JPS60261126A - Manufacture of single crystal semiconductor film - Google Patents

Manufacture of single crystal semiconductor film

Info

Publication number
JPS60261126A
JPS60261126A JP11712784A JP11712784A JPS60261126A JP S60261126 A JPS60261126 A JP S60261126A JP 11712784 A JP11712784 A JP 11712784A JP 11712784 A JP11712784 A JP 11712784A JP S60261126 A JPS60261126 A JP S60261126A
Authority
JP
Japan
Prior art keywords
wafer
semiconductor film
crystal semiconductor
reflecting mirror
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11712784A
Other languages
Japanese (ja)
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11712784A priority Critical patent/JPS60261126A/en
Publication of JPS60261126A publication Critical patent/JPS60261126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent strain in a wafer and the deformation of the wafer by fitting a plurality of cylindrical light sources in the same reflecting mirror, arranging one of the light sources at one focus of the reflecting mirror and a semiconductor substrate at the other focus of the reflecting mirror and thermally treating the semiconductor substrate. CONSTITUTION:A tungsten lamp 21 is set at one focus of an elliptical cylindrical reflecting mirror 23 and another tungsten lamp 22 in parallel with the lamp 21 while being separated from the lamp 21 by approximately 1cm. A wafer 24 is disposed at the other focus of the reflecting mirror 23 so that the surface of the wafer 24 is positioned. The wafer 24 is scanned in the direction of the arrow B in parallel at the speed of 1mm./sec. Accordingly, since a section preheated by beams from the lamp 22 is irradiated by beams from the lamp 21 and melted, strain in the wafer 24 and the deformation and breaking of the wafer 24 are prevented.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は単結晶半導体膜の製造方法、詳しくは非単結晶
半導体層例えば多結晶シリコン(ポリシリコン、アモル
ファス・シリコン)層のInに同一反射鏡によって複数
の線状光源の光を集光照射し再結晶化する方法に関する
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing a single crystal semiconductor film, and more particularly, to a method for manufacturing a single crystal semiconductor film, specifically, a method for manufacturing a single crystal semiconductor film, and more specifically, a method for manufacturing a single crystal semiconductor film, and more particularly, a method for manufacturing a single crystal semiconductor film, and more specifically, a method for manufacturing a single crystal semiconductor film, and more specifically, a method for manufacturing a single crystal semiconductor film, and more specifically, a method for manufacturing a single crystal semiconductor film, and more specifically, a method for manufacturing a single crystal semiconductor film, and more specifically, a method for manufacturing a single crystal semiconductor film. This invention relates to a method of recrystallizing light by condensing light from a plurality of linear light sources using a mirror.

(2)技術の背景 単結晶半導体基板の表面を覆う誘電体膜上に基板表面と
結晶面方位が整合した単結晶半導体膜を形成する方法が
知られている(特開昭56−80125号公報)。第2
図の斜視図を参照すると、単結晶シリコン基板(ウェハ
)1の表面に基板表面の一部を露呈する如く二酸化シリ
コン(5i02)膜2を形成し、5j02膜2上に前記
基板表面の露呈部と接触するよう非単結晶シリコン(ポ
リシリコンまたはアモルファス・シリコン)膜3を被着
し、断面線状の光ビーム4で非単結晶シリコン膜3を照
射加熱しながら矢印A方向に走査して熱処理を行い非単
結晶シリコン膜を単結晶化する。
(2) Background of the technology A method of forming a single crystal semiconductor film whose crystal plane orientation matches the substrate surface on a dielectric film covering the surface of a single crystal semiconductor substrate is known (Japanese Unexamined Patent Publication No. 56-80125). ). Second
Referring to the perspective view of the figure, a silicon dioxide (5i02) film 2 is formed on the surface of a single crystal silicon substrate (wafer) 1 so as to expose a part of the substrate surface, and the exposed part of the substrate surface is formed on the 5j02 film 2. A non-single-crystal silicon (polysilicon or amorphous silicon) film 3 is deposited so as to be in contact with the non-single-crystal silicon film 3, and heat treatment is performed by scanning in the direction of arrow A while irradiating and heating the non-single-crystal silicon film 3 with a light beam 4 having a linear cross-section. The non-single crystal silicon film is made into a single crystal.

