon film 3 and the surface portion of the single crystal silicon substrate 1 are melted, and in the reassimilation process, the single crystal grows from the surface (seed part) of the single crystal silicon substrate 1 to the surface of the oxide film 2. Area (SOI
The region on the oxide film 2 is made into a single crystal. At this time, the power required to melt the polycrystalline silicon film in the seed part and the SOI part is 6W and 7W, and a laser power of 7W or more is required to monocrystallize the polycrystalline silicon film 3 on the insulating film 2. It is. Then 9W, 1 cs
SOI with different pattern shapes were irradiated under laser conditions of /s.

i)レーザ走査方向とシードの角度 レーザ走査方向に対してシード6・5OI7境界が垂直
の時のシードの傾斜角度を0度とし、反時計方向のシー
ドの傾斜角を■θと表わす。これを第2図に示す。この
試料にレーザ光を走査しながら照射し、801部のシー
ド部からの結晶成長を調べた。その結果、Oが一10〜
+10度の時、SOI部の多結晶シリコン膜が飛散して
おり、その他のシード傾斜角度OではSOI結晶成長層
が得られた。また、レーザ光がSOI部からシード部に
走査することとなるシード傾斜角度θが一180度近辺
では、シード部からの再同化がSOI上の多結晶シリコ
ンより先に生じるため2〜3μmであるが良好な単結晶
膜が得られた。デバイス構造を検討することによって充
分に利用が可能である。
i) Laser scanning direction and seed angle When the seed 6/5OI7 boundary is perpendicular to the laser scanning direction, the inclination angle of the seed is 0 degrees, and the inclination angle of the seed in the counterclockwise direction is expressed as ■θ. This is shown in FIG. This sample was irradiated with laser light while scanning, and crystal growth from the seed portion of 801 parts was examined. As a result, O is 110~
At +10 degrees, the polycrystalline silicon film in the SOI part was scattered, and at other seed inclination angles O, SOI crystal growth layers were obtained. In addition, when the seed inclination angle θ is around 1180 degrees, where the laser beam scans from the SOI part to the seed part, the reassimilation from the seed part occurs before the polycrystalline silicon on the SOI, so it is 2 to 3 μm. A single crystal film with good properties was obtained. It can be fully utilized by considering the device structure.

jt)SOIパターンの角度 SOIパターンの角度αを変化した場合のレーザ照射を
第3図に示す。レーザ走査方向に対してSOIパターン
の角度が100度未満では、SOIパターン角度で多結
晶シリコン膜が飛散した。それ以上のパターン角度αで
は、SOI結晶成長層が形成された。
jt) Angle of SOI pattern FIG. 3 shows laser irradiation when the angle α of the SOI pattern is changed. When the angle of the SOI pattern with respect to the laser scanning direction was less than 100 degrees, the polycrystalline silicon film was scattered at the SOI pattern angle. At a pattern angle α larger than that, an SOI crystal growth layer was formed.

jii )線状ビームとシードの角度 線状ビームの場合は、その線状ビームの傾斜角度βに対
してシード6・5OI7境界の角度をシードの傾斜角度
γとする。これを第4図に示す。
jii) Angle between linear beam and seed In the case of a linear beam, the angle of the seed 6/5OI7 boundary with respect to the inclination angle β of the linear beam is set as the inclination angle γ of the seed. This is shown in FIG.

レーザ光を走査しながら照射し、SOI部のシード部か
らの結晶成長を調べた結果、γが−10〜+10の時、
SOI部の多結晶シリコン膜が飛散し、その他のシード
傾斜角度γではSOI結晶成長層が得られた。この結果
は、線状ビームの傾斜角度βを変化しても同様に得られ
た。
As a result of irradiating the laser beam while scanning and examining the crystal growth from the seed part of the SOI part, when γ is -10 to +10,
The polycrystalline silicon film in the SOI portion was scattered, and SOI crystal growth layers were obtained at other seed inclination angles γ. This result was similarly obtained even when the inclination angle β of the linear beam was changed.

本実施例では連続発振アルゴンインオレーザ光を用いた
が、本発明の効果はこれに限定されず、電子線、ストリ
ップヒータ等による局所加熱を用いればよく、酸化膜に
ついても絶縁膜であれば同様な効果が得られる。
Although a continuous wave argon-in-Olaser beam was used in this embodiment, the effects of the present invention are not limited to this, and local heating with an electron beam, a strip heater, etc. may be used, and an oxide film can also be used as long as it is an insulating film. A similar effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

上記説明から明らかなように、本発明によればSOI部
とシード部の境界近傍で生じ易い多結晶シリコン膜の飛
散を防止することができ、結晶酸長が容易になるので大
面積単結晶成長領域の形成が可能となる。
As is clear from the above description, according to the present invention, scattering of the polycrystalline silicon film that tends to occur near the boundary between the SOI part and the seed part can be prevented, and the crystal acid length can be easily increased, so that large-area single crystal growth can be achieved. It becomes possible to form a region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料の縦断面図、第2図〜第4図は試料表面を
示す図である。 ]・・・単結晶シリコン基板、2・・・酸化膜、3・・
・多結晶シリコン膜、4・・・レーザ光、5・・・レー
ザ走査方向、6・・・シード、7・・・S○工、0・・
・レーザ走査方向に対するシードの傾斜角度、α・・・
SOIパターンの角度、β・・・線状ビームのビーム走
査方向に対する角度、γ・・・線状ビームの角度に対す
るシードの傾斜角度を示す。
FIG. 1 is a longitudinal sectional view of the sample, and FIGS. 2 to 4 are diagrams showing the surface of the sample. ]... Single crystal silicon substrate, 2... Oxide film, 3...
・Polycrystalline silicon film, 4...Laser light, 5...Laser scanning direction, 6...Seed, 7...S○ process, 0...
・Inclination angle of the seed with respect to the laser scanning direction, α...
The angle of the SOI pattern, β...the angle with respect to the beam scanning direction of the linear beam, and γ...the inclination angle of the seed with respect to the angle of the linear beam.

