JPH0754798B2 - Beam annealing method - Google Patents

Beam annealing method

Info

Publication number
JPH0754798B2
JPH0754798B2 JP3628886A JP3628886A JPH0754798B2 JP H0754798 B2 JPH0754798 B2 JP H0754798B2 JP 3628886 A JP3628886 A JP 3628886A JP 3628886 A JP3628886 A JP 3628886A JP H0754798 B2 JPH0754798 B2 JP H0754798B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
shape
width
crescent
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3628886A
Other languages
Japanese (ja)
Other versions
JPS62194613A (en
Inventor
充彦 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3628886A priority Critical patent/JPH0754798B2/en
Publication of JPS62194613A publication Critical patent/JPS62194613A/en
Publication of JPH0754798B2 publication Critical patent/JPH0754798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 絶縁物上の半導体層にエネルギー線ビームを掃引照射し
て半導体層を溶融再結晶化するビームアニールにおい
て、 照射領域が帯状になるエネルギー線ビームを用い、断面
形状が放物線状をなす凹面反射面の反射を介して半導体
層を照射することにより、 半導体層の溶融形状を三日月形にする際にビームエネル
ギーの有効利用を可能にしたものである。
DETAILED DESCRIPTION [Outline] In beam annealing in which a semiconductor layer on an insulator is swept and irradiated with an energy ray beam to melt and recrystallize the semiconductor layer, an irradiation area having a band shape is used and a cross section is used. By irradiating the semiconductor layer through the reflection of the concave reflecting surface having a parabolic shape, the beam energy can be effectively utilized when the melting shape of the semiconductor layer is made into a crescent shape.

〔産業上の利用分野〕[Industrial application field]

本発明は、絶縁物上の半導体層にエネルギー線ビームを
掃引照射して半導体層を溶融再結晶化するビームアニー
ル方法に係り、特に、照射ビームの形成方法に関す。
The present invention relates to a beam annealing method for sweeping and irradiating a semiconductor layer on an insulator with an energy beam to melt and recrystallize the semiconductor layer, and more particularly to a method for forming an irradiation beam.

上記ビームアニールは、SOI(Silicon On Insulator)
技術における絶縁物上のシリコン単結晶形成に利用され
る。
The beam anneal is SOI (Silicon On Insulator)
It is used to form silicon single crystals on insulators in the technology.

SOI技術は、基体表面の絶縁物上にシリコン単結晶を形
成し、この単結晶に素子を形成する技術で、素子の分離
性向上や3次元回路形成による高集積化を可能にするも
のとして期待されている。
The SOI technology is a technology that forms a silicon single crystal on an insulator on the surface of a substrate, and forms an element on this single crystal. It is expected to improve the isolation of the element and enable high integration by forming a three-dimensional circuit. Has been done.

従ってこのビームアニールに対しては、大きな単結晶の
形成を可能にすることが望まれる。
Therefore, for this beam annealing, it is desired to be able to form a large single crystal.

〔従来の技術〕[Conventional technology]

第3図は本発明に係るビームアニール方法の説明斜視図
である。
FIG. 3 is an explanatory perspective view of the beam annealing method according to the present invention.

即ち、基体表面の絶縁物1上に堆積された多結晶シリコ
ンなどの半導体層2に対し、例えばアルゴンレーザ光な
どのエネルギー線ビーム3を掃引照射する。図では半導
体層2を矢印のように移動することによって掃引してい
る。
That is, the semiconductor layer 2 such as polycrystalline silicon deposited on the insulator 1 on the surface of the substrate is swept and irradiated with an energy beam 3 such as argon laser light. In the figure, the semiconductor layer 2 is swept by moving as shown by the arrow.

