JPS60236211A - Beam annealing method - Google Patents

Beam annealing method

Info

Publication number
JPS60236211A
JPS60236211A JP59093314A JP9331484A JPS60236211A JP S60236211 A JPS60236211 A JP S60236211A JP 59093314 A JP59093314 A JP 59093314A JP 9331484 A JP9331484 A JP 9331484A JP S60236211 A JPS60236211 A JP S60236211A
Authority
JP
Japan
Prior art keywords
island
region
island region
crystal
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59093314A
Other languages
Japanese (ja)
Inventor
Tetsuo Izawa
哲夫 伊澤
Nobuo Sasaki
伸夫 佐々木
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59093314A priority Critical patent/JPS60236211A/en
Publication of JPS60236211A publication Critical patent/JPS60236211A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce crystal line grain boundary generated in an island region by single-cyrstallizing the island non-single-crystal semiconductor region formed on an insulator through irradiation of energy beam from the side of island region so that single-crystallization progresses toward the periphery from the center of island region. CONSTITUTION:An island region 1 and periphery thereof are single-crystallized like the conventional case and the beams B are irradiated within a short period of time toward the side portions of island region 1 from the areas elevated a little from the sides of four corners. The energy of beam B heats and fuses islant region 1 within a short period of time without absorption by insulation layer 3 and cap layer 4. Since the energy is absorbed at the side more than other area in the island region 1, temperature distribution of at the center of island region 1 becomes higher than the side portions. Therefore, in the cooling process after irradiation of beam B, an initial crystal 6 is produced at the center, this initial crystal 6 grows up to the entire part of island region 1, thereby completing the single-crystallization. Since the single-crystallization is carried out as explained above, crystalline grain boundary is little generated in the single-crystallized island region 1.

Description

【発明の詳細な説明】 tal fl:4 の Jk@ ノ?”lf[本発明は
、ビームアニール方法に係り、特に、So 1 (Si
licon On In5ulator)技術における
非単結晶シリコン層を単結晶化さゼる方法に関す。
[Detailed description of the invention] tal fl:4 Jk@ノ? "lf [The present invention relates to a beam annealing method, and in particular, the present invention relates to a beam annealing method, in particular,
The present invention relates to a method for converting a non-single crystal silicon layer into a single crystal using silicon on indulator technology.

fbl 技術の背景 Sol技術は、基体表面の絶縁物」二にシリコン単結晶
を形成し、該単結晶に素子を形成する技術で、半導体装
置において例えば三次元回路の形成による高度の集積化
などを可能にするものとして期待されている。本発明に
係る単結晶化技術は、上記Sol技術において最も重要
な単結晶形成技術の一つで、この単結晶形成の成否が半
導体装i6の特性に大きく影響する。
Background of the fbl technology Sol technology is a technology that forms a silicon single crystal on an insulator on the surface of a substrate and forms elements on the single crystal. It is expected that this will become possible. The single crystallization technology according to the present invention is one of the most important single crystal formation technologies in the Sol technology, and the success or failure of this single crystal formation greatly influences the characteristics of the semiconductor device i6.

前記単結晶化には、一般に加熱方法、例えば、化学気相
成長法(CV D法)により前記絶縁物−■−に形成さ
れた多結晶シリコン若しくはアモルファスシリコンを、
例えばレーザービームなどのエネルギー線ビームにより
照射加熱(アニール)して単結晶化する方法、所謂ビー
ムアニール方法、などが用いられているが、現在の単結
晶化技術は未だ未熟な状態にある。
For the single crystallization, polycrystalline silicon or amorphous silicon formed on the insulator -■- by a heating method, for example, a chemical vapor deposition method (CVD method) is generally used.
For example, a method of single crystallization by irradiation heating (annealing) with an energy beam such as a laser beam, the so-called beam annealing method, is used, but the current single crystallization technology is still in an immature state.

