JPS60182720A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60182720A
JPS60182720A JP59037921A JP3792184A JPS60182720A JP S60182720 A JPS60182720 A JP S60182720A JP 59037921 A JP59037921 A JP 59037921A JP 3792184 A JP3792184 A JP 3792184A JP S60182720 A JPS60182720 A JP S60182720A
Authority
JP
Japan
Prior art keywords
islands
island
silicon
polysilicon
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59037921A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59037921A priority Critical patent/JPS60182720A/en
Publication of JPS60182720A publication Critical patent/JPS60182720A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To avoid the lowering of yield on a change into a single crystal by each scanning nonsingular crystal Si islands by energy beams at a time when the Si islands coated with isolation cap layers, thermal conductivity thereof is lower than Si, and cap layers for absorbing energy beams are formed on an insulating layer and energy beams are projected to change the Si islands into single crystals. CONSTITUTION:Laser lights are projected in the direction of the arrows III, IV, V, and amorphous single crystal islands 14 coated with isolation cap layers, thermal conductivity thereof is lower than Si, are melted again in succession and changed into single crystals. Laser lights having spot diameters S, which are wider than the width (d) of the islands 14 but do not superpose on the end sections of adjacent islands 14, are used at that time, and a thermal effect on adjacent islands 14 is eliminated. Accordingly, adjacent islands 14 can be melted and cooled without effects from others, and a phenomenon in which the Si islands are not recrystallized can be avoided.

Description

【発明の詳細な説明】 +11発明の技術分野 本発明は半導体装置の製造方法、詳しくは傍熱型レーザ
加熱法により非単結晶シリコン(例えば多結晶シリコン
(ポリシリコン))の島(island)の配列(アレ
イ)をエネルギー線例えばレーザ光で走査し、非単結晶
シリコンを再結晶化し単結晶シリコンの島を作る方法に
関する。
Detailed Description of the Invention +11 Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to manufacturing an island of non-single crystal silicon (for example, polycrystalline silicon) using an indirect laser heating method. This invention relates to a method of recrystallizing non-single-crystal silicon by scanning an array with an energy beam, such as a laser beam, to form islands of single-crystal silicon.

(2)技術の背景 絶縁層上の多結晶または非晶質シリコンの島を単結晶化
して単結晶シリコンの島を作る技術がある。第1図の模
式的断面図を参照すると、1はシリコンウェハ、2ばそ
の上に形成された絶縁層、3は多結晶または非晶質シリ
コンの島、4は反射防止膜であり、多結晶または非晶質
シリコン島3の上方から矢印に示す如くにレーザ光を照
射し島3を溶融する。照射後に溶融した島3は冷却し再
結晶化し、fli結晶シリコンの島が作られる。
(2) Background of the technology There is a technology for forming single-crystal silicon islands by monocrystallizing polycrystalline or amorphous silicon islands on an insulating layer. Referring to the schematic cross-sectional view of FIG. 1, 1 is a silicon wafer, 2 is an insulating layer formed thereon, 3 is an island of polycrystalline or amorphous silicon, and 4 is an antireflection film, which is a polycrystalline silicon wafer. Alternatively, a laser beam is irradiated from above the amorphous silicon island 3 as shown by the arrow to melt the island 3. After irradiation, the melted islands 3 are cooled and recrystallized to form islands of fli crystal silicon.

上記した技術による単結晶化の歩留りは予測されたほど
良くないことが判明した。更に絶縁層2の下にあるもの
がシリコンウェハではなくて既に形成された素子である
場合、レーザ光に対して透明な反射防1hlKI4と絶
縁1i12とは共にレーザ光を通し、レーザ光が下方に
形成された素子に損傷を与えることがある。
It has been found that the yield of single crystallization by the technique described above is not as good as expected. Furthermore, if what is under the insulating layer 2 is not a silicon wafer but an already formed element, both the anti-reflective layer 1hlKI4 and the insulating layer 1i12, which are transparent to the laser beam, pass the laser beam, and the laser beam is directed downward. This may damage the formed device.

