JPS6281710A - Laser scanning optical system device - Google Patents

Laser scanning optical system device

Info

Publication number
JPS6281710A
JPS6281710A JP22224785A JP22224785A JPS6281710A JP S6281710 A JPS6281710 A JP S6281710A JP 22224785 A JP22224785 A JP 22224785A JP 22224785 A JP22224785 A JP 22224785A JP S6281710 A JPS6281710 A JP S6281710A
Authority
JP
Japan
Prior art keywords
optical system
laser
phase
phase plate
laser scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22224785A
Other languages
Japanese (ja)
Other versions
JPH0365012B2 (en
Inventor
Makoto Kato
誠 加藤
Kenji Kumabe
隈部 建治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Graphic Communication Systems Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP22224785A priority Critical patent/JPS6281710A/en
Publication of JPS6281710A publication Critical patent/JPS6281710A/en
Publication of JPH0365012B2 publication Critical patent/JPH0365012B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To realize the temperature distribution controlled two-dimentionally on an irradiated plane efficiently and stably by irradiating with laser beam a diffusion plate on which a predetermined phase series is arranged through a collimate optical system, followed by converging and then scanning a non- crystal layer or a polycrystalline layer on a substrate with the beams of two- peak light intensity distribution. CONSTITUTION:A laser scanning optical system device is composed of a laser beam oscillator 5 as a beam source, a beam expander 6, a collimate lens 7 composing a collimate optical system together with said beam expander 6, a phase plate 9 into which a laser beam 1 which has passed through the collimate system enters, and a converging lens 8 composed of a Fourier transform lens arranged behind the phase plate 9. The laser beam 1 emitted from the laser beam oscillator 5 enters into the phase plate 9 through the beam expander 6 and collimate lens 7. After being diffracted as predetermined in the phase plate 9, the beam is refracted by the converging lens 8 to produce a predetermined two-peak distribution of beam intensity, namely a temperature distribution 13 on an X-Y plane.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、集積回路を構成するために絶縁膜上に半導体
結晶を生成する再結晶化技術を用いたレーザ走査光学系
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laser scanning optical system device that uses recrystallization technology to produce semiconductor crystals on an insulating film to construct an integrated circuit.

従来の技術 集積回路を高性能化し或は高集積化する新しい手段とし
て、従来平面的に配置していた半導体素子に3次元的(
/i:積層構成する技術が最近注目されている。半導体
単結晶層を含めて多層化を計るには、活性層積層化技術
の確立が不可欠であり、近年、レーザを用いたS OI
 (5ilicon onInsulator  )技
術の開発により、絶縁膜上に単結晶層を比較的容易に形
成できることが示されて3次元デバイス実用化への努力
が活発になされている。一方、SOI技術は、3次元デ
バイス以外に、大面債基板上に2次元構成の集積回路を
実現する有力手段でもあり、例えば等倍結像型のイメー
ジセンサ及びその、駆動回路部を一体化して基板上への
配置を可能ならしめる。
Conventional technology As a new means of improving the performance or increasing the degree of integration of integrated circuits, three-dimensional (3D)
/i: Laminated technology has recently been attracting attention. Establishment of active layer stacking technology is essential for multilayering including semiconductor single crystal layers, and in recent years, SOI using lasers has been developed.
With the development of 5 silicon on insulator technology, it has been shown that a single crystal layer can be formed relatively easily on an insulating film, and efforts are being made to put three-dimensional devices into practical use. On the other hand, in addition to three-dimensional devices, SOI technology is also an effective means of realizing two-dimensional integrated circuits on large-sized bonded substrates. This makes it possible to arrange it on a substrate.

S○工技術によって行なう半導体層の形成は、(1)堆
積層再結晶法、(2)エピタキシャル堆積法、(3)単
結晶分離法に属する各種方法によって試みられているが
、絶縁膜上に非結晶又は微小多結晶半導体を堆積させ、
加熱溶融と冷却過程を経て再結晶化を図る上記(1)の
方法が汎用性、経済性に優れると考えられ、現在もっと
も広範に研究がすすめられている。加熱溶融・手段とし
ては、レーザビーム以外に電子ビーム、ヒータやランプ
を用いる方法が検討されているが、加熱時間が短時間で
すみ、かつ真空を要しない点でレーザビーム法は有力で
ある。
Formation of a semiconductor layer using S○ technology has been attempted using various methods belonging to (1) deposited layer recrystallization method, (2) epitaxial deposition method, and (3) single crystal separation method. depositing an amorphous or micro-polycrystalline semiconductor;
The method (1) above, in which recrystallization is achieved through heating and melting and cooling processes, is considered to be highly versatile and economical, and is currently being studied most extensively. In addition to laser beams, methods using electron beams, heaters, and lamps are being considered as heating and melting methods, but the laser beam method is effective because it requires only a short heating time and does not require a vacuum.