(C) 従来技術と問題点 第1図は多結晶シリコンの島状領域を単結晶化させる従
来の代表的なビームアニール方法を側面視で示している
。島状領域1は、半導体素子が形成される領域で多結晶
シリコンからなる島状をなし、表面が二酸化シリコンか
らなる基体2の上に在る。島状領域lの周囲は二酸化シ
リコンの絶縁層3になっており、表面は該表面の荒れを
防ぐために設けた二酸化シリコンなどのキャップ層4で
覆われている。単結晶化は、島状領域1にその上方から
レーザービームなどのエネルギー線ビームBを矢印a方
向に掃引しながら照射し、島状領域lを加熱溶融して行
われる。
(C) Prior Art and Problems FIG. 1 shows, in side view, a typical conventional beam annealing method for converting island-like regions of polycrystalline silicon into single crystals. The island region 1 is a region in which a semiconductor element is formed and is made of polycrystalline silicon and is in the form of an island, and is located on a base 2 whose surface is made of silicon dioxide. The island region l is surrounded by an insulating layer 3 made of silicon dioxide, and its surface is covered with a cap layer 4 made of silicon dioxide or the like provided to prevent the surface from becoming rough. Single crystallization is performed by irradiating the island-like region 1 from above with an energy beam B such as a laser beam while sweeping it in the direction of arrow a, and heating and melting the island-like region l.

上記方法の単結晶化による結晶の状態を平面視で示した
のが第2図であり、島状領域1には多数の結晶粒界5が
発生している。この結晶粒界5の存在は、島状領域1に
良質な半導体素子を形成するのを阻害する欠点となって
いる。
FIG. 2 is a plan view showing the state of the crystal obtained by single crystallization using the above method, and a large number of grain boundaries 5 are generated in the island-like region 1. The existence of this crystal grain boundary 5 is a drawback that hinders the formation of a high quality semiconductor element in the island region 1.

この事情は、島状領域の材料が多結晶シリコン以外の非
単結晶半導体であっても同様である。
This situation is the same even if the material of the island region is a non-single crystal semiconductor other than polycrystalline silicon.

+d) 発明の目的 本発明の目的は上記従来の欠点に鑑み、非単結晶半導体
の島状領域を単結晶化させるに際して、該島状領域に発
生する結晶粒界を減少させるビームアニール方法を提供
するにある。
+d) Purpose of the Invention In view of the above-mentioned conventional drawbacks, an object of the present invention is to provide a beam annealing method for reducing grain boundaries generated in an island region of a non-single crystal semiconductor when the island region is made into a single crystal. There is something to do.

tel 発明の構成 上記目的は、絶縁物上に形成された島状の非単結晶半導
体領域に対し、該島状領域の中央部から周縁部に向かっ
て単結晶化が進むように、該島状領域の側方からエネル
ギー線ビームを照射して、該島状領域を単結晶化するこ
とを特徴とするビームアニール方法によって達成される
tel Structure of the Invention The above object is to provide an island-like non-single-crystal semiconductor region formed on an insulator so that single crystallization progresses from the center of the island-like region toward the periphery. This is achieved by a beam annealing method characterized in that the island-like region is made into a single crystal by irradiating the region with an energy beam from the side.

本発明によれば、前記島状領域の四方から同時にエネル
ギー線ビームを照射してもよく、また、前記島状領域を
挟んで相対する三方からエネルギー線ビームを照射しつ
つ、該相対する方向に対して略直角な方向に該エネルギ
ー線ビームを該島状領域に対して相対的に移動させても
よい。
According to the present invention, the energy ray beam may be irradiated simultaneously from all sides of the island-like region, or the energy ray beam may be irradiated from three opposite directions with the island-like region in between. The energy ray beam may be moved relative to the island region in a direction substantially perpendicular to the direction.