上記に加えて従来品3はとびとびに、すわち不規則配列
で形成されたために、レーザ光照射力< iltしい問
題もあった。
In addition to the above, since the conventional product 3 was formed at random intervals, that is, in an irregular arrangement, there was also the problem that the laser beam irradiation power was low.

かかる問題を解決すべく本出願人は傍熱型加熱法を開発
した。例えば第2図の断面図を参照すると、11はシリ
コンウェハ、12は1.0μmの1模厚の二酸化シリコ
ン(5i02)膜、13ば1000人の膜厚の窒化シリ
コン膜(SijNu膜、以下窒化膜という)、14は4
000人の)膜厚のポリシリコンの島、15は360人
の1挨厚の5i021模、16は800人の1模厚の窒
化膜、17は例えば2000人の1漠厚のポリシリコン
股を示し、ポリシリコン層17はシリコンキャップと、
またポリシリコンの島を覆う 5i021に’15と窒
化11史16とは分離キャップと呼称される。なお、ポ
リシリコンと窒化膜ば減圧化学気相成長法(CVD法)
で、また5i02膜は熱酸化法で形成する。一実施例に
おいて島14のl陥Wは20μmである。
In order to solve this problem, the applicant has developed an indirect heating method. For example, referring to the cross-sectional view of FIG. 2, 11 is a silicon wafer, 12 is a silicon dioxide (5i02) film with a thickness of 1.0 μm, and 13 is a silicon nitride film (SijNu film, hereinafter referred to as nitride film) with a thickness of 1000 μm. ), 14 is 4
15 is a 5i021 pattern with a thickness of 360 people, 16 is a nitride film with a thickness of 800 people, and 17 is a polysilicon crotch with a thickness of 2,000 people, for example. , the polysilicon layer 17 is a silicon cap,
Also, the cap that covers the polysilicon island is called an isolation cap. For polysilicon and nitride films, low pressure chemical vapor deposition (CVD) is used.
Also, the 5i02 film is formed by a thermal oxidation method. In one embodiment, the depression W of the island 14 is 20 μm.

シリコンウェハを450°Cに加熱したままに保って」
二記したキャップ■7にアルゴン・イオン・レーザ光(
パワー10W、スポット径(ここではメルト幅を示す)
100μm、走査速度2.54cm/ sec (1!
″/ sec ) )を照射すると、キャンプ17はレ
ーザ光を吸収して加熱され、その熱は分離キャップを経
由して島14に流れて島のポリシリコンを溶融し。
Keep the silicon wafer heated to 450°C.
Argon ion laser light (
Power 10W, spot diameter (melt width is shown here)
100μm, scanning speed 2.54cm/sec (1!
When the camp 17 absorbs the laser light and is heated, the heat flows to the island 14 via the isolation cap and melts the polysilicon on the island.

このポリシリコンが冷却して再結晶化すると単結晶シリ
コンの島が得られる。この技術は、島を直接レーザ光で
溶融するものではなく、シリコンキャップの加熱および
それから島への熱の流れによって島が溶1’iil!さ
れるので傍熱型加!;?ト法と呼称され(3)従来技術
と間1d点 従来レーザ光の照射は、第3図の平面図を参照すると(
なお第3図以下において第2図に示された部分と同じ部
分は同一符号を付して表示する)、行きには矢印Iの示
す方向に実線で示す幅を照射しつつ走査し、帰りには矢
印Hの示す方向に破線で示ず幅を照射するよう走査する
ことによって行われた。かくの如(従来技術においては
、レーザ光によって照射されない部分がないように走査
部分を一部市ならせていた。
When this polysilicon is cooled and recrystallized, islands of single crystal silicon are obtained. This technique does not involve directly melting the islands with laser light, but rather by heating the silicon cap and flowing heat from it to the islands. Because it is heated indirectly! ;? (3) Conventional laser beam irradiation at a point 1d between the conventional technique and the conventional laser beam irradiation method is called the
(In Figure 3 and below, the same parts as shown in Figure 2 are indicated with the same reference numerals.) On the way out, scan while irradiating the width shown by the solid line in the direction shown by arrow I, and on the way back. This was done by scanning in the direction indicated by arrow H so as to irradiate the width not shown by the broken line. As described above, in the prior art, a part of the scanned area was made flat so that there was no part that was not irradiated with the laser beam.