このレーザビーム法において良好な結晶を得るためには
、(2L)ビームの形状を制御すること、若くは(1)
)被照射物構造の制御によって溶融部の中心より再結晶
が始まるようにするための適当な温度分布を実現する必
要がある。被照射物構造の影響を受けにくいのは、(a
)のビーム形状制御による方法であり、この方法を実施
するための従来例としては例えば第5図乙に示すような
光学系装置が提案されている。この光学系装置は、レー
ザ光源1aと、絶縁基板2と、GVDポリシリコン層3
とがら成る。レーザ光源1aには、アルゴンイオンレー
ザの如き連続発振ガスレーザが用いられ、シリコン材料
に対して良好な吸収特性の波長帯に発振スペクトル(λ
=542nm)f、(有している。絶縁基板2には耐熱
性に優れたSiO2板或は5io2膜が使われる。そし
て、レーザビーム1が双峰状に集光されて照射され、ポ
リシリコン層全各融する。レーザ光源11Lから照射さ
れたレーザビーム1は光軸対称のガウス分布状の強度特
性を有し、そのまま試料表面に集光してもガウス分布光
強度が保持され、照射面にはやばりガウス分布状の温度
分布が生じるので再結晶化制御が難しい。そこで温度分
布制御に都合のよいビーム形状を得るために水晶複屈折
板4を用い、2本のビーム10゜11を形成して合成ビ
ーム12全実現している。
In order to obtain a good crystal using this laser beam method, it is necessary to control the shape of the (2L) beam, and (1)
) It is necessary to realize an appropriate temperature distribution so that recrystallization starts from the center of the molten zone by controlling the structure of the irradiated object. The one that is less affected by the structure of the irradiated object is (a
) is a method based on beam shape control, and as a conventional example for implementing this method, an optical system device as shown in FIG. 5B has been proposed. This optical system device includes a laser light source 1a, an insulating substrate 2, and a GVD polysilicon layer 3.
Consists of spikes. A continuous wave gas laser such as an argon ion laser is used as the laser light source 1a, and the oscillation spectrum (λ
= 542 nm) f, (has. An SiO2 plate or 5io2 film with excellent heat resistance is used as the insulating substrate 2. Then, the laser beam 1 is focused in a bimodal shape and irradiated, and the polysilicon is The entire layer melts.The laser beam 1 irradiated from the laser light source 11L has a Gaussian distribution intensity characteristic with optical axis symmetry, and even if it is focused on the sample surface as it is, the Gaussian distribution light intensity is maintained and the irradiated surface is Recrystallization control is difficult because a Gaussian temperature distribution occurs.Therefore, in order to obtain a beam shape convenient for temperature distribution control, a crystal birefringence plate 4 is used to transform the two beams at 10°11. A total of 12 combined beams are formed.