本方法によれば、前記照射により溶融した島状領域の温
度分布は、従来方法の場合と異なって、側部が高く中央
部が低くなるため中央部から単結晶化が始まり、最初に
生成された初期結晶が側部に向かって成長するので、島
状領域は、粒界が殆どない結晶になり、良質な半導体素
子を形成することが可能になる。
According to this method, unlike the conventional method, the temperature distribution of the island-like region melted by the irradiation is higher on the sides and lower in the center, so that single crystallization starts from the center and is the first to be formed. Since the initial crystal grows toward the sides, the island region becomes a crystal with almost no grain boundaries, making it possible to form a high-quality semiconductor device.

(f) 発明の実施例 以下本発明の実施例を図により説明する。全図を通じ同
一符号は同一対象物を示す。
(f) Embodiments of the Invention Examples of the present invention will be described below with reference to the drawings. The same reference numerals indicate the same objects throughout the figures.

第3図は本発明によるビームアニール方法の一実施例を
側面視で示した図(alと平面視で示した図山)、第4
図はその方法の単結晶化時における島状領域の温度分布
を示した平面図、第5図は本発明によるビームアニール
方法の他の実施例を側面視で示した図(alと平面視で
示した図(bl、第6図はその方法の単結晶化時におけ
る島状領域の温度分布を示した平面図である。
FIG. 3 is a diagram showing one embodiment of the beam annealing method according to the present invention in side view (al and figure 4 shown in plan view).
The figure is a plan view showing the temperature distribution of the island-like region during single crystallization using the method, and FIG. 5 is a side view showing another embodiment of the beam annealing method according to the present invention (Al and The figure shown in FIG. 6 is a plan view showing the temperature distribution of the island-like region during single crystallization using the method.

第3図図示の方法においては、単結晶化する島状領域1
およびその周辺は第1図図示と同様であり、ビームBは
、島状領域1の側部に向けて四方の側方やや斜め上から
同時に一短時間照射される。
In the method shown in FIG.
The beam B and its surroundings are the same as shown in FIG. 1, and the beam B is simultaneously irradiated for a short period of time toward the sides of the island-like region 1 from all four sides and slightly diagonally above.

照射方向をやや斜め上にするのは、島状領域1の近傍に
ある他の島状領域などにビームBが邪魔されないように
するためである。ビームBのエネルギーは、絶縁層3、
キャップ層4に殆ど吸収されることなく前記−短時間で
島状領域1を加熱溶融する。この際の島状領域1におけ
る該エネルギーの吸収は側部で大きいため、島状領域1
の温度分布は側部が中央部より高く、第4図図示の等点
線すで示したようになり、ビームB照射後の冷却過程に
おいて、中央部に初期結晶6が生成し、初期結晶6が成
長し、該成長が島状領域1の全域に及んで単結晶化がな
される。単結晶化過程がこのようであるので、単結晶化
した島状領域1には結晶粒界の発生が殆どない。
The reason why the irradiation direction is set slightly upward is to prevent the beam B from being obstructed by other island-like regions in the vicinity of the island-like region 1. The energy of the beam B is transmitted through the insulating layer 3,
The island-shaped region 1 is heated and melted in a short time without being absorbed by the cap layer 4. At this time, since absorption of the energy in the island-like region 1 is large at the side portion, the island-like region 1
The temperature distribution of the side part is higher than the center part, as shown in the isodotted line in FIG. This growth extends over the entire island-like region 1, resulting in single crystallization. Since the single crystallization process is as described above, there are almost no grain boundaries in the single crystallized island region 1.

更に、本方法は、島状領域1部の以外を加熱しないので
、基体2内に形成されている他の半導体素子などを劣化
させることが少ない特徴を有する。
Furthermore, since this method does not heat anything other than a portion of the island-like region, other semiconductor elements formed within the base body 2 are less likely to deteriorate.

