JPS5952831A - Beam annealing method - Google Patents

Beam annealing method

Info

Publication number
JPS5952831A
JPS5952831A JP16346982A JP16346982A JPS5952831A JP S5952831 A JPS5952831 A JP S5952831A JP 16346982 A JP16346982 A JP 16346982A JP 16346982 A JP16346982 A JP 16346982A JP S5952831 A JPS5952831 A JP S5952831A
Authority
JP
Japan
Prior art keywords
beams
intensity distribution
substrate
annealing
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16346982A
Other languages
Japanese (ja)
Other versions
JPH0352214B2 (en
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16346982A priority Critical patent/JPS5952831A/en
Publication of JPS5952831A publication Critical patent/JPS5952831A/en
Publication of JPH0352214B2 publication Critical patent/JPH0352214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To increase speed, and to obtain arbitrary shape and intensity distribution by overlapping a plurality of beams emitted from a plurality of beams generating means on a substrate through a total reflection mirror forming a paraboloid and irradiating the beams in an arcuate shape. CONSTITUTION:Laser beams 5 from a plurality of lasers 4 are irradiated to a parablolidal mirror 6 so as to be overlapped at every half, the reflected beams 7 are focussed on a polysilicon film 3, an arcuate image, beam size thereof is 10mu in the X direction 7a and 2mm. in the Y direction 7b, is formed, and the substrate 1 is scanned at 5cm/sec in the projecting direction, thus growing 1cm single crystalline width in the rear section of a recessed section. The intensity distribution 8 of laser beams takes a trapezoid along an arc. Accordingly, a large number of energy beams are radiated simultaneously in multiple-beam annealing and overlapped by a reflecting mirror, thus arbitrarily obtaining beam shape and intensity distribution.

Description

【発明の詳細な説明】 (a)  発明の技術分野 光線、例えばレーザ光を用い基板上に形成された絶縁膜
上の多結晶シリコン層を単結晶化する光線アニールに係
り、特に高速処理に有利なアニール処理に関する。
Detailed Description of the Invention (a) Technical Field of the Invention This invention relates to light annealing for monocrystallizing a polycrystalline silicon layer on an insulating film formed on a substrate using a light beam, such as a laser beam, and is particularly advantageous for high-speed processing. Regarding the annealing process.

(bl  技術の背景 将来の三次元集積回路の基礎として非単結晶質絶縁膜に
単結晶を成長させる所謂5OI(Sil 1conon
 In5ulation)技術が注目されており、電気
特性番こ優れた多結晶シリコン(Poly−Cryst
alSilicon:ポリシリコン)を単結晶化して能
動素子を形成させる方法が実用化されている。
(bl Technology background) The so-called 5OI (Sil 1 conon
Polycrystalline silicon (poly-crystalline silicon), which has excellent electrical properties, is attracting attention.
A method of forming an active element by single crystallizing alSilicon (polysilicon) has been put into practical use.

主として水素還元法又は熱分解法による気相成長法によ
って得られる多結晶シリコン(以下ポリシリコンと呼称
)は小さな単結晶が不規則に配列されているためアニー
ルにより規則性の単結晶に置換するが連続発振モードの
アルゴンイオンレーザ光を用いたスキャニング方式が一
般的に用いられている。
Polycrystalline silicon (hereinafter referred to as polysilicon), which is mainly obtained by vapor phase growth using hydrogen reduction or thermal decomposition, consists of small single crystals arranged irregularly, so they can be replaced with regular single crystals by annealing. A scanning method using continuous wave mode argon ion laser light is generally used.

(C)  従来技術と問題点 ポリシリコンの単結晶化にはC’1NAr+レーザ光の
スキャニングが最も適しているがレーザパワーが最高で
も20W程度でビーム寸法も10oμψにしぼる必要が
あり従って処理能力が低い。
(C) Conventional technology and problems Scanning with C'1NAr+ laser light is most suitable for single crystallization of polysilicon, but the maximum laser power is about 20W and the beam size needs to be reduced to 10oμψ, so the processing capacity is low. low.

一方、微細加工技術の進展に伴い集積度が増加するに従
いポリシリコン領域も増大する傾向にありアニール処理
の高速化が要請される。このためレーザ装置の大型化は
高価となるだけでなくパワー密度が高くなりポリシリコ
ン層を破壊し、熱工ネルギーにより基板にダメージを与
えることになる。均一なレーザアニールを行うためには
少くとも空間的なモードは単一モード(強度分布がガウ
ス型)かそれに近いモードであることが必要で更にこの
ような単一モードを光学系を通して平坦な強度分布に変
換する必要がある。
On the other hand, as the degree of integration increases with the progress of microfabrication technology, the polysilicon area also tends to increase, necessitating a faster annealing process. For this reason, increasing the size of the laser device not only increases the cost but also increases the power density, which destroys the polysilicon layer and damages the substrate due to thermal energy. In order to perform uniform laser annealing, at least the spatial mode must be a single mode (with a Gaussian intensity distribution) or a mode close to it. It is necessary to convert it to a distribution.