(3)従来技術と問題点 上記した技術を現実に実施したところ、1本の棒状発熱
体からの光を集光して局所加熱すると、ウェハ面内に歪
を生じ、変形したり破壊されたりすることが確認された
。そこで棒状発熱体からの光がウェハ上で焦点を結ぶこ
とのないようにすると、現在入手可能なランプ、抵抗発
熱体では、し〜ザや電子ビームと異なり、エネルギー密
度が不足して再結晶化ができなくなる。
(3) Conventional technology and problems When the above-mentioned technology was actually implemented, when the light from a single rod-shaped heating element was focused and locally heated, distortion occurred within the wafer surface, resulting in deformation or destruction. It was confirmed that Therefore, if the light from the rod-shaped heating element is not focused on the wafer, the currently available lamps and resistance heating elements, unlike lasers and electron beams, lack energy density and recrystallize. become unable to do so.

そこで、棒状発熱体11.12を第3図の変形例に示さ
れる如くに配置することも考えられるが、これでは楕円
反射鏡13.1.4が互いに立体障害となり、両者を図
示の如く相接する状態で配置しても、発熱体とウェハ1
5とを近づけることができず、光の利用率が低下し、再
結晶化ができない問題がある。
Therefore, it is conceivable to arrange the rod-shaped heating elements 11.12 as shown in the modified example of FIG. Even if they are placed in contact with each other, the heating element and wafer 1
5 cannot be brought close to each other, the light utilization rate decreases, and there is a problem that recrystallization cannot be performed.

レー′ザ光を用いるときはウェハ上に照射されるスポッ
トの径が約100μmで、このスポットでウェハを照射
するため熱処理に時間がかかり、また走線したときの線
と線との間のいわば継目部分の再結晶化が良好に行われ
ないし、電子ビームについても同様の問題がある。とこ
ろが、棒状発熱体を用いるときはウェハ上を1度走査す
るだけであるので時間がかからず、前記したレーザ光に
よる照射の場合の継目部分の発生もなく、しかもコスト
の低下に有効であるので、前記した歪、変形などの問題
が発生しない棒状発熱体による熱処理方法が要望されて
いる。
When using a laser beam, the diameter of the spot irradiated onto the wafer is approximately 100 μm, and since the wafer is irradiated with this spot, it takes time to heat the wafer. Recrystallization of the joint portion is not performed well, and a similar problem exists with the electron beam. However, when using a rod-shaped heating element, the wafer is scanned only once, so it does not take much time, and there is no seam that occurs when irradiating with a laser beam as described above, and it is effective in reducing costs. Therefore, there is a need for a heat treatment method using a rod-shaped heating element that does not cause the above-mentioned problems such as distortion and deformation.

(4)発明の目的 本発明は上記従来の問題に鑑み、棒状発熱体を用いる非
単結晶半導体膜の再結晶化において、ウェハ内の歪、ウ
ェハの変形もしくは破壊の発生することのない単結晶半
導体膜の製造方法を提供することを目的とする。
(4) Purpose of the Invention In view of the above-mentioned conventional problems, the present invention provides a method for recrystallizing a non-single-crystalline semiconductor film using a rod-shaped heating element without causing distortion in the wafer, deformation of the wafer, or destruction of the single-crystalline semiconductor film. The present invention aims to provide a method for manufacturing a semiconductor film.

(5)発明の構成 そしてこの目的は本発明によれば、半導体基板の絶縁股
上に被着した非単結晶半導体膜を熱処理により再結晶化
する方法において、同一反射鏡内に複数の棒状光源を配
置し、その一つを前記反射鏡の一方の焦点に、また前記
半導体基板を該反射鏡の他方の焦点にくるよう配置し、
これら複数の光源によって前記基板を熱処理し前記非単
結晶半導体膜を単結晶半導体膜にすることを特徴とする
単結晶半導体膜の製造方法を提供することによって達成
される。
(5) Structure and object of the invention According to the present invention, in a method for recrystallizing a non-single crystal semiconductor film deposited on an insulating crotch of a semiconductor substrate by heat treatment, a plurality of rod-shaped light sources are provided in the same reflecting mirror. one of them is placed at one focal point of the reflecting mirror, and the semiconductor substrate is placed at the other focal point of the reflecting mirror,
This is achieved by providing a method for manufacturing a single crystal semiconductor film, characterized in that the substrate is heat-treated using a plurality of light sources to convert the non-single crystal semiconductor film into a single crystal semiconductor film.

