JPS59114815A - Manufacture of semiconductor crystal film - Google Patents
Manufacture of semiconductor crystal filmInfo
- Publication number
- JPS59114815A JPS59114815A JP57224732A JP22473282A JPS59114815A JP S59114815 A JPS59114815 A JP S59114815A JP 57224732 A JP57224732 A JP 57224732A JP 22473282 A JP22473282 A JP 22473282A JP S59114815 A JPS59114815 A JP S59114815A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- polycrystalline silicon
- laser
- silicon film
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02683—Continuous wave laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02678—Beam shaping, e.g. using a mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02691—Scanning of a beam
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、基板上の多結晶Si膜にレーザ・ビームを照
射して、多結晶Si膜を結晶化(いわゆる゛単結晶化)
させる半導体結晶膜の製造方法に関する。[Detailed Description of the Invention] Industrial Application Field The present invention irradiates a polycrystalline Si film on a substrate with a laser beam to crystallize the polycrystalline Si film (so-called "single crystallization").
The present invention relates to a method for manufacturing a semiconductor crystal film.
背景技術とその問題点
シリコンの結晶薄膜を作り、この結晶薄膜を用いてシリ
コン半導体装置を製作することが行われて〜・る。この
ため、現在、絶縁基板上にシリコンの結晶薄膜を形成し
たいわゆる80 I (Sil 1conon In5
ulator)の開発が進められており、その製造方法
として、例えばAr 、 CO2レーザによる結晶化法
、電子ビームによる結晶化法、カーボン・ヒータによる
結晶化法がある。Ar、CO2レーザによる結晶化法及
び電子ビームによる結晶化法は、第1図の斜視図及び第
2図の断面図に示すように、ガラスまたはシリコン結晶
からなる基板(1)の上に絶縁層としての8102層(
2)を形成し、更にその上に多結晶シリコン膜(3)を
設げ、この多結晶シリコン膜(3)の表面にレーザ、ま
たは電子ビームBを照射し且つ走査することによって、
基板(1)を比較的低温に加熱しながら多結晶シリコン
膜(3)を結晶化させるものである。また、カーボン・
ヒータによる結晶化法は、第3図の斜視図及び第4図の
断面図に示すように、石英またはシリコン基板(5)の
よkS102層(6)、多結晶シリコン膜C力、8i0
2層(6)、813N4層(8)を順次被着し、基[(
5)の下に平板状のカーボン・ヒータ顛を配し、またこ
の基板(5)の上には棒状のカーボン・ヒータ(11)
を配して、基板(5)を高温に加熱しながらカーボン・
ヒータ(tl)を移動して多結晶シリコン膜(力を結晶
化させるものである。BACKGROUND TECHNOLOGY AND PROBLEMS A silicon crystal thin film is made and a silicon semiconductor device is manufactured using this crystal thin film. For this reason, at present, so-called 80I (Sil 1conon In5
ulator) is being developed, and its manufacturing methods include, for example, a crystallization method using an Ar or CO2 laser, a crystallization method using an electron beam, and a crystallization method using a carbon heater. In the crystallization method using an Ar or CO2 laser and the crystallization method using an electron beam, an insulating layer is formed on a substrate (1) made of glass or silicon crystal, as shown in the perspective view of Fig. 1 and the cross-sectional view of Fig. 2. 8102 layer as (
2), further provide a polycrystalline silicon film (3) thereon, and irradiate and scan the surface of this polycrystalline silicon film (3) with a laser or an electron beam B.
The polycrystalline silicon film (3) is crystallized while heating the substrate (1) to a relatively low temperature. Also, carbon
In the crystallization method using a heater, as shown in the perspective view of FIG. 3 and the cross-sectional view of FIG.
2 layers (6) and 813N4 layers (8) were deposited in sequence, and the base [(
A flat carbon heater frame is arranged below the substrate (5), and a rod-shaped carbon heater (11) is placed on top of this substrate (5).
and heat the substrate (5) to a high temperature while heating the carbon.
The heater (tl) is moved to crystallize the polycrystalline silicon film (force).
本発明は、上記3種類の半導体結晶膜の製造方法のうち
、レーザ。ビームの使用に係るものであるが、従来のレ
ーザ・ビーム法によって得られた結晶膜は、10μ×数
μ以下の微結晶の集合体であり、それ以上に大きな結晶
をもつ半導体結晶膜を製造することが困難であった。The present invention relates to a laser method among the above three types of semiconductor crystal film manufacturing methods. Regarding the use of a beam, the crystal film obtained by the conventional laser beam method is an aggregate of microcrystals of 10μ x several micrometers or less, and it is not possible to manufacture semiconductor crystal films with larger crystals. It was difficult to do so.