上記した方法を傍熱型レーザ加熱法に用いたところ、レ
ーザ光の照射が重なる部分の島は全く単結晶化されず、
ポリシリコンの島の単結晶化の歩留りが著しく低下する
ことが判明した。
When the above method was applied to the indirect laser heating method, the islands where the laser light irradiation overlapped were not turned into single crystals at all.
It has been found that the yield of single crystallization of polysilicon islands is significantly reduced.

(4)発明の目的 本発明は上記従来の問題に渇み、エネルギー線を用いる
傍メ;4)型加熱法による非f1χ結晶シリコン、例え
ばポリシリコンの島のアレイの小結晶化において、小結
晶化の歩留り低下の原因となるエネルギー線走査方向を
改善することを1」的とする。
(4) Purpose of the Invention The present invention addresses the above-mentioned conventional problems, and solves the above-mentioned problems in the prior art. The first objective is to improve the energy beam scanning direction, which is the cause of a decrease in yield.

(5)発明の構成 そしてこの目的は本発明によると、1.角縁j聞の上に
設りられ、シリコンより低熱伝導率の分離キャンプ層と
エネルギー線吸収用キャンプ層で覆われた非単結晶シリ
コンの島をエネルギー線照射により単結晶化する方法に
おいて、1つの非ヰ′(結晶ノリコンの島に対するエネ
ルギー線照射を1回のエネルギー線走査により終了させ
ることを特徴とする半導体装置の製造方法を提供するこ
とによって達成される。
(5) Structure and purpose of the invention According to the present invention, 1. In a method of single-crystallizing a non-single-crystal silicon island provided on a corner edge and covered with a separation camp layer having a lower thermal conductivity than silicon and an energy-beam absorbing camp layer by irradiating energy beams, 1 This is achieved by providing a method for manufacturing a semiconductor device characterized in that irradiation of energy beams onto islands of crystalline silicon is completed by one energy beam scan.

(0)発明の実施例 以下本発明の実施例を図面によって詳述する。(0) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

傍熟型加り!シカ法において、1度ポリシリコンの島を
レーザ光で照射すると、第4図に示される如くポリシリ
コンのキャップ17か溶面ニジて島の周辺gHへ流れ、
キヤ・ノブとしての期待された役割を果せなくなる、ず
なわら第4図の如くシリコンギャップの変形したものに
レーザ光を照射しても、シリコンキャンプの加メ;ハと
、シリコンキャップから分離キャップを経由する島への
メ;1)の流れに大なる変化か生し、島の溶融、冷却に
よるポリシリコンのfli結晶化が実現されず、島のポ
リシリコンは単結晶シリコンにならないことが確認され
た。
Joining the mature type! In the deer method, once a polysilicon island is irradiated with a laser beam, the polysilicon cap 17 flows to the molten surface gH around the island as shown in FIG.
Even if the laser beam is irradiated onto the deformed silicon gap as shown in Figure 4, it will not be able to fulfill its expected role as a cap. Due to a major change in the flow of water to the island via the cap (1), fli crystallization of polysilicon by melting and cooling of the island may not be realized, and the polysilicon on the island may not become single-crystal silicon. confirmed.