このとき、レーザビーム1は被照射面とばY方向に相対
運動をして走査され、第1図すに示すような温度Tの空
間分布13(T−X而)あるいは空間分布130(T−
Y面)全遂次的に形成している〇 第6図は、ポリシリコン層3の被照射面での結晶生成と
レーザビーム強度分布の関係を説明したもので、左側の
部分は単一ガウス分布ビームでY方向にポリシリコン膜
を走査した場合の溶融領域30、液相−固相境界3oO
1多結晶領域31゜単結晶領域32と結晶成長方向32
0を示している。右方は、第6図に示すような互いに平
行な2本のガウス分布レーザビームを照射した場合に得
られる再結晶化の進行状態を示し、かがるレーザビーム
照射により第6図c、dに示すように温度分布の違いか
ら再結晶化過程に大きな違いが生じる。第6図c、dは
上記二連りのレーザビーム照射の間でX方向での温度分
布形状を比較したもので、双峰状分布の場合には、既に
再結晶化した領域を成長の核としてその結晶性を引継い
だ単結晶成長が広範囲に進む。以上のような双峰状ビー
ム形成方法としては、複屈折板の利用、レーザ発振モー
ドの制御の他にも、ビームスプリッタを用いるとか、2
本の独立したレーザがらのビームを近接した2本のガウ
スビームに合成する方法が知られている。しかし、この
レーザ発振モード制御と独立したレーザ発振ビーム合成
の方法は安定性を長時間にわたって維持するのが困難で
あり、複屈折板やビームスプ’J y夕の利用も双峰状
ビーム形状で対称型に整形する場合に光量損失を生じ、
また温度分布制御の自由度を大きくとることができない
という点で問題がある。
At this time, the laser beam 1 is scanned by moving relative to the irradiated surface in the Y direction, and the spatial distribution 13 (T-X) or the spatial distribution 130 (T-
Figure 6 explains the relationship between crystal formation on the irradiated surface of the polysilicon layer 3 and the laser beam intensity distribution. Melted region 30, liquid phase-solid phase boundary 3oO when the polysilicon film is scanned in the Y direction with a distributed beam
1 Polycrystalline region 31° Single crystalline region 32 and crystal growth direction 32
It shows 0. The right side shows the progress of recrystallization obtained when irradiating with two mutually parallel Gaussian distribution laser beams as shown in Figure 6. As shown in Figure 2, differences in temperature distribution cause large differences in the recrystallization process. Figures 6c and d compare the temperature distribution shapes in the X direction between the above two series of laser beam irradiations. As a result, single crystal growth that inherited that crystallinity has progressed over a wide range of areas. In addition to using a birefringent plate and controlling the laser oscillation mode, methods for forming a bimodal beam as described above include using a beam splitter,
A method is known in which independent laser beams are combined into two closely spaced Gaussian beams. However, this method of laser oscillation mode control and independent laser oscillation beam synthesis is difficult to maintain stability over a long period of time, and the use of birefringent plates and beam spreaders also results in a symmetrical bimodal beam shape. Light intensity loss occurs when shaping into a mold,
Another problem is that it is not possible to have a large degree of freedom in temperature distribution control.

本発明はこのような従来の問題点に鑑みてなさnたもの
で、その目的は安定な発振モードのガウス分布レーザビ
ームを用いて、光量損失を生じることなく所定の双峰状
ビームを集光可能にするレーザ走査光学系装置を提供す
ることである。
The present invention was developed in view of these conventional problems, and its purpose is to use a Gaussian distribution laser beam with a stable oscillation mode to condense a predetermined bimodal beam without causing any loss in light intensity. An object of the present invention is to provide a laser scanning optical system device that makes it possible.

問題点を解決するための手段 本発明は上記目的を達成するため、レーザビームを発射
する発振器と、コリメート光学系、及びビーム拡散手段
と、ビーム集元手段を用い、所定の双峰状ビームの整形
を行なうレーザ走査光学系ヒーレント光学系による情報
処理方式、特にホログラフィ方式において高品質高密度
画像記録を可能にする情報拡散板機構を応用している。
Means for Solving the Problems In order to achieve the above object, the present invention uses an oscillator that emits a laser beam, a collimating optical system, a beam diffusing means, and a beam concentrating means, to form a predetermined bimodal beam. A laser scanning optical system that performs shaping uses an information processing system using a coherent optical system, in particular an information diffusion plate mechanism that enables high-quality, high-density image recording in the holography system.

作用 レーザ発振器から発射され、一般的にはガウス分布強度
を有するコヒーレントビームをその′=!ま集光しても
、相似形状全保持した壕まであるが、本発明のレーザ走
査光学系装置では、一度コリメート光学系で拡大したビ
ームを微細構造を有する拡散板(位相板)K入射させ、
光量損失を被ることなく、X−12方向に所定幅だけ拡
散させる。
A coherent beam emitted from a working laser oscillator and typically having a Gaussian distribution of intensity that ′=! Even when the light is focused, there are even trenches that retain all the similar shapes, but in the laser scanning optical system device of the present invention, the beam, which has been expanded by the collimating optical system, is made incident on a diffuser plate (phase plate) K having a fine structure.
To diffuse light by a predetermined width in the X-12 direction without suffering loss of light quantity.