発明の目的
本発明は、上述の点に鑑み、従来のレーザ・ビーム法に
よる場合よりも大きな結晶を形成することができる、レ
ーザ・ビームを使用した半導体結晶膜の製造方法を提供
するものである。Purpose of the Invention In view of the above-mentioned points, the present invention provides a method for manufacturing a semiconductor crystal film using a laser beam, which can form a larger crystal than in the conventional laser beam method. .
発明の概要
本発明は、基板上の多結晶シリコン膜にレーザ・ビーム
を照射して多結晶シリコン膜を結晶化させる半導体結晶
膜の製造方法において、レーザ・ビームを2つに分割し
、且つこの2つのレーザ・ビームを一部重ならせて双峰
性エネルギー密度分布を形成するレーザ・ビームとした
ことを特徴とする半導体結晶膜の製造方法である。Summary of the Invention The present invention provides a method for manufacturing a semiconductor crystal film in which a polycrystalline silicon film on a substrate is irradiated with a laser beam to crystallize the polycrystalline silicon film. This is a method for manufacturing a semiconductor crystal film, characterized in that two laser beams are partially overlapped to form a laser beam that forms a bimodal energy density distribution.
このようにして半導体結晶膜を製造することにより、従
来のレーザ・ビームを使用する方法と比較して、大きく
結晶化された半導体結晶膜を製造することが可能になる
。By manufacturing a semiconductor crystal film in this manner, it is possible to manufacture a semiconductor crystal film that is highly crystallized compared to a conventional method using a laser beam.
実施例 第5〜8図を参照して、本発明の詳細な説明する。Example The present invention will be described in detail with reference to FIGS. 5 to 8.
本発明においては、第5図に示すように1つのレーザ9
ビームを分割して2つのレーザ拳ビームIh及ヒB2を
作り、この2つのレーザゆビームB1及びB2のスポッ
ト(ハ)及び同を互に一部重ね合せて双峰性エネルギー
密度分布(至)を有するレーザ・ビームB3を形成する
。即ち、各レーザ・ビームBl、B2は夫々ガウス型エ
ネルギー密度分布をもつが、2つのレーザ・ビームB1
.Bzを一部重ね合せることによって双峰性エネルギー
181度分布(至)となる。In the present invention, one laser 9 is used as shown in FIG.
The beam is split to create two laser beams Ih and B2, and the spots (c) of these two laser beams B1 and B2 are partially overlapped with each other to create a bimodal energy density distribution (to). A laser beam B3 is formed having the following values. That is, each of the laser beams Bl and B2 has a Gaussian energy density distribution, but the two laser beams B1 and B2 each have a Gaussian energy density distribution.
.. By partially overlapping Bz, a bimodal energy distribution of 181 degrees (total) is obtained.
そして、このレーザ・ビームB3を第6図に示すように
1例えば前述したようなガラスまたはシリコン結晶の基
板(1)上に5i02層(2)を介して被着した多結晶
シリコン膜(3)(第6図参照)上に照射し、矢印M方
向に走査してこの多結晶シリコン膜(3)を単結晶化す
る。なお、この場合においても基板(1)は比較的低温
に加熱する。第6図1は結晶化状態を示すものであり、
レーザ・ビームB3を多結晶シリコン膜(3)上に走査
させると、多結晶シリコン膜(3)は、その双峰性エネ
ルギーの密度分布に従って結晶化され、多結晶シリコン
領域 C311と単結晶シリコン領域(321が形成さ
れる。即ち、このレーザ・ビームB3が走査された多結
晶シリコン膜(3)は、熱エネルギーによって溶融され
るが、レーザ・ビームB3が走査された後の多結晶シリ
コン膜(3)は、双峰性エネルギーに対応して、溶融域
G31と再結晶領域との境界線041も双峰状となり、
この双峰状溶融域(至)の中央から後方部分には単結晶
シリコン領域(34が形成され、そして双峰状溶融域關
の頂点を境とした再結晶領域の両側部分には多結晶シリ
コン領域Gυが形成される。なお、このレーザ・ビーム
B3の走査の方式は、レーザ・ビームB3自体を走査さ
せてもよく、また逆にレーザ・・ビームB3自体は定位
置に照射させたままで、多結晶シリコン膜(3)を形成
した基板(1)の方を走査させるようにしてもよい。Then, as shown in FIG. 6, this laser beam B3 is applied to a polycrystalline silicon film (3) deposited on a glass or silicon crystal substrate (1) as described above via a 5i02 layer (2). (See FIG. 6) The polycrystalline silicon film (3) is made into a single crystal by irradiating it onto the surface and scanning in the direction of arrow M. Note that in this case as well, the substrate (1) is heated to a relatively low temperature. FIG. 6 1 shows the crystallization state,