(d)  発明の目的 本発明は上記の点に鑑み、複数のレーザビームを同時に
集積回路基板上に重ねて照射し高速化を削り、且つ任意
の形状及び強度分布が得られる多光線アニールの提供を
目的とする。
(d) Purpose of the Invention In view of the above points, the present invention provides multi-beam annealing that simultaneously irradiates a plurality of laser beams onto an integrated circuit board in a superimposed manner to reduce speed and obtain an arbitrary shape and intensity distribution. With the goal.

(e)発明の構成 上記目的を達成するため本発明は集積回路基板上に形成
された絶縁膜上の非常結晶半導体層に光線を照射して単
結晶化する光線アニールにおいて、複数の光線発生手段
から出射する複数の光線を放物面をなす全反射ミラーを
介して前記基板上にオーバラップさせ円弧状に照射する
ことによって達せられる。
(e) Structure of the Invention In order to achieve the above object, the present invention provides a plurality of light beam generating means in light annealing in which a non-crystalline semiconductor layer on an insulating film formed on an integrated circuit board is irradiated with a light beam to form a single crystal. This is achieved by irradiating a plurality of light beams emitted from the substrate through a total reflection mirror having a parabolic surface in an overlapping arc shape onto the substrate.

(f+  発明の実施例 以下本発明の実施例を図面により詳述する。(f+ Example of invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は集積回路基板上に形成したポリシリコン層を示
す断面図である。基板]上にCVD法によりCVI) 
−S i O2膜又は高温加熱法により5102膜を形
成し、その絶縁膜2上にポリシリコン膜3を水素還元法
又は熱分解法による気相成長方法によって成膜させてポ
リシリコン領域を形成する。
FIG. 1 is a cross-sectional view showing a polysilicon layer formed on an integrated circuit substrate. CVI by CVD method on the substrate]
- A 5102 film is formed by a SiO2 film or a high temperature heating method, and a polysilicon film 3 is formed on the insulating film 2 by a hydrogen reduction method or a vapor phase growth method using a thermal decomposition method to form a polysilicon region. .

このポリシリコン領域を単結晶化するアニール処理を行
うものである。
An annealing process is performed to make this polysilicon region into a single crystal.

第2図は本発明の光線アニールを用いた一実施例を示す
構成図である。
FIG. 2 is a block diagram showing an embodiment using light beam annealing of the present invention.

実施例では出力20W、ビーム寸法201+IIIIψ
のC−WAγル−ザ4を10個整列性を持って等間隔に
配設し、レーザビーム5の放射進行方向に全反射型の放
物面ミラー6を設置する。
In the example, the output is 20W, and the beam size is 201+IIIψ.
Ten C-WAγ lasers 4 are arranged at equal intervals with good alignment, and a total reflection type parabolic mirror 6 is installed in the radiation traveling direction of the laser beam 5.

レーザ4からのレーザビーム5は放物面ミラー6にAづ
つオーバラップするよう照射しその反射光7を図のよう
にポリシリコン膜3上に焦点合せをし、ビーム寸法はX
方向7aに10μ、Y方向ノ アbに2III+11をなす円弧状のイl−ジを作り凸
方向に基板lを5””seeで走査するととlこよって
凹部後方に単結晶幅14が成長した。
The laser beam 5 from the laser 4 irradiates the parabolic mirror 6 so as to overlap by A, and the reflected light 7 is focused on the polysilicon film 3 as shown in the figure, and the beam size is X.
When an arcuate image of 10μ in the direction 7a and 2III+11 in the Y-direction nozzle b was created and the substrate 1 was scanned in the convex direction at 5''see, a single crystal width 14 was grown behind the concave portion.

レーザビームの強度分布8は図に示すように円弧に沿っ
て置屋となる。このように構成される多光線アニールに
おいて多数個のエネルギー線を同時に放射し反射鏡によ
りオーバラップさせることによりビーム型状及び強度分
布は任意に求められる利点がある。
The intensity distribution 8 of the laser beam is distributed along an arc as shown in the figure. In multi-beam annealing configured in this way, there is an advantage that the beam shape and intensity distribution can be determined arbitrarily by emitting a large number of energy rays simultaneously and overlapping them with a reflecting mirror.

即ちレーザの出力ビーム寸法及び反射鏡形状をアニール
試料に適する条件で選択組合せすることにより従来に比
して高速で良質の単結晶化が可能となる。
That is, by selectively combining the output beam size of the laser and the shape of the reflecting mirror under conditions suitable for the annealed sample, it becomes possible to produce a single crystal of high quality at a higher speed than in the past.