しかも、上記位相板の微細構造をその振幅透過率のフー
リエ変換が双峰状分布となる如く所定の位相系列に対応
した凹凸領域によって実現する。この場合、上記所定位
相系列とは、位相板を例えば行列状の矩形領域で構成し
、各行又は各列の振幅透過率が0.−π、−πりうちの
いずれかであり、しかも行列方向に隣接する項間の位相
差が十丁π又は−丁πになるようにし、そのフーリエ変
換面、即ちビーム集光面において双峰状のレーザビーム
分布が安定に実現される。
Moreover, the fine structure of the phase plate is realized by uneven regions corresponding to a predetermined phase sequence so that the Fourier transform of its amplitude transmittance has a bimodal distribution. In this case, the above-mentioned predetermined phase series means that the phase plate is formed of, for example, a matrix-like rectangular region, and the amplitude transmittance of each row or column is 0. -π or -π, and the phase difference between adjacent terms in the matrix direction is 10-pi or -1-pi, and the Fourier transform surface, that is, the beam condensing surface, has two peaks. A stable laser beam distribution is achieved.

実施例 第1図乃至第4図は本発明のレーザ走査光学系装置及び
その動作状況の一実施例を示す図である。
Embodiment FIGS. 1 to 4 are diagrams showing an embodiment of the laser scanning optical system device of the present invention and its operating status.

この実施例に係るレーザ走査光学系装置は、光源となる
レーザビーム発振器6と、ビームエキスパンダ6と、こ
のビームエキスパンダ6と共にコリメート光学系を構成
するコリメートレンズ7と、コリメート光学系を通過し
たレーザビーム1が入射する位相板9と、位相板9の後
方に設けられたフーリエ変換レンズから構成された集光
レンズ8とから成る。レーザビーム発振器5から発射さ
れたレーザビーム1は、ビームエキスパンダ6及びコリ
メートレンズ7を介して位相板9に入射し、この位相板
9において所定の回折を受けた後集光レンズ8で屈折さ
れX−Y面に所定の双峰状のビーム強度分布、即ち温度
分布13を生じる。位相板9は、その第1の実施例全第
1図すに示すように、矩形領域91,92.93・・・
・・・からなり、各領域を通過する所定波長λの光速に
対し、位相差−π、O9−π・・・・・・金主じるよう
に凹凸段差が設けられており、その振幅透過率はX方向
にと表わせる。ここで、 またφ。は第n番目のサンプル領域を透過する光波に与
える位相変位量であって、位相系列(φ。)は、 となるように決められている。
The laser scanning optical system device according to this embodiment includes a laser beam oscillator 6 serving as a light source, a beam expander 6, a collimating lens 7 that constitutes a collimating optical system together with the beam expander 6, and a laser beam passing through the collimating optical system. It consists of a phase plate 9 into which the laser beam 1 is incident, and a condensing lens 8 formed from a Fourier transform lens provided behind the phase plate 9. A laser beam 1 emitted from a laser beam oscillator 5 enters a phase plate 9 via a beam expander 6 and a collimating lens 7, undergoes a predetermined diffraction at the phase plate 9, and is then refracted by a condenser lens 8. A predetermined bimodal beam intensity distribution, ie, temperature distribution 13, is produced in the XY plane. In its first embodiment, the phase plate 9 has rectangular areas 91, 92, 93, . . . , as shown in FIG.
..., and with respect to the speed of light of a predetermined wavelength λ passing through each region, the phase difference is -π, O9-π...There are uneven steps like gold, and the amplitude transmission The rate can be expressed as in the X direction. Here, φ again. is the amount of phase displacement given to the light wave passing through the n-th sample region, and the phase sequence (φ.) is determined to be as follows.

起確率は、サンプル領域数Nが充分大きいとき等しく下
となるように設定されている。
The probability of occurrence is set to be equally lower when the number N of sample regions is sufficiently large.

集光面(ξX、ξ、)における上記振幅透過率のパワー
スペクトルを、便宜上ξX方向について求めると、 ・・・・・・(4) ただし、 λ:光波長 f:集光レンズの焦点距離 第2図には2軸方向X、Yで異なるピッチPK。
For convenience, the power spectrum of the above amplitude transmittance on the condensing surface (ξX, ξ,) is found in the ξX direction as follows: (4) where λ: light wavelength f: focal length of the condensing lens Figure 2 shows pitches PK that differ in the two axis directions, X and Y.

PYの矩形領域の行列から成る位相板9とその集光面(
ξ工、ξ工)の集光状態を示す。双峰状のパワースペク
トル主要部のサイズは、 となる。
A phase plate 9 consisting of a matrix of rectangular regions of PY and its light condensing surface (
ξ-k, ξ-k) shows the condensing state. The size of the main part of the bimodal power spectrum is as follows.