本願の発明者は、厚さ約1μm大きさが約80×50μ
mの矩形をなす多結晶シリコン島状領域に連続波アルゴ
ンレーザービームを照射して、結晶粒界のない結晶を得
ることが出来た。この際の照射条件は、長さ80μmの
側部を照射するビーム径が約50XlOμ鴎の略楕円形
(50μm側を照射側部の長平方向に合わせる)、長さ
50p+sの側部を照射するビーム径が約30X10μ
鋼の略楕円形(30μm側を照射側部の長手方向に合わ
せる)、各ビームのパワーが約5W、各ビームの照射方
向と島状領域表面とのなす角度が約30度、照射時間が
約ILLで、キャンプ層には厚さ約0.5μ−の二酸化
シリコンを使用した。
The inventor of the present application has a thickness of approximately 1 μm and a size of approximately 80×50 μm.
By irradiating a continuous wave argon laser beam onto a polycrystalline silicon island-like region having a rectangular shape of m, it was possible to obtain a crystal without grain boundaries. The irradiation conditions at this time are: a beam diameter of approximately 50XlOμ which irradiates the side part with a length of 80 μm (the 50 μm side is aligned with the elongated direction of the irradiation side), and a beam that irradiates the side part with a length of 50 p+s. Diameter is approximately 30x10μ
Approximately elliptical shape of steel (30μm side aligned with the longitudinal direction of the irradiation side), power of each beam is approximately 5W, angle between the irradiation direction of each beam and the island surface is approximately 30 degrees, and irradiation time is approximately In ILL, silicon dioxide with a thickness of about 0.5 μm was used for the camping layer.

なお、前記アルゴンレーザービームは連続波であるが、
本方法においては、パルス波レーザービームも使用可能
で、この場合の照射パルス数は一パルスでも複数パルス
でもよい。
Note that the argon laser beam is a continuous wave, but
In this method, a pulsed laser beam can also be used, and the number of irradiation pulses in this case may be one pulse or multiple pulses.

また、第5図図示の方法においては、単結晶化する島状
領域1およびその周辺は第1図図示と同様であり、ビー
ムBは、島状領域1の対向する側部に向けて該両側部を
挟んで相対する三方やや斜め上から、該相対方向に対し
て略直角な図(b)図示矢印a方向に掃引しながら連続
的に照射される。
In addition, in the method shown in FIG. 5, the island-like region 1 to be single-crystalized and its surroundings are the same as those shown in FIG. The light is continuously irradiated from slightly diagonally above on three opposing sides with the beam in a sweeping motion in the direction of the arrow a in FIG.

照射方向をやや斜め上にする理由は第3図図示の場合と
同様である。ビームBのエネルギーは、絶縁層3、キャ
ップ層4に殆ど吸収されることなく前記掃引通過の間で
島状領域1を加熱溶融する。
The reason why the irradiation direction is made slightly obliquely upward is the same as the case shown in FIG. The energy of the beam B is hardly absorbed by the insulating layer 3 and the cap layer 4, and heats and melts the island region 1 during the sweep passage.

この際の島状領域lにおける該エネルギーの吸収は側部
で大きいため、島状領域1の温度分布は、第3図図示方
法の場合とは若干異なるが、側部が中央部より高く、第
6図図示の等点線すで示したようになり、ビームB照射
後の冷却過程において、中央部に初期結晶6が生成し、
初期結晶6が成長し、該成長が島状領域1の全域に及ん
で単結晶化がなされる。単結晶化過程がこのようである
ので、単結晶化した島状領域1には結晶粒界の発生が殆
どない。
At this time, the absorption of the energy in the island-like region l is large at the side part, so the temperature distribution in the island-like region 1 is slightly different from that shown in FIG. As shown in the isodotted line in Figure 6, an initial crystal 6 is generated in the center during the cooling process after irradiation with beam B.
Initial crystal 6 grows, and this growth extends over the entire island region 1 to form a single crystal. Since the single crystallization process is as described above, there are almost no grain boundaries in the single crystallized island region 1.

更に、本方法は、図(b1図示のように前記掃引方向に
列をなして並んでい、る複数の島状領域1を、−掃引で
順次単結晶化することが出来る特徴を有する。
Furthermore, this method has the feature that a plurality of island-like regions 1, which are lined up in a row in the sweep direction as shown in FIG.

本願の発明者は、厚さ約1μm大きさが約80×50μ
鶴の矩形をなす多結晶シリコン島状領域の長さ80μm
ある側部に連続波アルゴンレーザービームを照射して、
結晶粒界のない結晶を得ることが出来た。この際の照射
条件は、ビーム径が約20μ搦φ、各ビームのパワーが
約7W、各ビームの照射方向と島状領域表面とのなす角
度が約30度、掃引速度が約501/秒で、キャンプ層
には厚さ約0゜5μ−の二酸化シリコンを使用した。
The inventor of the present application has a thickness of approximately 1 μm and a size of approximately 80×50 μm.
The length of the polycrystalline silicon island region forming the rectangle of a crane is 80 μm
By irradiating one side with a continuous wave argon laser beam,
A crystal without grain boundaries could be obtained. The irradiation conditions at this time were: the beam diameter was approximately 20μφ, the power of each beam was approximately 7W, the angle between the irradiation direction of each beam and the surface of the island area was approximately 30 degrees, and the sweep speed was approximately 501/sec. For the camp layer, silicon dioxide having a thickness of approximately 0°5 μm was used.

なお、第3図、第5図図示の方法において、ビームBは
レーザービームに限定されるものではなく、所定のビー
ムを形成するならば他のエネルギー線ビームであっても
よい。また、ビームBの照射による島状領域1の温度上
昇が不足である場合には、ビームBを照射する時点で島
状領域1の温度を均一に上げるかまたは予め均一に上げ
ておくことが有効で、このために、島状領域lの上方な
いし下方から別のエネルギー線ビームで照射するなどの
手段を加えてもよい。
In the methods shown in FIGS. 3 and 5, the beam B is not limited to a laser beam, but may be any other energy beam as long as it forms a predetermined beam. In addition, if the temperature increase in the island-like region 1 due to the irradiation of the beam B is insufficient, it is effective to uniformly raise the temperature of the island-like region 1 at the time of irradiating the beam B or to raise it uniformly in advance. For this purpose, a method such as irradiating the island region l with another energy beam from above or below may be added.

また、上記実施例は、島状領域の材料が多結晶シリコン
であるが、それ以外の非単結晶半導体例えばアモルファ
スシリコンなどであっても本発明は適用可能である。
Further, in the above embodiment, the material of the island region is polycrystalline silicon, but the present invention is also applicable to other non-single crystal semiconductors such as amorphous silicon.

fgl 発明の効果 以上に説明したように、本発明による構成によれば、非
単結晶半導体の島状領域を単結晶化させるに際して、該
島状領域に発生する結晶粒界を減少させるビームアニー
ル方法を提供することが出来て、島状領域に良質な半導
体素子を形成することを可能にさせる効果がある。
fgl Effects of the Invention As explained above, according to the configuration of the present invention, when an island-like region of a non-single-crystal semiconductor is made into a single crystal, a beam annealing method for reducing grain boundaries generated in the island-like region is provided. This has the effect of making it possible to form high-quality semiconductor elements in island-like regions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多結晶シリコンの島状領域を単結晶化させる従
来の代表的ビームアニール方法を側面視で示した図、第
2図はその方法の単結晶化による結晶の状態を示した平
面図、第3図は本発明によるビームアニール方法の一実
施例を側面視で示した図+alと平面視で示した図(b
l、第4図はその方法の単結晶化時における島状領域の
温度分布を示した平面図、第5図は本発明によるビーム
アニール方法の他の実施例を側面視で示した図talと
平面視で示した図(b)、第6図はその方法の単結晶化
時における島状領域の温度分布を示した平面図である。 図面において、1は島状領域、2は基体、3は絶縁層、
4はキャップ層、5は結晶粒界、6は初期結晶、Bはビ
ーム、aは矢印、bは等点線をそれぞれ示す。 l〜・ v−s閣
Figure 1 is a side view of a typical conventional beam annealing method for single-crystallizing island-like regions of polycrystalline silicon, and Figure 2 is a plan view showing the state of crystals resulting from single-crystallization using that method. , FIG. 3 is a side view of one embodiment of the beam annealing method according to the present invention + al and a plan view (b).
1, FIG. 4 is a plan view showing the temperature distribution of the island-like region during single crystallization using the method, and FIG. 5 is a side view showing another embodiment of the beam annealing method according to the present invention. FIG. 6 is a plan view showing the temperature distribution of the island region during single crystallization using the method. In the drawings, 1 is an island region, 2 is a base, 3 is an insulating layer,
4 is a cap layer, 5 is a grain boundary, 6 is an initial crystal, B is a beam, a is an arrow, and b is an isodotted line. l~・v-s cabinet

Claims (3)

【特許請求の範囲】[Claims] (1) 絶縁物上に形成された島状の非単結晶半導体領
域に対し、該島状領域の中央部から周縁部に向かって単
結晶化が進むように、該島状領域の側方からエネルギー
線ビームを照射して、該島状領域を単結晶化することを
特徴とするビームアニール方法。
(1) For an island-shaped non-single-crystal semiconductor region formed on an insulator, from the sides of the island-shaped region so that single crystallization progresses from the center of the island-shaped region toward the peripheral edge. A beam annealing method characterized by irradiating the island-like region with an energy beam to form a single crystal.
(2)前記島状領域の四方から同時にエネルギー線ビー
ムを照射することを特徴とする特許請求の範囲第(1)
項記載のビームアニール方法。
(2) Claim (1) characterized in that the energy ray beam is irradiated from all sides of the island-like region simultaneously.
Beam annealing method described in section.
(3)前記島状領域を挟んで相対する三方からエネルギ
ー線ビームを照射しつつ、該相対する方向に対して略直
角な方向に該エネルギー線ビームを該島状領域に対して
相対的に移動させることを特徴とする特許請求の範囲第
(1)項記載のビームアニール方法。
(3) While irradiating the energy ray beam from three opposing directions with the island-like region in between, move the energy ray beam relative to the island-like region in a direction approximately perpendicular to the opposing directions. A beam annealing method according to claim (1), characterized in that:
JP59093314A 1984-05-10 1984-05-10 Beam annealing method Pending JPS60236211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093314A JPS60236211A (en) 1984-05-10 1984-05-10 Beam annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093314A JPS60236211A (en) 1984-05-10 1984-05-10 Beam annealing method

Publications (1)

Publication Number Publication Date
JPS60236211A true JPS60236211A (en) 1985-11-25

Family

ID=14078845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093314A Pending JPS60236211A (en) 1984-05-10 1984-05-10 Beam annealing method

Country Status (1)

Country Link
JP (1) JPS60236211A (en)

Similar Documents

Publication Publication Date Title
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
US4323417A (en) Method of producing monocrystal on insulator
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
JP2002524874A (en) Double pulse laser crystallization of thin semiconductor films
JPH0732124B2 (en) Method for manufacturing semiconductor device
US4599133A (en) Method of producing single-crystal silicon film
JPH0588544B2 (en)
JPS6115319A (en) Manufacture of semiconductor device
JPS60236211A (en) Beam annealing method
JPH0131288B2 (en)
JPS59154016A (en) Formation of thin film crystal
JPH0652712B2 (en) Semiconductor device
JPH0236050B2 (en)
JPS60191090A (en) Manufacture of semiconductor device
JPS5958821A (en) Manufacture of semiconductor single crystal film
JPH0136688B2 (en)
JPH0136972B2 (en)
JP2993107B2 (en) Semiconductor thin film manufacturing method
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JPH0413848B2 (en)
JPH0337729B2 (en)
JPS60164318A (en) Beam annealing
JPS6310516A (en) Recrystalization of thin film
JPS58115814A (en) Electron beam annealing method
JPH0371767B2 (en)