When the laser beam B3 is scanned over the polycrystalline silicon film (3), the polycrystalline silicon film (3) is crystallized according to its bimodal energy density distribution, forming a polycrystalline silicon region C311 and a single crystal silicon region. (321 is formed. That is, the polycrystalline silicon film (3) scanned by this laser beam B3 is melted by thermal energy, but the polycrystalline silicon film (3) scanned by the laser beam B3 is 3) corresponds to the bimodal energy, and the boundary line 041 between the melting region G31 and the recrystallization region also becomes bimodal,
A single crystal silicon region (34) is formed from the center to the rear of this bimodal melting region, and polycrystalline silicon is formed on both sides of the recrystallized region bordering the apex of the bimodal melting region. A region Gυ is formed.The scanning method of this laser beam B3 may be such that the laser beam B3 itself is scanned, or conversely, the laser beam B3 itself may remain irradiated at a fixed position. The substrate (1) on which the polycrystalline silicon film (3) is formed may be scanned.
次に、1つのレーザ・ビームを2つのレーザ・ビームに
分割するレーザ装置の具体例について述べる。第7図は
その一実施例である。第7図の場合は、例えばArのレ
ーザ・ビームを発生させるレーザ・ビーム発生器(2υ
と、これからのレーザ・ビームBoを一旦収束させる凸
レンズのと、レーザ・ビームBoを実質的に2分割する
レンズ系■とを有して成る。レンズ系■は、凸レンズ(
至)と、これから若干離れた位置に設けた一部にプリズ
ムを形成した平版状透明板のによって形成する。即ち、
この透明版のは、側面からみてレンズ元軸Cを境に下側
の入射面と射出面を平行面にした平行平板部(23a)
と、上側のレーザ・ビームBOの入射面を角度0で斜状
に切欠したプリズム(23b)とを有して構成する。こ
のレーザ装置によれば、し−ザ・ビーム発生器(2I)
から照射された1本のレーザ・ビームBoは、凸レンズ
ににて一旦収束させられて後、拡散してレンズ系例の平
板状透明扱いを透過し、さらに凸レンズ(ロ)を透過し
て収束する。Next, a specific example of a laser device that splits one laser beam into two laser beams will be described. FIG. 7 shows an example of this. In the case of Fig. 7, a laser beam generator (2υ
, a convex lens that once converges the upcoming laser beam Bo, and a lens system (2) that substantially divides the laser beam Bo into two. Lens system ■ is a convex lens (
) and a flat plate-like transparent plate with a prism formed on a part located at a position slightly away from the plate. That is,
This transparent version has a parallel flat plate part (23a) with the lower entrance surface and exit surface parallel to each other with the lens original axis C as the boundary.
and a prism (23b) whose upper incident surface of the laser beam BO is obliquely cut out at an angle of 0. According to this laser device, laser beam generator (2I)
A single laser beam Bo irradiated from is once converged by a convex lens, then diffused and transmitted through a flat transparent lens system example, and then transmitted through a convex lens (b) and converged. .
このとき、レンズ系例において平板状透明板ムの下側の
平行平板部(23a)を透過したレーザ・ビームBoの
一部はレンズ光軸C上の点PIに焦点を結び、上側のプ
リズム(23b)を透過したレーザ・ビームBOの他部
は点Plより離れた点P2に焦点を結ぶ。この結果レー
ザ・ビーム発生器(21)からの1本のレーザ・ビーム
BOが2つのレーザ・ビームBl、B2に分割される。At this time, in the example lens system, a part of the laser beam Bo transmitted through the parallel flat plate part (23a) on the lower side of the flat transparent plate is focused on a point PI on the optical axis C of the lens, and the laser beam Bo on the upper side prism ( The other part of the laser beam BO that has passed through 23b) focuses on a point P2 that is distant from the point Pl. As a result, one laser beam BO from the laser beam generator (21) is split into two laser beams B1 and B2.