さすれば、半導体層2の照射部4が加熱されて溶融し、
ビーム3の移動によりその溶融領域が凝固する際に再結
晶化して帯状の再結晶化領域5が形成される。そしてこ
の再形成化の際の単結晶化が利用されている。
Then, the irradiation part 4 of the semiconductor layer 2 is heated and melted,
When the melted region is solidified by the movement of the beam 3, it is recrystallized to form a band-shaped recrystallized region 5. And the single crystallization at the time of this reforming is utilized.

ビーム3が通常のガウス分布である場合、第4図の説明
図における図(a)に示す如く照射部4の溶融形状6は
円形になる。このような場合には、再結晶化領域5の幅
の両側から再結晶化が始まり内側に向けて結晶が成長す
る。その際、再結晶化開始点が再結晶化領域5の両縁に
位置して溶融されない半導体層2即ち多結晶シリコンに
接しているため、掃引中における成長の核は一つになり
得なくなる。このため単結晶は、掃引方向に繋がらず小
さなものになる。
When the beam 3 has a normal Gaussian distribution, the fusion shape 6 of the irradiation part 4 is circular as shown in FIG. 4 (a) in the explanatory view of FIG. In such a case, recrystallization starts from both sides of the width of the recrystallized region 5, and crystals grow inward. At this time, since the recrystallization start points are located at both edges of the recrystallization region 5 and are in contact with the unmelted semiconductor layer 2, that is, the polycrystalline silicon, the growth nuclei cannot be united during the sweep. Therefore, the single crystal becomes small without being connected in the sweep direction.

単結晶を大きくする方策として、溶融形状6を第4図
(b)に示す如く三日月形にすれば良いことが知られて
いる。ここで三日月形とは、円弧状、放射線状ないし
“く”の字状などを含んだ形状を指す。
It is known that as a measure for enlarging a single crystal, the melting shape 6 may be a crescent shape as shown in FIG. 4 (b). Here, the crescent shape refers to a shape including an arc shape, a radial shape, or a V-shape.

それは、再結晶化領域5の中央部が再結晶化開始点とな
るので掃引中における成長の核が一つになり、成長は両
外側に向かうと共に掃引方向に繋がる。そして幅が再結
晶化領域5の幅に近く且つ掃引方向に長い単結晶領域7
が得られるからである。
Since the central portion of the recrystallized region 5 serves as the recrystallization start point, the number of nuclei for growth during the sweep becomes one, and the growth goes to both outsides and is connected in the sweep direction. The single crystal region 7 having a width close to that of the recrystallized region 5 and long in the sweep direction
Is obtained.

このような三日月形をなす溶融形状6を実現するのに従
来は、例えば第5図に示す如く、三日月形透孔8を設け
たマスク9をビーム3の通路に介在させ、照射部4に達
する断面形状を三日月形に規制する方法が用いられてい
る。
In order to realize such a crescent-shaped melted shape 6, hitherto, for example, as shown in FIG. 5, a mask 9 provided with a crescent-shaped through hole 8 is interposed in the passage of the beam 3 and reaches the irradiation section 4. A method of limiting the cross-sectional shape to a crescent shape is used.

〔発明が解決しよとする問題点〕[Problems to be solved by the invention]

しかしながらマスク9を用いる上記従来の方法では、ビ
ーム3の透孔8を通過した分のみが照射部4に達するの
で、半導体層2の加熱に寄与するエネルギーは、ビーム
3のエネルギーに比して極めて小さく例えば数分の1な
いし10分の1程度になり、ビームエネルギーの利用効率
が極めて悪い。
However, in the above-described conventional method using the mask 9, only the portion of the beam 3 that has passed through the through hole 8 reaches the irradiation portion 4, so the energy that contributes to the heating of the semiconductor layer 2 is extremely higher than the energy of the beam 3. The size is small, for example, about one-tenth to one-tenth, and the utilization efficiency of beam energy is extremely poor.