一例としてPX=2571m、λ=4881m(ナノメ
ートル) 、 7=1401ff肩とすれば、Dx−2
朋 である。
As an example, if PX = 2571m, λ = 4881m (nanometers), and 7 = 1401ff shoulder, then Dx-2
It's my friend.

また、PY=100μm  、λ=asanm、f=1
4o朋とすれば、 Dアー0.6朋 を得る。
Also, PY=100μm, λ=asanm, f=1
If we assume 4o tomo, we will get D a of 0.6 tomo.

第3図は、本発明の第2の実施例として用いられる位相
板9Nの一次元モデル構成を示す。この構成例では、位
相板9aのサンプル領域が交互に2種類の幅LTn、L
s(ただしLm>Ls )に設定され、サンプル領域間
のピッチはPKなっている。
FIG. 3 shows a one-dimensional model configuration of a phase plate 9N used as a second embodiment of the present invention. In this configuration example, the sample areas of the phase plate 9a alternately have two widths LTn and L.
s (where Lm>Ls), and the pitch between sample areas is PK.

そして上記2種類の幅Lm、Ls(L、n)Ls)のサ
ンプル領域に各々主系列の位相レベル(φ2n)および
副系列の位相レベル(φ2n−N )  が割当てられ
る02次元モデルへの拡張は、−次元の拡散板を単に両
者が直交するように重ね合わせればよい。即ち、それぞ
れの拡散板の振幅透過率分布を’(り ” (Y)とす
れば、直交配置した拡散板は、 g(X、Y) ”g(X)” (Y)        
  ”””(7)となる。実際に ・・・・・・(8) ここで、ピッチP及び変調度J″i、 である。主系列(φ2n)における隣接位相項間の位相
差φ −φ   ば、−の等確率で丁πもしくは21 
 2n±22 丁π(−−T)の値をとる。副系列を含めた全体では、
隣接位相項間の位相差φ2n−φ2n++ は7の等確
率で−もしくは−(=−−y )の値をとる。
The extension to the 02-dimensional model in which the main sequence phase level (φ2n) and the sub-sequence phase level (φ2n-N) are assigned to the sample regions of the above two types of widths Lm and Ls(L,n)Ls) is as follows: , -dimensional diffusion plates may be simply superimposed so that they are perpendicular to each other. That is, if the amplitude transmittance distribution of each diffuser plate is '(ri '' (Y)), then the orthogonally arranged diffuser plates are g(X, Y) ``g(X)'' (Y)
""" (7) Actually... (8) Here, the pitch P and the modulation degree J"i, are. If the phase difference between adjacent phase terms in the main sequence (φ2n) is φ −φ, then with equal probability - π or 21
It takes the value of 2n±22 π(--T). Overall, including subseries,
The phase difference φ2n−φ2n++ between adjacent phase terms takes a value of − or −(=−−y) with equal probability of 7.

上記第8式で表わされるような透過率をもつ拡散を通し
て集光面(ξ工、ξ1)で得られるビーム強度は、上記
集光面に生じる透過率分布のパワースペクトルから計算
で求められ、次式のようになる。
The beam intensity obtained at the focusing surface (ξ, ξ1) through diffusion with a transmittance as expressed by the above equation 8 is calculated from the power spectrum of the transmittance distribution generated on the focusing surface, and is calculated as follows. It becomes like the expression.

ξ +li(1−M)slnc  ((1−M)P−)λf
 。
ξ +li(1-M)slnc ((1-M)P-)λf
.

h −π)cos(aπKPξ) ξ X(1+J2sinc2((1+M)P   )λf h (−π):)cos(aπKPξ) ξ X(1−M)slnc ((1−M)P −)λf h=。h −π) cos(aπKPξ) ξ X(1+J2sinc2((1+M)P)λf h (-π):)cos(aπKPξ) ξ X(1-M)slnc ((1-M)P-)λf h=.

2h+1 (□2π)〕 ε M2sinc2(MP−月)     ・・−−−−(
11)λf ここで、主系列の位相項間、及び主系列と副系列の位相
項間の位相差、φ2n−φ2nカ。及びφ2 n + 
+−φ2n±、±7か7J (J=0.1.2−・・・
・・6)になる確率をPr(J、α)、また副系列の位
相項間の位相差φ2n+、−φ2n+1±aについては
Pr’ (J 、α〕として、以下の漸化式で表わすこ
とができる。
2h+1 (□2π)] ε M2sinc2 (MP-Month) ・・・−−−(
11) λf Here, the phase difference between the phase terms of the main sequence and between the phase terms of the main sequence and the sub-sequence, φ2n - φ2n force. and φ2 n +
+-φ2n±, ±7 or 7J (J=0.1.2-...
...6) is expressed as Pr (J, α), and the phase difference between the phase terms of the subsequences φ2n+, -φ2n+1±a is expressed as Pr' (J, α], using the following recurrence formula. I can do it.