従って、この2つのレーザ中ビームBl、B2のスボツ
) (26) 、 (27)の一部分が相貫なるように
両レーザビームB1とB2間の距離2を選ぶことによっ
て全体のレーザ・ビームBaの照射エネルギーの密度分
布、即ち双峰性エネルギー密度分布を自由に変えること
ができる。Therefore, by selecting the distance 2 between the two laser beams B1 and B2 so that the parts of these two laser beams Bl and B2 (26) and (27) are consistent, the entire laser beam Ba can be adjusted. The density distribution of irradiation energy, that is, the bimodal energy density distribution, can be changed freely.
第7図に於て、最初の凸レンズ(2りの焦点(ハ)と第
2の凸レンズC4との距離なa1透明板(ハ)のブリズ
A (23b)での傾斜角をθ、第2の凸レンズ(2)
の焦点距離をf1透明板恭の屈折率をnとすると、両レ
ーザ・ビームB1及びB2の中心間の距離思は、次式で
表わされる。In Fig. 7, the distance between the first convex lens (two focal points (c) and the second convex lens C4, the angle of inclination of the transparent plate (c) at bris A (23b), θ, the second Convex lens (2)
When the focal length of f1 and the refractive index of the transparent plate are n, the distance between the centers of both laser beams B1 and B2 is expressed by the following equation.
f
忍″=i (rl−1)(丁ゴ→θ (θ(lの場合)
従って、この式から距R2を自由に設定できる。f Shinobu''=i (rl-1) (Dingo → θ (θ (in case of l)
Therefore, the distance R2 can be freely set from this formula.
第8図は、本発明で適用されるレーザ装置の第2の実施
例である。このレーザ装置は、レーザ・ビーム発生器(
21)とこれよりのレーザ・ビームBOの径を例えば5
0倍に拡大するエキスパンダ(ハ)と側面から見て上側
と同様に上半分がプリズムとなるように斜状に切欠され
た平板状透明板間と縦割りにされた凸レンズの半分G3
7)を接合したレンズ系(至)とから成る。FIG. 8 shows a second embodiment of a laser device to which the present invention is applied. This laser device consists of a laser beam generator (
21) and the diameter of the laser beam BO from this, for example, 5
An expander that magnifies 0 times (C), a flat transparent plate cut out diagonally so that the upper half becomes a prism when viewed from the side, and a half G3 of a convex lens divided vertically.
7) and a lens system (to) cemented together.
とのレーザ装置ではレーザ・ビーム発生器(21)から
のレーザ・ビーム13oがエキスパンダ命によってその
径が拡大されて平行光線でレンズ系例に入射され、透明
&(ト)の下半分を透過するレーザ・ビームBOの一部
がレンズ光軸C上の点P1に焦点な結び、上半分のプリ
ズムを透過するレーザ・ビームBoの他部が点P1より
離れた点P2に焦点を結ぶ。この結果、レーザ・ビーム
Boは、2つのレーザ・ビームB1及びB2に分割され
、そのレーザスボツ) (26)、(27)を一部分型
ならせるように距離2を選ぶことにより、上側と同様に
双峰性エネルギー密度分布を有するレーザ・ビームBs
カ得られる。In the laser device, the diameter of the laser beam 13o from the laser beam generator (21) is expanded by the expander command, and it enters the lens system as a parallel ray, passing through the lower half of the transparent & (g). A part of the laser beam BO is focused at a point P1 on the optical axis C of the lens, and the other part of the laser beam Bo, which passes through the upper half of the prism, is focused at a point P2 distant from the point P1. As a result, the laser beam Bo is split into two laser beams B1 and B2, and by choosing the distance 2 so that the laser beams (26) and (27) are partially shaped, the laser beams Bo are split into two laser beams B1 and B2, and the laser beams (26) and (27) are split into two parts, similar to the upper part. Laser beam Bs with peaked energy density distribution
You can get it.
第8図において、両レーザ・ビームBl及びB2の中心
間の距離尼は、透明板(36)のプリズムでの傾側角を
θ′、透明板(至)の屈折率をn′、半分の凸レンズ(
至)の焦点距離をf′とすると、次式で表わされる。In Fig. 8, the distance between the centers of both laser beams Bl and B2 is determined by θ', the angle of inclination of the transparent plate (36) at the prism, n', the refractive index of the transparent plate (to), and the half convex lens. (
Let f' be the focal length of
Q吻(n’−1) f’θ′ (θ′(1の場合)こ
れらのレーザ装置で得られたレーザ・ビームBl、B2
を多結晶シリコン膜(3)上に走査させることにより、
上述のように、双峰状に形成−されたエネルギー密度分
布に従って、被走査領域に第6図に示すような単結晶シ
リコン領域c3秒及び再結晶した多結晶シリコン領域0
1)を生成させることができる。Q proboscis (n'-1) f'θ' (when θ' (1)) Laser beams Bl, B2 obtained with these laser devices
By scanning on the polycrystalline silicon film (3),
As described above, according to the bimodal energy density distribution, the single crystal silicon region c3 and the recrystallized polycrystal silicon region 0 are formed in the scanned region as shown in FIG.