かくシ゛(本発明者は、傍熱型レーザ加熱において、1
メを来方法と同様にレーザ光の照射を重ねることが当該
レーザ光走査の重なった部分に位置する島のポリシリコ
ンを単結晶化しない原因であることを突き止めたのであ
る。
(The present inventor has proposed that 1.
They discovered that repeating laser beam irradiation in the same way as in the previous method was the cause of the polysilicon islands located in the overlapped portions of the laser beams not becoming single crystals.

そこで本発明の方法においては、1つのポリシリコンの
島に対するレーザ光照射を1回の走査で終了させるので
ある。
Therefore, in the method of the present invention, laser beam irradiation to one polysilicon island is completed in one scan.

本発明の実施例を第5図の平面図を参照して説明すると
、レーザ光の走査方向く矢印111.、IV、Vで示さ
れる)に直角方向の幅dの島14のアレイがある場合、
幅dよりも大なるスポット径Sのレーザ光を矢印11t
、IV、Vで示ず方向に往復走査する。
An embodiment of the present invention will be described with reference to the plan view of FIG. 5. In the scanning direction of the laser beam, an arrow 111. , IV, V) has an array of islands 14 of orthogonal width d,
A laser beam with a spot diameter S larger than the width d is directed by the arrow 11t.
, IV, and V to perform reciprocating scanning in directions not shown.

−例として前記したアルゴン・イオンレーザ光を照射す
る場合、Sは100μm、c+は20μmに設定する。
- For example, when irradiating with the argon ion laser beam described above, S is set to 100 μm and c+ is set to 20 μm.

本発明の他の実施例においては第6図の平面図に示され
る如く、数個の島を同時に照射する。例えは幅d=20
11mの島が間隔p=101jmで並んで配置されてい
る場合、14Wでスポット径M(メルト幅) = 15
0μmのレーザ光では1走査で4個の島を照射すること
ができる。
In another embodiment of the invention, several islands are irradiated simultaneously, as shown in plan view in FIG. For example, width d=20
When 11m islands are arranged side by side with an interval p = 101jm, the spot diameter M (melt width) = 15 at 14W
With a laser beam of 0 μm, four islands can be irradiated in one scan.

1走査による照射領域と次の走査による照射領域とは、
第7図に実線に示される如く照射領域間に非照射領域N
が残るようにしても、または同図に破線v1で示される
如(非照射領域が残らないようになしてもよい。
The irradiation area in one scan and the irradiation area in the next scan are:
As shown by the solid line in Figure 7, there is a non-irradiated area N between the irradiated areas.
may remain, or it may be arranged so that no non-irradiation area remains (as shown by the broken line v1 in the figure).

(7)発明の効果 以上詳細に説明した如く本発明によれは、傍熱型加熱法
によるポリシリコンの島のアレイの工ll結晶化におい
て、ポリシリコンの島に対するレーザ照射を1回の走査
で終了させることにより、ポリシリコンのfli結晶化
の歩留りが著しく向上せしめられる。
(7) Effects of the Invention As explained in detail above, according to the present invention, in crystallizing an array of polysilicon islands by an indirect heating method, laser irradiation to the polysilicon islands is performed in one scan. By terminating the process, the yield of polysilicon fli crystallization is significantly improved.