このことは再結晶化領域5の幅に制約を与え、単結晶領
域7の幅の拡大を阻害している。
This imposes a restriction on the width of the recrystallized region 5 and hinders the expansion of the width of the single crystal region 7.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、複数領域が帯状になるエネルギー線ビー
ムを、断面形状が放物線状をなす凹面反射面にその正面
から該ビームの帯状長手方向を上記断面方向に合わせて
斜めに入射させ、該反射面からの反射ビームを溶融再結
晶化する半導体層に掃引照射する本発明のビームアニー
ル方法によって解決される。
The above-mentioned problem is that the energy ray beam having a plurality of regions in a strip shape is obliquely incident on the concave reflecting surface having a parabolic cross section from the front thereof so that the strip longitudinal direction of the beam is aligned with the cross section direction and the reflection is performed. This is solved by the beam annealing method of the present invention in which a semiconductor layer to be melted and recrystallized is swept and irradiated with a reflected beam from a surface.

〔作用〕[Action]

上記反射面の反射により、上記反射ビームは照射領域が
三日月状になり、然もそのエネルギーは反射面に入射す
る前のエネルギーと略同じになる。
Due to the reflection on the reflecting surface, the irradiation area of the reflected beam becomes a crescent shape, and the energy thereof is substantially the same as the energy before entering the reflecting surface.

従ってビームエネルギーの利用効率が従来に比して極め
て高くなり、再結晶化領域の幅を従来より大幅に拡大す
ることが可能になる。
Therefore, the utilization efficiency of the beam energy becomes extremely high as compared with the conventional one, and the width of the recrystallized region can be greatly expanded as compared with the conventional one.

そしてこれに伴い単結晶領域の幅も拡大される。Along with this, the width of the single crystal region is also expanded.

かくして、大きな幅の単結晶領域を形成することが可能
になる。
Thus, it becomes possible to form a single crystal region having a large width.

〔実施例〕〔Example〕

以下、本発明方法実施例の要部を示す第1図の斜視図お
よびその実施例に使用する凹面反射鏡を示す第2図の斜
視図を用い、実施例について説明する。
An embodiment will be described below with reference to the perspective view of FIG. 1 showing an essential part of the method of the present invention and the perspective view of FIG. 2 showing a concave reflecting mirror used in the embodiment.

第1図において、光源11から出射した断面形状がスポッ
ト状のレーザビーム3aが、矢印の揺動方向に振動する反
射鏡12で反射して帯状ビーム3bとなり、これが第2図に
示す凹面反射鏡20で反射して断面形状が三日月形をなし
幅方向のみが集束する三日月ビーム3cになる。そして三
日月ビーム3cは、上記集束点13を過ぎて幅が所定の大き
さになったところで半導体層2の照射部4を照射する。
In FIG. 1, a laser beam 3a having a spot-shaped cross section emitted from a light source 11 is reflected by a reflecting mirror 12 that oscillates in the swinging direction of an arrow to form a belt-shaped beam 3b, which is a concave reflecting mirror shown in FIG. It is reflected by 20 and becomes a crescent beam 3c having a crescent-shaped cross section and focusing only in the width direction. Then, the crescent beam 3c irradiates the irradiation section 4 of the semiconductor layer 2 when the width reaches a predetermined size after passing through the focusing point 13.

凹面反射鏡20は、断面形状が放物線状をなす帯状の凹面
反射面21を具えている。従って帯状ビーム3bが、凹面反
射面21にその正面から帯状長手方向を上記断面方向に合
わせて斜めに入射すると、反射したビームは、断面形状
が三日月形をなし幅方向のみが集束点13に集束する三日
月ビーム3cになる。
The concave reflecting mirror 20 has a band-shaped concave reflecting surface 21 having a parabolic cross section. Therefore, when the belt-shaped beam 3b is obliquely incident on the concave reflecting surface 21 from the front thereof with the belt-shaped longitudinal direction aligned with the above-mentioned cross-sectional direction, the reflected beam has a crescent-shaped cross-section and only the width direction is focused on the focusing point 13. It becomes crescent beam 3c.