Pr(2h、2K)”7(Pr(2h−2,2に−2)
+Pr(2h+2゜2に−2)、l        ・
・・・・・(12)Pr(2h+1.2に−1)=、(
Pr(2h 、2に−2)+Pr(2h+2゜2に−2
))      ・・・・・・(13)Pr’ (2h
、2x)=、(pr(2h −1,2に−1)+Pr(
2h+1゜2に−1))        ・・・・・・
(14)ただし、hはS/2−1以下の自然数であり、
また初期条件は、 である。
Pr(2h, 2K)"7(Pr(2h-2,-2 to 2)
+Pr (2h+2°2 to -2), l ・
...(12)Pr(-1 to 2h+1.2)=,(
Pr (2h, -2 to 2) + Pr (2h + 2゜ -2 to 2)
)) ......(13)Pr' (2h
, 2x)=, (pr(2h −1, 2 to −1)+Pr(
2h+1゜2-1)) ・・・・・・
(14) However, h is a natural number less than or equal to S/2-1,
Also, the initial condition is .

任意の変調度を持つ幅変調拡散板の・(ワースベクトル
は、第11式を用いて求めることができ、M=O,0,
5,1,○の場合について第6図に設計例を示す。横軸
はP==25μm  、λ=assnm。
The ・(Worth vector of a width modulation diffuser plate with an arbitrary modulation degree can be obtained using Equation 11, and M=O, 0,
Figure 6 shows design examples for cases 5, 1, and ○. The horizontal axis is P==25 μm, λ=assnm.

、7’ = 70 朋として双峰状ビーム主要部約1.
○πだの幅にエネルギが集束することが明らかになる。
, 7' = 70 The main part of the bimodal beam is about 1.
It becomes clear that energy is focused within a width of ○π.

変調度Mは被照射材料、レーザ波長、走査速度等によっ
て最適値を任意に選ぶことができる。
The optimum value of the modulation degree M can be arbitrarily selected depending on the material to be irradiated, the laser wavelength, the scanning speed, etc.

発明の詳細 な説明したように、本発明によれば、通常最も広範に用
いられる安定したモードのレーザ全コリメート光学系を
介して所定位相系列を配置した拡散板に照射した後集光
し、基板上の非結晶層或は多結晶層上を双峰状光強度分
布のビームで走査日<るようにしたため、被照射面に2
次元的に制御□? された温度分We効率的、安定的に実現することができ
、大面積にわたって良質の結晶を再現性よく成長させる
ことが出来る。
As described in detail, according to the present invention, a laser in a stable mode, which is usually used most widely, is irradiated onto a diffuser plate arranged with a predetermined phase sequence through a fully collimated optical system, and then focused on a substrate. Since the upper amorphous layer or polycrystalline layer is scanned with a beam with a bimodal light intensity distribution, there are two
Dimensionally controlled □? It is possible to efficiently and stably achieve the desired temperature, and it is possible to grow high-quality crystals over a large area with good reproducibility.

また、本発明におけるコリメート元学系装置では、拡散
板を照射するビーム自体がガウス分布に近い強度分布(
truncated gaussian  )でよく、
ビーム集光面での光強度分布への影響が実用上問題にな
らない程度として用い得るので、光量の有効利用の点で
効果的である。
In addition, in the collimated element system device of the present invention, the beam itself that irradiates the diffuser plate has an intensity distribution close to a Gaussian distribution (
truncated Gaussian)
Since it can be used as long as the influence on the light intensity distribution on the beam condensing surface is not a practical problem, it is effective in terms of effective use of the amount of light.