Claims (1)

【特許請求の範囲】 1、半導体基板の露出された表面と上記半導体基板上に
被着された絶縁膜を連続して覆う多結晶もしくは非晶質
シリコン薄膜をレーザ光、電子線等のビームエネルギー
の照射、或いは線状ヒータ等による局所加熱融解によつ
て単結晶化させる方法において、 エネルギー、源の走査方向が、露出された基板表面上の
多結晶シリコン(非晶質シリコン)と絶縁膜との境界に
対して垂直方向より10°以上90°未満、または−1
0°以上−90°未満の傾斜を以つて進行すべく熱源あ
るいは試料を走査することを特徴とする単結晶薄膜の製
造方法。 2、上記線状ヒータのように固液界面が線状、または楕
円状の場合、固液界面の長手側が露出された基板表面上
の多結晶シリコン(非晶質シリコン)と絶縁膜との境界
に一致する方向に対して10°以上の傾斜を以つて進行
すべく熱源あるいは試料を走査することを特徴とする特
許請求の範囲第1項記載の単結晶薄膜の製造方法。 3、上記エネルギー源が基板表面上の多結晶シリコン(
非晶質シリコン)から絶縁膜上に移動する際の絶縁膜の
パターンの有する角が100°以上の角度であることを
特徴とする特許請求の範囲第1項記載の単結晶薄膜の製
造方法。
[Claims] 1. A polycrystalline or amorphous silicon thin film that continuously covers the exposed surface of the semiconductor substrate and the insulating film deposited on the semiconductor substrate is exposed to beam energy such as a laser beam or an electron beam. In the method of single crystallization by irradiation with irradiation or local heating melting using a linear heater, the energy and the scanning direction of the source are different from those of the polycrystalline silicon (amorphous silicon) on the exposed substrate surface and the insulating film. 10° or more and less than 90° perpendicular to the boundary, or -1
1. A method for producing a single crystal thin film, comprising scanning a heat source or a sample at an angle of 0° or more and less than -90°. 2. When the solid-liquid interface is linear or elliptical as in the above-mentioned linear heater, the boundary between the polycrystalline silicon (amorphous silicon) and the insulating film on the substrate surface where the long side of the solid-liquid interface is exposed A method for manufacturing a single crystal thin film according to claim 1, characterized in that the heat source or the sample is scanned so as to advance at an inclination of 10 degrees or more with respect to a direction coincident with the direction. 3. The above energy source is polycrystalline silicon (
2. The method of manufacturing a single crystal thin film according to claim 1, wherein the angle of the pattern of the insulating film when transferred from the amorphous silicon onto the insulating film is an angle of 100° or more.
JP17581785A 1985-08-12 1985-08-12 Manufacture of single-crystal thin film Pending JPS6236807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17581785A JPS6236807A (en) 1985-08-12 1985-08-12 Manufacture of single-crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17581785A JPS6236807A (en) 1985-08-12 1985-08-12 Manufacture of single-crystal thin film

Publications (1)

Publication Number Publication Date
JPS6236807A true JPS6236807A (en) 1987-02-17

Family

ID=16002744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17581785A Pending JPS6236807A (en) 1985-08-12 1985-08-12 Manufacture of single-crystal thin film

Country Status (1)

Country Link
JP (1) JPS6236807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312022A (en) * 1987-06-15 1988-12-20 Mitsubishi Electric Corp Electrode control device for electrical discharge machining device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312022A (en) * 1987-06-15 1988-12-20 Mitsubishi Electric Corp Electrode control device for electrical discharge machining device

Similar Documents

Publication Publication Date Title
KR900003255B1 (en) Manufacture of single crystal thin film
JPS62206816A (en) Manufacture of semiconductor crystal layer
JPS6236807A (en) Manufacture of single-crystal thin film
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPS60161396A (en) Manufacture of silicon thin film
JPS58139423A (en) Lateral epitaxial growing method
JPH0236052B2 (en)
JPS6233415A (en) Manufacture of single crystal semiconductor film
JPH0652712B2 (en) Semiconductor device
JPS6234716B2 (en)
JPH0413848B2 (en)
JPS627116A (en) Manufacture of soi single crystal
JPS61212012A (en) Method for forming soi structure
JPH0560668B2 (en)
JPS5984416A (en) Manufacture of single crystal thin film
JPH0334847B2 (en)
JPS62145722A (en) Manufacture of single crystal thin film
JPS6015916A (en) Manufacture of single crystal thin film
JPH0149003B2 (en)
JPS62208620A (en) Manufacture of semiconductor device
JPS62179112A (en) Formation of soi structure
JPS6352407A (en) Manufacture of semiconductor substrate
JPS5919312A (en) Manufacture of semiconductor device
JPS60257122A (en) Semiconductor device
JPH01297814A (en) Manufacture of single crystal