なお、木(’lは、工不ルキー線として、電子ヒーム等
を用いても同様であり、この場合、レーザ光吸収H料で
形成したキャップは、各工不ルキー線の吸収を考旋ニジ
た利料にすれば良い。
In addition, wood ('l) is the same even if an electronic beam or the like is used as the engineering inflexibility line. In this case, the cap formed of the laser beam absorbing H material is It would be fine if the interest was paid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリシリコンの島を単結晶化する従来の方法を
承ず図、第2図は傍メ:4シ型加熱法を示す…f而面、
第3図は従来のレーザ照射方法を示す平面図、第4図は
第2図の島のレーザ照射後の状態を汀くず1iji面図
、第5図ないし第7図は本発明の実施例を示す平面図で
ある。 11 シリコンウェハ、12−5iO2膜、13−窒化
j模、14−ポリシリコンの島、15−5i02膜、1
6−窒化膜、17−ポリシリコンで形成したシリコンキ
ャップ 第1図 第2図 第3図 1乙 第4図 4 第5図
Figure 1 shows the conventional method of single-crystalizing polysilicon islands, and Figure 2 shows the 4-type heating method.
Fig. 3 is a plan view showing the conventional laser irradiation method, Fig. 4 is a slag 1iji plane view showing the state of the island in Fig. 2 after laser irradiation, and Figs. 5 to 7 show examples of the present invention. FIG. 11 Silicon wafer, 12-5iO2 film, 13-Nitride j model, 14-Polysilicon island, 15-5i02 film, 1
6 - Nitride film, 17 - Silicon cap formed of polysilicon Fig. 1 Fig. 2 Fig. 3 Fig. 1 B Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 絶縁層の上に設けられ、シリコンより低熱伝導率の分離
キャップ層とエネルギー線吸収用キャップ層で覆われた
非単結晶シリコンの島をエネルギー線照射により小結晶
化する方法において、1つの非単結晶シリコンの島に対
するエネルギー線照射を1回のエネルギー線走査により
終了させることを特徴とする半導体装置の製造方法。
In the method of crystallizing a non-single-crystal silicon island provided on an insulating layer and covered with an isolation cap layer having a thermal conductivity lower than that of silicon and an energy-beam absorbing cap layer by irradiating energy beams, one non-single-crystal silicon island is 1. A method for manufacturing a semiconductor device, characterized in that irradiation of an island of crystalline silicon with energy rays is terminated by one energy ray scan.
JP59037921A 1984-02-29 1984-02-29 Manufacture of semiconductor device Pending JPS60182720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59037921A JPS60182720A (en) 1984-02-29 1984-02-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037921A JPS60182720A (en) 1984-02-29 1984-02-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60182720A true JPS60182720A (en) 1985-09-18

Family

ID=12511008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037921A Pending JPS60182720A (en) 1984-02-29 1984-02-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60182720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242717A (en) * 1988-08-03 1990-02-13 Hitachi Ltd Method of applying energy beam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156591A (en) * 1982-03-10 1983-09-17 Nippon Telegr & Teleph Corp <Ntt> Forming of thin film of semiconductor single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156591A (en) * 1982-03-10 1983-09-17 Nippon Telegr & Teleph Corp <Ntt> Forming of thin film of semiconductor single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242717A (en) * 1988-08-03 1990-02-13 Hitachi Ltd Method of applying energy beam

Similar Documents

Publication Publication Date Title
US4870031A (en) Method of manufacturing a semiconductor device
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
CA1221606A (en) Method of producing single-crystal silicon film
JPH0732124B2 (en) Method for manufacturing semiconductor device
JPS63102265A (en) Manufacture of semiconductor device
JPS6115319A (en) Manufacture of semiconductor device
JPS60182720A (en) Manufacture of semiconductor device
JP3047424B2 (en) Method for manufacturing semiconductor device
JPH06168876A (en) Formation of semiconductor crystal and semiconductor element
JP2929660B2 (en) Method for manufacturing semiconductor device
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPS5958821A (en) Manufacture of semiconductor single crystal film
JPS60254723A (en) Manufacture of semiconductor device
JPH0722119B2 (en) Beam annealing method
JPS60191090A (en) Manufacture of semiconductor device
JPS6380521A (en) Manufacture of semiconductor thin film crystal layer
JPH03138925A (en) Semiconductor-film crystallizing method
JPS63142810A (en) Manufacture of semiconductor device
JPS6189621A (en) Manufacture of semiconductor device
JPS60236211A (en) Beam annealing method
JPH03250620A (en) Manufacture of semiconductor device
JPS5961118A (en) Manufacture of semiconductor device
JPS58115814A (en) Electron beam annealing method
JPS6038809A (en) Manufacture of semiconductor device
JPS60127722A (en) Manufacture of semiconductor device