(g)  発明の効果 以上詳細に説明したように本発明の多光線アニールによ
り従来に比して処理能力は向上する高速性が得られ、し
かも任意のビーム形状、強度分布が得られ良質の単結晶
化が可能となる等優れた効果がある。
(g) Effects of the Invention As explained in detail above, the multi-beam annealing of the present invention improves processing capacity and high speed compared to the conventional method, and also provides high-quality single beams with arbitrary beam shapes and intensity distributions. It has excellent effects such as enabling crystallization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は集積回路基板上に形成したポリシリコン層を示
す断面図、第2図は本発明の多光線アニールを用いた一
実施例を示す構成図である。図中1・・・集積回路基板
、2  絶縁膜、3・・ポリシリコン膜、4.、、、、
CWAγル−ザ、5  ・レーザビーム、6・−・放物
面ミラー、7  反射光、8・・・・・強度分布。
FIG. 1 is a cross-sectional view showing a polysilicon layer formed on an integrated circuit substrate, and FIG. 2 is a configuration diagram showing an embodiment using multi-beam annealing of the present invention. In the figure, 1... integrated circuit board, 2 insulating film, 3... polysilicon film, 4. ,,,,
CWAγ laser, 5 - Laser beam, 6 - Parabolic mirror, 7 Reflected light, 8 - Intensity distribution.

Claims (1)

【特許請求の範囲】[Claims] 集積回路基板上に形成された絶縁膜上の非単結晶半導体
層に光線を照射して単結晶化する光線アニールにおいて
、複数の光線発生手段から出射する複数の光線を放物面
をなす全反射ミラーを介して前記基板上にオーバラップ
させ円弧状に照射することを特徴とする光線アニール方
法。
In light beam annealing, in which a non-single crystal semiconductor layer on an insulating film formed on an integrated circuit board is irradiated with a light beam to form a single crystal, a plurality of light beams emitted from a plurality of light beam generating means are totally reflected in a parabolic surface. A light annealing method characterized by irradiating the substrate in an overlapping arc shape through a mirror.
JP16346982A 1982-09-20 1982-09-20 Beam annealing method Granted JPS5952831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16346982A JPS5952831A (en) 1982-09-20 1982-09-20 Beam annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16346982A JPS5952831A (en) 1982-09-20 1982-09-20 Beam annealing method

Publications (2)

Publication Number Publication Date
JPS5952831A true JPS5952831A (en) 1984-03-27
JPH0352214B2 JPH0352214B2 (en) 1991-08-09

Family

ID=15774460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16346982A Granted JPS5952831A (en) 1982-09-20 1982-09-20 Beam annealing method

Country Status (1)

Country Link
JP (1) JPS5952831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282869A (en) * 1991-03-11 1992-10-07 G T C:Kk Manufacturing method of thin film semiconductor device and device for executing this
US7892952B2 (en) * 2001-10-30 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
WO2021145176A1 (en) * 2020-01-14 2021-07-22 株式会社ブイ・テクノロジー Laser annealing device and laser annealing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282869A (en) * 1991-03-11 1992-10-07 G T C:Kk Manufacturing method of thin film semiconductor device and device for executing this
US7892952B2 (en) * 2001-10-30 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
WO2021145176A1 (en) * 2020-01-14 2021-07-22 株式会社ブイ・テクノロジー Laser annealing device and laser annealing method

Also Published As

Publication number Publication date
JPH0352214B2 (en) 1991-08-09

Similar Documents

Publication Publication Date Title
US6437284B1 (en) Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same
US6717105B1 (en) Laser annealing optical system and laser annealing apparatus using the same
KR101017848B1 (en) Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
JP4748836B2 (en) Laser irradiation device
JP3033120B2 (en) Manufacturing method of semiconductor thin film
US4589951A (en) Method for annealing by a high energy beam to form a single-crystal film
US4707217A (en) Single crystal thin films
US4719183A (en) Forming single crystal silicon on insulator by irradiating a laser beam having dual peak energy distribution onto polysilicon on a dielectric substrate having steps
US7097709B2 (en) Laser annealing apparatus
JPH05315278A (en) Method and device for optical annealing
JP2002139697A (en) Laser optical system using plural laser beams, and laser annealing apparatus
JPS5952831A (en) Beam annealing method
JP3201395B2 (en) Semiconductor thin film manufacturing method
JP2002141300A (en) Laser annealing device
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
JP3537424B2 (en) Laser beam uniform irradiation optical system
JP3286537B2 (en) Laser beam synthesis method
JPH0652712B2 (en) Semiconductor device
JPH0793261B2 (en) Single crystal thin film forming equipment
JPH0325920A (en) Forming method of single crystal thin-film
JP3201382B2 (en) Semiconductor thin film manufacturing method
JP2005101333A (en) Process and equipment for laser annealing semiconductor film
JP2003289052A (en) Crystallizing method of semiconductor and laser irradiation device used for the same
JPH0353771B2 (en)
JPS60261126A (en) Manufacture of single crystal semiconductor film