1) can be generated.
上述の本発明に係る2分割レーザ・ビームBl。The two-split laser beam Bl according to the invention described above.
B2からの合成レーザ・ビームB3を多結晶シリコン膜
(31K照射すること忙より得られた単結晶シリコン曽
は、数10μ×数100μ以上の大きさのものである。The single crystal silicon film obtained by irradiating a polycrystalline silicon film (31K) with the combined laser beam B3 from B2 has a size of several tens of microns by several hundred microns or more.
また、本発明によるレーザ・ビームBl。Also, a laser beam Bl according to the invention.
B2を使用すれば、2つのレーザ・スポット(イ)、@
の部分約1なりによって形成される双峰性エネルギーの
密度分布を自由に変えることができるので、最良の条件
の下でシリコン結晶膜を作製することが容易である。If you use B2, two laser spots (a), @
Since the density distribution of the bimodal energy formed by the portion of about 1 can be freely changed, it is easy to produce a silicon crystal film under the best conditions.
発明の効果
上述した本発明の半導体結晶膜の層迄方法によれば、1
つのレーザ・ビームから2分割した各レーザ・・ビーム
を一部が重なるようにして双峰性エネルギー密度分布を
有するレーザ・ビームを利用することにより、従来の製
造方法による場合と比較して、大きく結晶化された良好
なシリコン膜を作製することができる。しかも、2つの
レーザ・ビームの重なり等の条件を制御することにより
その双峰性エネルギー密度分布を自由に変えられるので
、最良の製造条件を設定するためのレーザ・ビームの制
御が容易となる。Effects of the Invention According to the method for forming layers of a semiconductor crystal film of the present invention described above, 1.
By using a laser beam that has a bimodal energy density distribution by splitting each laser beam into two and partially overlapping each other, it is possible to significantly increase the A good crystallized silicon film can be produced. Furthermore, by controlling conditions such as the overlap of the two laser beams, the bimodal energy density distribution can be freely changed, making it easy to control the laser beams to set the best manufacturing conditions.
第1図〜第4図は従来の製造方法の説明に供する斜視図
及び断面図、第5図は本発明の半導体結晶膜の製造方法
に適用するレーザ・ビーム及びその双峰性エネルギー密
度分布を示す図、第6図はレーザ・ビーム照射後の結晶
化状態を示す模式図、第7図及び第8図は本発明の説明
に供する実施例の概略図である。
(1)は基鈑、(3)は多結晶シリコン膜、(26)
、 (2力はレーザ・スポット、(ハ)は双峰性エネル
ギー密度分布、r3υは多結晶シリコン領域、c12は
単結晶シリコン領域、Boはレーザ・ビーム、Bl、B
2は夫々分割後のレーザ・ビームである。
第1囚 第2図
第3図
第6図
手続補正書 (1)
昭和58年2月25日
1、事件の表示
昭和57年特許願第224732 号2、発明の名称
半導体結晶膜の製造方法3、補正をする者
事件との関係 特許出願人 (3)
住所 東京部品用区北品用6丁目7番35号6、補正に
より増加する発明の数
明細書中、第7頁20行「凸し・ンズ(2)との距離を
81」を[凸レンズ(財)及び平板状透明板(ハ)の中
心までの距離を夫々a及びxsJと補正する。
同、第8頁5.6行
と補正する。
同、第8頁11行及び17行「エキスノくンダ09」以
上1 to 4 are perspective views and cross-sectional views for explaining the conventional manufacturing method, and FIG. 5 shows a laser beam and its bimodal energy density distribution applied to the method of manufacturing a semiconductor crystal film of the present invention. FIG. 6 is a schematic diagram showing a crystallized state after laser beam irradiation, and FIGS. 7 and 8 are schematic diagrams of an embodiment for explaining the present invention. (1) is the base plate, (3) is the polycrystalline silicon film, (26)
, (2 force is the laser spot, (c) is the bimodal energy density distribution, r3υ is the polycrystalline silicon region, c12 is the single crystal silicon region, Bo is the laser beam, Bl, B
2 are laser beams after the respective divisions. 1st Prisoner Figure 2 Figure 6 Figure 6 Procedural Amendment (1) February 25, 1981 1. Indication of the case 1988 Patent Application No. 224732 2. Title of the invention Method for manufacturing semiconductor crystal film 3 , Relationship with the case of the person making the amendment Patent applicant (3)
Address: 6-7-35, Kitashinyo, Tokyo Parts Co., Ltd. Number of inventions increased due to amendment In the specification, page 7, line 20, "distance to convex lens (2) is 81" [convex lens ( Correct the distances to the centers of the flat transparent plate (c) and the center of the flat transparent plate (c) to a and xsJ, respectively. Same, page 8, line 5.6. Same, page 8, lines 11 and 17 “Exno Kunda 09” and above