更に、本発明では、レーザ発振モードによるビームの強
度分布全直接利用せず、拡散板の位相分布(のパワース
ペクトル)に基づく強度分布によって被照射面の温度制
御を行なうから出力レベル以外のレーザ発振の安定性に
依存することなく長時間の再現性を確実に保持すること
が出来る。また、被照射面の2軸方向に対するビーム強
度は独立に設計・制御することができる。
Furthermore, in the present invention, the temperature of the irradiated surface is controlled by the intensity distribution based on the phase distribution (power spectrum) of the diffuser plate, without directly using the entire intensity distribution of the beam due to the laser oscillation mode. It is possible to reliably maintain long-term reproducibility without depending on the stability of Furthermore, the beam intensity in two axial directions of the irradiated surface can be designed and controlled independently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるレーザ走査光学系装置
の構成を示すものでaはそのレーザ走査光学系装置の構
成図、bはこのレーザ走査光学系装置に用いられる位相
板の位相系列の構成図、第2図は第1図に示されたレー
ザ走査光学系装置におけるレーザビームの集光状態を拡
大図、第3図は上記レーザ走査光学系装置に用いられる
位相板の位相系列の他の構成図、第4図は各種変調度に
よって双峰状に整形されたレーザビームの強度分布図、
第6図はビーム形状制御によるレーザ走査光学系装置の
従来例を示すものでail当該光学系装置の概略図、b
は当該光学系装置でレーザビーム照射2行なった場合の
集光面における温度Tの空間分布図、第6図はレーザビ
ーム照射による結晶生成と、当該結晶生成部におけるレ
ーザビーム強度分布の関係を示すもので、2.、bは結
晶の生成状態の分布図、C,’はレーザビーム強度の分
布状態図である。 1・・・・・・レーザビーム、2・・・・・・絶縁基板
、3・−・・・・ポリシリコン層、4・・・・・・複屈
折板、6・・・・・・レーザ発撮器(光源)、6・・・
・・・ビームエキスパンダ、7・・・・・・コリメート
レンズ、8・・・・・・集光レンズ、9・・・・・・位
相板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−ト 第 3 図 第 4 図 ’E、  (4r+mン 第5図(CL) 第 6 図 (α) (C) (d)
FIG. 1 shows the configuration of a laser scanning optical system device according to an embodiment of the present invention, where a is a configuration diagram of the laser scanning optical system device, and b is a phase series of a phase plate used in this laser scanning optical system device. Fig. 2 is an enlarged view of the focusing state of the laser beam in the laser scanning optical system shown in Fig. 1, and Fig. 3 shows the phase series of the phase plate used in the laser scanning optical system shown in Fig. 1. Another configuration diagram, Figure 4, is an intensity distribution diagram of a laser beam shaped into a bimodal shape by various modulation degrees,
Fig. 6 shows a conventional example of a laser scanning optical system device using beam shape control;
is a spatial distribution diagram of the temperature T on the condensing surface when two laser beam irradiations are performed with the optical system device, and Fig. 6 shows the relationship between crystal formation by laser beam irradiation and the laser beam intensity distribution in the crystal generation part. 2. , b is a distribution diagram of the crystal formation state, and C,' is a distribution diagram of the laser beam intensity. DESCRIPTION OF SYMBOLS 1... Laser beam, 2... Insulating substrate, 3... Polysilicon layer, 4... Birefringent plate, 6... Laser Emitter (light source), 6...
... Beam expander, 7 ... Collimating lens, 8 ... Condensing lens, 9 ... Phase plate. Name of agent: Patent attorney Toshio Nakao and 1 other person Figure 3 Figure 4 'E, (4r+m Figure 5 (CL) Figure 6 (α) (C) (d)

Claims (3)