(6)発明の実施例 以下本発明の実施例を図面によって詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明実施例は第1図(a)に正面図で示され、同図に
おいて、21と22は棒状タングステンランプ、23は
楕円筒反射鏡、24は半導体基板(ウェハ)を示す。タ
ングステンランプ21は楕円筒反射鏡の一つの焦点に、
また他方のタングステンランプ22はランプ21から約
1cm離して平行にセットし、楕円筒反射鏡のもう一つ
の焦点にウェハ24の表面が位置するよう配置し、双方
のランプによるウェハ24上でのパワー密度がそれぞれ
500L’ cm2.100L’cm2になるようにし
く第1図(bl)、ウェハ24を1 mm/ secで
平行に矢印B方向に走査する。
An embodiment of the present invention is shown in a front view in FIG. 1(a), in which 21 and 22 are rod-shaped tungsten lamps, 23 is an elliptical cylindrical reflecting mirror, and 24 is a semiconductor substrate (wafer). A tungsten lamp 21 is placed at one focal point of the elliptical cylinder reflector.
The other tungsten lamp 22 is set parallel to the lamp 21 at a distance of approximately 1 cm, and placed so that the surface of the wafer 24 is located at the other focal point of the elliptical cylinder reflector, so that the power from both lamps on the wafer 24 is As shown in FIG. 1 (bl), the wafer 24 is scanned in parallel in the direction of arrow B at 1 mm/sec so that the densities are 500 L' cm2 and 100 L' cm2, respectively.

なお、第1図(blにおいて、横軸はウェハ上の位置、
縦軸はウェハの温度を表し、曲線AとBはそれぞれラン
プ21と22による温度を示す。同図から理解される如
く、ランプ22からの光によって予熱された部分がラン
プ21からの光によって照射され溶融されるので、従来
例において経験されたウェハ内の歪、ウェハの変形、破
壊が防止された。事実、ウェハ上のSiO2膜上に被着
した0、5μmの膜厚のポリシリコン膜(図示せず)を
熱処理して満足すべき結果が得られた。
In addition, in FIG. 1 (bl), the horizontal axis represents the position on the wafer,
The vertical axis represents the temperature of the wafer, and curves A and B represent the temperature due to lamps 21 and 22, respectively. As can be understood from the figure, since the portion preheated by the light from the lamp 22 is irradiated and melted by the light from the lamp 21, distortion within the wafer, deformation of the wafer, and destruction experienced in the conventional example are prevented. It was done. In fact, satisfactory results were obtained by heat treating a 0.5 μm thick polysilicon film (not shown) deposited on a SiO2 film on a wafer.

(7)発明の効果 以上詳細に説明した如く本発明によれば、■2本の棒状
ランプで光を重畳させることにより再結晶化に必要な十
分なエネルギー密度を得ることができ、■片方のランプ
の焦線をずらすことによってウェハ上の温度勾配をなだ
らかにして歪の集中を防ぐことができ、■同一反射鏡内
に2本ランプを入れ装置をコンパクトにし、光を有効に
利用できる効果がある。なお上記の例ではタングステン
ランプを用いたが、本発明の適用範囲はその場合に限定
されるものでない。
(7) Effects of the Invention As explained in detail above, according to the present invention, ■ Sufficient energy density necessary for recrystallization can be obtained by superimposing light from two rod-shaped lamps, and ■ By shifting the focal line of the lamp, the temperature gradient on the wafer can be smoothed and distortion can be prevented from concentrating.■ By putting two lamps in the same reflecting mirror, the device can be made more compact and light can be used more effectively. be. Note that although a tungsten lamp was used in the above example, the scope of application of the present invention is not limited to that case.