以上のことから、照射部4における溶融形状は、第4図
(b)の6に示す如き三日月形になり、然も照射部4に
照射するビーム3cのエネルギーは、光源11から出射した
ビーム3aのエネルギーと略等しくなる。そしてこのこと
は、再結晶化領域5の幅を従来より大幅に拡大すること
を可能にし、これに伴い極めて大きな幅の単結晶領域7
を形成することが出来る。
From the above, the melting shape in the irradiation unit 4 becomes a crescent shape as shown by 6 in FIG. 4 (b), and the energy of the beam 3c irradiating the irradiation unit 4 is still the beam 3a emitted from the light source 11. Is almost equal to the energy of. This enables the width of the recrystallized region 5 to be greatly expanded as compared with the conventional one, and accordingly, the single crystal region 7 having an extremely large width.
Can be formed.

本願発明者の確認によれば、従来方法で再結晶化領域5
の幅が10μm程度しか得られなかった光源11と幅が約20
mmの凹面反射鏡20を用い、再結晶化領域5の幅を約50μ
mにして、幅が約40μmで掃引方向に長い単結晶領域7
を得ることが出来た。
According to the confirmation of the inventor of the present application, the recrystallized region 5 is formed by the conventional method.
The width of the light source 11 was about 10 μm and the width was about 20
Use a concave reflecting mirror 20 with a width of about 50μ for the recrystallized region 5.
Single crystal region 7 with a width of about 40 μm and a long length in the sweep direction.
I was able to get

なお上記実施例では、三日月ビーム3cが集束点13を過ぎ
た後に照射部4を照射したが、集束点13の手前で照射し
ても良い。
In the above-described embodiment, the irradiation unit 4 irradiates the crescent moon beam 3c after passing the focus point 13, but it may be irradiated before the focus point 13.

また、凹面反射鏡20の代わりに凹面反射面21と同様な反
射面を具えるプリズムを用いても良いことは、本発明の
原理から容易に類推可能である。
Further, it can be easily analogized from the principle of the present invention that a prism having a reflecting surface similar to the concave reflecting surface 21 may be used instead of the concave reflecting mirror 20.