【特許請求の範囲】[Claims] (1)レーザ光源と、コリメート光学系と、所定の位相
系列{φi、j}に対応する凹凸領域で構成される位相
板と、レーザビームの集光を行なう手段とによりレーザ
走査光学系を構成し、前記位相板は少なくとも{O、2
/3π、4/3π}の位相系列をほぼ等しい生起確率で
含む擬似ランダム系列に設定され、この位相板により前
記レーザ光源から発した光束の強度を双峰状に整形して
絶縁体基板上に堆積された非結晶層或は多結晶層上を走
査することを特徴とするレーザ走査光学系装置。
(1) A laser scanning optical system is configured by a laser light source, a collimating optical system, a phase plate composed of an uneven region corresponding to a predetermined phase sequence {φi, j}, and a means for focusing the laser beam. and the phase plate has at least {O,2
/3π, 4/3π} phase series with approximately equal probability of occurrence, and this phase plate shapes the intensity of the light beam emitted from the laser light source into a bimodal shape and transfers it onto the insulating substrate. A laser scanning optical system device characterized in that it scans over a deposited amorphous layer or polycrystalline layer.
(2)位相板は矩形の凹凸領域で行列状に構成され、レ
ーザ走査方向に対する上記矩形領域列のピッチP_Yが
上記走査方向に垂直な方向のピッチP_Xに対してP_
X<P_Yに設定されていることを特徴とする特許請求
の範囲第1項記載のレーザ走査光学系装置。
(2) The phase plate is composed of rectangular uneven regions arranged in a matrix, and the pitch P_Y of the rectangular region array with respect to the laser scanning direction is P_ with respect to the pitch P_X in the direction perpendicular to the scanning direction.
2. The laser scanning optical system device according to claim 1, wherein X<P_Y.
(3)位相板が、一方向に2種類の幅L_m、L_s(
L_m>L_s)のサンプル領域を交互に配置した構成
で、ピッチ P=(L_m+L_s)/2 および、変調度 M=(L_m−L_s)/2P の幅変調複合型擬似ランダム位相系列を用いており、振
幅透過率g(x)が、 ▲数式、化学式、表等があります▼ の主系列(φ_2n)が(O、2/3π、4/3π、副
系列{φ_2n+1}が{π/3、π、5/3π}をほ
ぼ等しい生起確率で含む特許請求の範囲第1項記載のレ
ーザ走査光学系装置。
(3) The phase plate has two widths L_m and L_s(
It has a configuration in which sample regions of L_m>L_s) are arranged alternately, and a width modulation composite type pseudo-random phase sequence with a pitch P = (L_m + L_s)/2 and a modulation degree M = (L_m - L_s)/2P is used. The main sequence (φ_2n) of the amplitude transmittance g(x) is (O, 2/3π, 4/3π, and the subsequence {φ_2n+1} is {π/3, π, 5/3π} with substantially equal probability of occurrence. The laser scanning optical system device according to claim 1.
JP22224785A 1985-10-04 1985-10-04 Laser scanning optical system device Granted JPS6281710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22224785A JPS6281710A (en) 1985-10-04 1985-10-04 Laser scanning optical system device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22224785A JPS6281710A (en) 1985-10-04 1985-10-04 Laser scanning optical system device

Publications (2)

Publication Number Publication Date
JPS6281710A true JPS6281710A (en) 1987-04-15
JPH0365012B2 JPH0365012B2 (en) 1991-10-09

Family

ID=16779405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22224785A Granted JPS6281710A (en) 1985-10-04 1985-10-04 Laser scanning optical system device

Country Status (1)

Country Link
JP (1) JPS6281710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248041A (en) * 1989-03-20 1990-10-03 Mitsubishi Electric Corp Laser beam irradiation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248041A (en) * 1989-03-20 1990-10-03 Mitsubishi Electric Corp Laser beam irradiation device

Also Published As

Publication number Publication date
JPH0365012B2 (en) 1991-10-09

Similar Documents

Publication Publication Date Title
JP3293136B2 (en) Laser processing apparatus and laser processing method
US7542186B2 (en) 3-D holographic recording method and 3-D holographic recording system
JPS6281709A (en) Manufacture of semiconductor device
JPH10270379A (en) Method and device for laser irradiation
JP2001236002A (en) Method and device for manufacture of hologram
US5122223A (en) Graphoepitaxy using energy beams
JP2005101530A (en) Forming method for polycrystalline silicon layer, and switching device using the same
TW200541078A (en) Crystallization apparatus, crystallization method, device, optical modulation element, and display apparatus
JPS6281710A (en) Laser scanning optical system device
JPS62160712A (en) Manufacture of semiconductor device
JP4131752B2 (en) Method for manufacturing polycrystalline semiconductor film
JP4657774B2 (en) Light irradiation apparatus, crystallization apparatus, crystallization method, semiconductor device, and light modulation element
JP2002263876A (en) Equipment and method for laser machining
JP2007288115A (en) Fabrication method for semiconductor device
JPH06140323A (en) Method of crystallizing semiconductor film
JP2002196347A (en) Liquid crystal panel and method for producing liquid crystal panel
JPS5958821A (en) Manufacture of semiconductor single crystal film
JPS58222521A (en) Forming method for semiconductor film
JPH06140324A (en) Method of crystallizing semiconductor film
JPS58105579A (en) Surface processing method
JPS6170714A (en) Recrystallizing method of silicon film
JPS6247115A (en) Manufacture of semiconductor device
JPH0158649B2 (en)
JPS59114815A (en) Manufacture of semiconductor crystal film
JPH04271115A (en) Manufacture of semiconductor