【図面の簡単な説明】 第1図(alは本発明実施例の正面図、第1図(b)は
同図fa)のウェハの温度分布を示す線図、第2図は従
来例の斜視図、第3図は従来例の変形例の正面図である
。 2L 22−−一棒状タングステンランプ、23−楕円
筒反射鏡、24− ウエハ
[Brief Description of the Drawings] Fig. 1 (al is a front view of the embodiment of the present invention, Fig. 1(b) is a diagram showing the temperature distribution of the wafer), Fig. 2 is a perspective view of the conventional example. 3 are front views of a modification of the conventional example. 2L 22--Single bar tungsten lamp, 23-Elliptical cylindrical reflector, 24-Wafer

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の絶縁膜上に被着した非単結晶半導体膜を熱
処理により再結晶化する方法において、同一反射鏡内に
複数の棒状光源を配置し、その一つを前記反射鏡の一方
の焦点に、また前記半導体基板を該反射鏡の他方の焦点
にくるよう配置し、これら複数の光源によって前記基板
を熱処理し前記非単結晶半導体膜を単結晶半導体膜にす
ることを特徴とする単結晶半導体膜の製造方法。
In a method of recrystallizing a non-single crystal semiconductor film deposited on an insulating film of a semiconductor substrate by heat treatment, a plurality of rod-shaped light sources are arranged in the same reflecting mirror, and one of the rod-shaped light sources is set at the focal point of one of the reflecting mirrors. , and a single-crystal semiconductor characterized in that the semiconductor substrate is placed at the other focal point of the reflecting mirror, and the substrate is heat-treated by the plurality of light sources to convert the non-single-crystal semiconductor film into a single-crystal semiconductor film. Membrane manufacturing method.
JP11712784A 1984-06-07 1984-06-07 Manufacture of single crystal semiconductor film Pending JPS60261126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11712784A JPS60261126A (en) 1984-06-07 1984-06-07 Manufacture of single crystal semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11712784A JPS60261126A (en) 1984-06-07 1984-06-07 Manufacture of single crystal semiconductor film

Publications (1)

Publication Number Publication Date
JPS60261126A true JPS60261126A (en) 1985-12-24

Family

ID=14704104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11712784A Pending JPS60261126A (en) 1984-06-07 1984-06-07 Manufacture of single crystal semiconductor film

Country Status (1)

Country Link
JP (1) JPS60261126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512669A (en) * 2000-03-27 2004-04-22 ウルトラテク, ステッパー, インコーポレイテッド Apparatus having a line source of radiant energy for exposing a substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512669A (en) * 2000-03-27 2004-04-22 ウルトラテク, ステッパー, インコーポレイテッド Apparatus having a line source of radiant energy for exposing a substrate
JP2010123994A (en) * 2000-03-27 2010-06-03 Ultratech Stepper Inc Apparatus having line light source of radiant energy for exposing substrate

Similar Documents

Publication Publication Date Title
US4659422A (en) Process for producing monocrystalline layer on insulator
JP2004506335A (en) Laser system
US4719183A (en) Forming single crystal silicon on insulator by irradiating a laser beam having dual peak energy distribution onto polysilicon on a dielectric substrate having steps
JPS60261126A (en) Manufacture of single crystal semiconductor film
JPS61116820A (en) Annealing method for semiconductor
JPS62160781A (en) Laser light projecting apparatus
JPH0420254B2 (en)
JPS5833822A (en) Preparation of semiconductor substrate
JPS5952831A (en) Beam annealing method
JPS5984423A (en) Energy radiation equipment
JPS6247114A (en) Manufacture of semiconductor single crystal film
JPS63233518A (en) Apparatus for forming single crystal thin film
JPS6347256B2 (en)
JPS58169905A (en) Preparation of single crystal thin film
JPS62194613A (en) Beam annealing method
JPH0793260B2 (en) Single crystal thin film forming equipment
JPH0215616A (en) Laser recrystallization process
JPS60182720A (en) Manufacture of semiconductor device
JPS62216368A (en) Manufacture of semiconductor device
JPH03286519A (en) Manufacture of semiconductor device
JPS60161396A (en) Manufacture of silicon thin film
JPS6233416A (en) Device for manufacturing optical fiber single crystal
JPS62194611A (en) Beam-annealing method
JPH03114220A (en) Manufacture of semiconductor device
JPS59121913A (en) Manufacture of semiconductor device