Claims (1)
して該多結晶シリコン膜を結晶化させる半導体結晶膜の
製造方法において、上記レーザ・ビームを2つに分割し
、且つ該2つのレーザ・ビームを一部重ならせて双峰性
エネルギー密度分布を形成するレーザ・ビームとしたこ
とを特徴とする半導体結晶膜の製造方法。In a method of manufacturing a semiconductor crystal film in which a polycrystalline silicon film on a substrate is irradiated with a laser beam to crystallize the polycrystalline silicon film, the laser beam is divided into two, and the two laser beams are A method for manufacturing a semiconductor crystal film, characterized in that the laser beams are partially overlapped to form a bimodal energy density distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57224732A JPS59114815A (en) | 1982-12-21 | 1982-12-21 | Manufacture of semiconductor crystal film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57224732A JPS59114815A (en) | 1982-12-21 | 1982-12-21 | Manufacture of semiconductor crystal film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59114815A true JPS59114815A (en) | 1984-07-03 |
Family
ID=16818371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57224732A Pending JPS59114815A (en) | 1982-12-21 | 1982-12-21 | Manufacture of semiconductor crystal film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59114815A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6266617A (en) * | 1985-09-19 | 1987-03-26 | Agency Of Ind Science & Technol | Laser light emitting device |
JPH01246819A (en) * | 1988-03-28 | 1989-10-02 | Tokyo Electron Ltd | Beam annealing |
-
1982
- 1982-12-21 JP JP57224732A patent/JPS59114815A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6266617A (en) * | 1985-09-19 | 1987-03-26 | Agency Of Ind Science & Technol | Laser light emitting device |
JPH01246819A (en) * | 1988-03-28 | 1989-10-02 | Tokyo Electron Ltd | Beam annealing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6717105B1 (en) | Laser annealing optical system and laser annealing apparatus using the same | |
US6437284B1 (en) | Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same | |
US4330363A (en) | Thermal gradient control for enhanced laser induced crystallization of predefined semiconductor areas | |
JP2009534820A (en) | Large substrate laser annealing apparatus and large substrate laser annealing method | |
JPS60257511A (en) | Heat treatment and apparatus therefor | |
US7476475B2 (en) | Mask for sequential lateral solidification and method of performing sequential lateral solidification using the same | |
JPS59114815A (en) | Manufacture of semiconductor crystal film | |
JPS62160781A (en) | Laser light projecting apparatus | |
JPS5925215A (en) | Manufacture of semiconductor device | |
JPS6319809A (en) | Laserr beam annealing equipment | |
JPH04142030A (en) | Manufacture of semiconductor film | |
JPS6199323A (en) | Apparatus for manufacturing monocrystalline thin film | |
WO2021145176A1 (en) | Laser annealing device and laser annealing method | |
JPH03289128A (en) | Manufacture of semiconductor thin film crystal layer | |
JPS6124226A (en) | Laser annealing device | |
JPH06120139A (en) | Semiconductor material manufacturing equipment | |
JPS6233416A (en) | Device for manufacturing optical fiber single crystal | |
JPS6185816A (en) | Manufacture of single crystal thin film | |
JP2555650B2 (en) | Laser annealing method | |
JPS61160846A (en) | Producer of light spot having cross-section form with large aspect ratio | |
JPH03138925A (en) | Semiconductor-film crystallizing method | |
JPS60145987A (en) | Manufacture of thin film single crystal | |
JPH06140323A (en) | Method of crystallizing semiconductor film | |
JPH02238618A (en) | Laser annealing apparatus | |
JPH0754798B2 (en) | Beam annealing method |