更に、凹面反射鏡20と照射部4との間にレンズ系を挿入
して溶融形状の大きさを調整しても良い。
Further, a lens system may be inserted between the concave reflecting mirror 20 and the irradiation unit 4 to adjust the size of the fused shape.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の構成によれば、絶縁物上の
半導体層にエネルギー線ビームを掃引照射して半導体層
を溶融再結晶化するビームアニールにおいて、半導体層
の溶融形状を三日月形にする際にビームエネルギーの有
効利用を可能にして、単結晶領域幅の大幅拡大を可能に
させる効果がある。
As described above, according to the configuration of the present invention, in the beam annealing in which the semiconductor layer on the insulator is swept and irradiated with the energy beam to melt and recrystallize the semiconductor layer, the melting shape of the semiconductor layer is a crescent shape. At this time, there is an effect that the beam energy can be effectively used and the width of the single crystal region can be greatly expanded.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法実施例の要部を示す斜視図、 第2図は実施例に使用する凹面反射鏡の斜視図、 第3図は本発明に係るビームアニール方法の説明斜視
図、 第4図はビームによる溶融形状の説明図(a)(b)、 第5図は溶融形状を三日月形にする従来方法例の説明斜
視図、 である。 図において、 1は絶縁物、は半導体層、 3、3a〜3dはビーム、4は照射部、 5は再結晶化領域、6は溶融形状、 7は単結晶領域、8は三日月形透孔、 9はマスク、11は光源、 12は反射鏡、13は集束点、 20は凹面反射鏡、21は凹面反射面、 である。
FIG. 1 is a perspective view showing an essential part of an embodiment of the method of the present invention, FIG. 2 is a perspective view of a concave reflecting mirror used in the embodiment, and FIG. 3 is an explanatory perspective view of a beam annealing method according to the present invention. FIG. 4 is an explanatory view (a) and (b) of a melting shape by a beam, and FIG. 5 is an explanatory perspective view of an example of a conventional method for forming the melting shape into a crescent shape. In the drawing, 1 is an insulator, is a semiconductor layer, 3 is a beam, 3a to 3d is a beam, 4 is an irradiation part, 5 is a recrystallized region, 6 is a molten shape, 7 is a single crystal region, 8 is a crescent-shaped through hole, Reference numeral 9 is a mask, 11 is a light source, 12 is a reflecting mirror, 13 is a focusing point, 20 is a concave reflecting mirror, and 21 is a concave reflecting surface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁物上の半導体層にエネルギー線ビーム
を掃引照射して該半導体層を溶融再結晶化するビームア
ニールを行うに際して、 照射領域が帯状になるエネルギー線ビームを、断面形状
が放物線状をなす凹面反射面にその正面から該ビームの
帯状長手方向を上記断面方向に合わせて斜めに入射さ
せ、該反射面からの反射ビームを上記半導体層に照射す
ることを特徴とするビームアニール方法。
1. When performing beam annealing for sweeping and irradiating a semiconductor layer on an insulator with an energy ray beam to melt and recrystallize the semiconductor layer, the irradiation area is a band-shaped energy ray beam having a parabolic cross section. A beam annealing method, characterized in that a strip-shaped longitudinal direction of the beam is obliquely incident on a concave reflecting surface having a shape such that the longitudinal direction of the beam is aligned with the cross-sectional direction, and the reflected beam from the reflecting surface is applied to the semiconductor layer. .
JP3628886A 1986-02-20 1986-02-20 Beam annealing method Expired - Fee Related JPH0754798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3628886A JPH0754798B2 (en) 1986-02-20 1986-02-20 Beam annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3628886A JPH0754798B2 (en) 1986-02-20 1986-02-20 Beam annealing method

Publications (2)

Publication Number Publication Date
JPS62194613A JPS62194613A (en) 1987-08-27
JPH0754798B2 true JPH0754798B2 (en) 1995-06-07

Family

ID=12465602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3628886A Expired - Fee Related JPH0754798B2 (en) 1986-02-20 1986-02-20 Beam annealing method

Country Status (1)

Country Link
JP (1) JPH0754798B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119971A (en) * 2002-09-04 2004-04-15 Sharp Corp Laser processing method and laser processing device

Also Published As

Publication number Publication date
JPS62194613A (en) 1987-08-27

Similar Documents

Publication Publication Date Title
US6437284B1 (en) Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same
JPS5821319A (en) Annealing by laser
JP3221149B2 (en) Heat treatment method for thin film
JPH0878328A (en) Method and equipment for melting and recrystallizing semiconductor layer
JPH0754798B2 (en) Beam annealing method
JPS62160781A (en) Laser light projecting apparatus
JPS6329819B2 (en)
JPH0531354A (en) Laser irradiation apparatus
JPH0754797B2 (en) Beam annealing method
JPH04142030A (en) Manufacture of semiconductor film
JPS6247114A (en) Manufacture of semiconductor single crystal film
JPS5958821A (en) Manufacture of semiconductor single crystal film
JPS5952831A (en) Beam annealing method
JPH0656834B2 (en) Single crystal thin film manufacturing equipment
JPS6185816A (en) Manufacture of single crystal thin film
JPH0355975B2 (en)
JPH0353771B2 (en)
JPS63233518A (en) Apparatus for forming single crystal thin film
JPS60261126A (en) Manufacture of single crystal semiconductor film
JPH01206616A (en) Method of recrystallization and laser irradiation device
JPH01103824A (en) Laser annealing process
JPH06291036A (en) Laser annealing
JPH02211617A (en) Manufacture of semiconductor device
JPH0722119B2 (en) Beam annealing method
JPS59195819A (en) Formation of semiconductor single crystal layer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees