JPS6310516A - Recrystalization of thin film - Google Patents

Recrystalization of thin film

Info

Publication number
JPS6310516A
JPS6310516A JP15556086A JP15556086A JPS6310516A JP S6310516 A JPS6310516 A JP S6310516A JP 15556086 A JP15556086 A JP 15556086A JP 15556086 A JP15556086 A JP 15556086A JP S6310516 A JPS6310516 A JP S6310516A
Authority
JP
Japan
Prior art keywords
island
beams
polycrystal
insulating film
humped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15556086A
Other languages
Japanese (ja)
Inventor
Hiroo Wakaumi
若海 弘夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15556086A priority Critical patent/JPS6310516A/en
Publication of JPS6310516A publication Critical patent/JPS6310516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable uniform and good crystallized film to be obtained, by controlling the position on which double-humped beams are radiated against an island. CONSTITUTION:Out of an insulating film 12, a heat sink layer (made of polycrystal Si, W, Mo, Cr, a silicide material of high-melting-point metal, or the like) 13, an insulating film 14, and a polycrystal Si layer 15 which are all piled in order on a substrate 11, the island of the polycrystal Si and the insulating film 4 is covered with a cap layer 16 such as SiN, and beams comprising CWAr laser, YAG laser in a pulse mode, or the like are radiated from above. Then, the beams are formed having a distribution of double-humped energy. Radiation method for the double-humped beams is that a beam-scanning process is done while the positioning relation of the energy distribution to the island polycrystal Si 15 being maintained. That is, the beam scanning is done in the direction X perpendicular to the direction of beam separation. Owing to this beam annealing, temperature(on radiation) at the edge part of the polycrystal Si 15, where heat easily stands, is not extremely increased, but is kept smaller than that at the position corresponding to the tops of the double-humped beams, and besides the temperature at the edge parts is kept proper enough to fuse them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は平面ディスプレイ駆動用TPTを構成するSO
I構造の薄Il!!(非結晶性Si)を再結晶化する方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an SO constituting a TPT for driving a flat display.
Thin Il structure! ! The present invention relates to a method of recrystallizing (amorphous Si).

〔従来の技術〕[Conventional technology]

近年、 ELD 、 LC口等の表示装置を駆動し高品
位の画質を実現するために、 SOI構造TPTを用い
たアクティブマトリクス方式が検討されるようになって
きた。このTPTは各表示セル毎に1ケずつ設けられる
が、これを駆動するドライバも必要である。
In recent years, in order to drive display devices such as ELDs and LC ports and achieve high image quality, active matrix systems using SOI structure TPT have been studied. One TPT is provided for each display cell, but a driver is also required to drive it.

このドライバとしては数MHz以上の高速動作が要求さ
れると共に1価格の面からホウケイ酸ガラスの如きガラ
ス基板上にIC化されるのが望まれる。
This driver is required to operate at a high speed of several MHz or more, and from the viewpoint of cost, it is desired that it be integrated into an IC on a glass substrate such as borosilicate glass.

このような要求を満たすドライバの構成要素となるTP
Tを実現するための手法として、第3図に示したような
ヒートシンク構造を持つ多結晶Si(シリコン)膜をレ
ーザアニールする方法が提案されている。この方法は第
3図に示すように基板11上に第1の絶縁膜12とヒー
トシンク層(高熱伝導層)13とを順次積層し、該ヒー
トシンク層13上に第2の絶縁膜14と非結晶性5i1
5とこの非結晶性5i15を覆う第3の絶縁膜からなる
キャップ層16とを島状に積層し、この非結晶性5i1
5を再結晶化するものである。この方法によれば、ガウ
ス分布ビーム20にてアニールされる島状の多結晶51
15の幅(走査方向に垂直・な方向)が10〜20tm
程度ならば。
A TP that is a component of a driver that satisfies these requirements
As a method for realizing T, a method has been proposed in which a polycrystalline Si (silicon) film having a heat sink structure as shown in FIG. 3 is laser annealed. In this method, as shown in FIG. 3, a first insulating film 12 and a heat sink layer (high thermal conductivity layer) 13 are sequentially laminated on a substrate 11, and a second insulating film 14 and an amorphous layer are deposited on the heat sink layer 13. sex 5i1
5 and a cap layer 16 made of a third insulating film covering this amorphous 5i15 are laminated in an island shape.
5 is recrystallized. According to this method, an island-shaped polycrystal 51 annealed with a Gaussian distributed beam 20
15 width (perpendicular to the scanning direction) is 10 to 20 tm
If it's a degree.

熱分布の制御がうまくなされ(島のエツジ部の温度が中
央より高くなる)、良質の再結晶化膜が得られるが、ビ
ーム径がせいぜい100−φ 程度の大きさのArレー
ザアニール装置ではこれ以上大きな幅の膜を7ニールす
ると1gL度分布がうまく制御されず、膜全体の結晶性
は、悉く、均質な良結晶化膜は得られない、即ち、移動
度が低く、高速動作ができないという問題があった。
Although the heat distribution is well controlled (the temperature at the edge of the island is higher than the center) and a high-quality recrystallized film is obtained, this is not possible in an Ar laser annealing system with a beam diameter of at most 100-φ. When a film with a width larger than 7 times is annealed, the 1gL degree distribution is not well controlled, and the crystallinity of the entire film cannot be uniformly crystallized. In other words, the mobility is low and high-speed operation is not possible. There was a problem.

このような幅の広い膜は長いチャネル幅を有するTPT
 (高集積化のためにできるだけ1つのSi島で構成す
るのが望まれる)を得るのに必要である。
Such a wide film is a TPT with a long channel width.
(It is desirable to configure it with one Si island as much as possible for high integration).

本発明の目的はかかる従来の欠点を除き、島に対する双
峰ビームの照射位置を制御することにより、均質な良結
晶化膜が得られる薄膜再結晶化法を提供することにある
An object of the present invention is to eliminate such conventional drawbacks and provide a thin film recrystallization method capable of obtaining a homogeneous and well-crystallized film by controlling the irradiation position of the bimodal beam on the islands.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は基板上に第1の絶縁膜とヒートシンク層とを積
層し、該ヒートシンク層上に第2の絶縁膜と非結晶性S
iとこの非結晶性Si層を覆う第3の絶縁膜からなるキ
ャップ層とを島状に積層し、前記非結晶性Siを再結晶
化する方法において、双峰状のエネルギー分布からなる
高エネルギービームの中心部を前記島状の非結晶性Si
のエツジ領域に照射してビームアニールし、前記エツジ
領域を除く部分に対しては双峰ビームの一方の峰が前に
走査した双峰ビームの他方の峰にほぼ重ね合わさるよう
に順次ビームアニールすることを特徴とする薄膜再結晶
化法である。
In the present invention, a first insulating film and a heat sink layer are laminated on a substrate, and a second insulating film and an amorphous S
In the method of recrystallizing the amorphous Si by stacking i and a cap layer consisting of a third insulating film covering the amorphous Si layer in the form of an island, high energy with a bimodal energy distribution is obtained. The center of the beam is connected to the island-shaped amorphous Si.
Beam annealing is performed by irradiating the edge region of the beam, and beam annealing is performed sequentially for the portion other than the edge region so that one peak of the bimodal beam almost overlaps the other peak of the previously scanned bimodal beam. This thin film recrystallization method is characterized by the following.

〔原理・作用〕[Principle/effect]

基板上に絶縁膜/ピー8229層/絶縁膜/島状非結晶
性Siの順に積層し、島状非結晶性S1を31Nxの如
きキャップ層としての絶縁膜でおおい、この上から双峰
状の高エネルギービーム(ArCWレーザアニール装置
等を使用)にて峰の並ぶ方向と直角に走査する。この場
合、島状非結晶性Siの走査方向のエツジ領域をアニー
ルするときには双峰状のエルネギ−分布からなる高エネ
ルギービームの中心部を島状非結晶性Siのエツジ領域
に照射してビームアニール走査する。これにより熱の溜
りやすい島状非結晶性・Siのエツジ部の温度は極度に
高くならず、双峰ビームの一方の峰(島状非結晶性Si
側)に対応する位置の温度よりも低く保持される。しか
も、峰の部分より低いが、小さ過ぎないエネルギーを持
つビームの重ね合わせ部分が当たるので、このエツジ部
の温度が低くなり過ぎることもない。従って、温度の低
いエツジ部から峰に対応する部分に向かって結晶化が進
行し、ビームを照射したエツジ領域から峰に対応する領
域までの範囲は粒界を生じることなく均質に再結晶化さ
れる。この場合、ビームの峰をエツジ部に当てたときの
ようにエツジ部に熱が溜ることによる膜の飛散現象が生
じなくなる。
The insulating film/P8229 layer/insulating film/island-like amorphous Si are laminated on the substrate in this order, and the island-like amorphous S1 is covered with an insulating film as a cap layer such as 31Nx, and from above, a bimodal layer is formed. Scan with a high-energy beam (using an ArCW laser annealing device, etc.) perpendicular to the direction in which the peaks are lined up. In this case, when annealing the edge region of the island-like amorphous Si in the scanning direction, the center part of a high-energy beam having a bimodal energy distribution is irradiated onto the edge region of the island-like amorphous Si. scan. As a result, the temperature at the edge of the island-like amorphous Si where heat tends to accumulate does not become extremely high, and the temperature at the edge of the island-like amorphous Si
side) is maintained lower than the temperature at the corresponding location. Furthermore, since the overlapping portion of the beams, which has lower but not too small energy than the peak portion, hits, the temperature of this edge portion does not become too low. Therefore, crystallization progresses from the edge region where the temperature is low to the region corresponding to the peak, and the range from the edge region irradiated with the beam to the region corresponding to the peak is homogeneously recrystallized without producing grain boundaries. Ru. In this case, the scattering phenomenon of the film due to the accumulation of heat at the edge portion, which occurs when the peak of the beam is applied to the edge portion, does not occur.

また、島状非結晶性Siの内側の領域に対しては前に走
査した領域の峰に対応する部分の近傍に、一方の峰を位
置させてビームアニールする。これにより双峰ビームの
峰の間に対応する領域は均質に結晶化されるので、走査
する毎に境界領域に1本の結晶粒界が入るだけで、膜全
体がほぼ均質に結晶化される。即ち、複数の走査を行え
ば、全体にわたって結晶性の良い大面積の島状のSi膜
が得られる。
Furthermore, for the inner region of the island-like amorphous Si, beam annealing is performed with one peak located near the portion corresponding to the peak of the previously scanned region. As a result, the region corresponding between the peaks of the bimodal beam is uniformly crystallized, so that only one grain boundary enters the boundary region each time it is scanned, and the entire film is almost uniformly crystallized. . That is, by performing a plurality of scans, a large-area island-shaped Si film with good crystallinity can be obtained throughout.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照し乍ら詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例となる薄膜の再結晶化法を説
明するための図である。第2図は再結晶化される薄膜の
平面図である。ここでは、アニールされる薄膜として多
結晶Siを用いた場合について説明する。
FIG. 1 is a diagram for explaining a thin film recrystallization method according to an embodiment of the present invention. FIG. 2 is a plan view of the thin film being recrystallized. Here, a case will be described in which polycrystalline Si is used as the thin film to be annealed.

ガラス基板(ホウケイ酸ガラス、ソーダガラス等)の如
き基板11上に順次積層された絶縁膜12.ヒートシン
ク層(多結晶Si、 vt No、 Crあるいは高融
点金属をシリサイド化したもの等)13.絶縁膜14及
び多結晶Si層15の多層膜のうち、多結晶Siと絶縁
膜14の島をSiNxの如きキャップ層16で覆い、こ
の上から(JArレーザやパルスモードのYAGレーザ
等のビームを照射する。この際、ビーム形状を、同図に
示したように双峰状のエネルギー分布を有したものにす
る。このような双峰ビームにする方法としては、2つの
光源からのビームを同時に照射する手法と、1本のレー
ザ光を1/4波長板を使って円偏光させ、これを水晶複
局析板により2本の双峰ビームに分離して照射する手法
とがあるが、いずれでもよい。かかる双峰ビームの照射
法としては第1図に示したエネルギー分布と島状多結晶
5i15の位百関係を保持させ乍ら、走査するようにす
る。即ち、ビームの分離方向と直角な方向Xに、ビーム
走査を行う。この場合、島のエツジ領域においては双峰
ビーム21−■の中心部を多結晶5i15のエツジ部に
照射してアニールする。双峰ビーム21−■の中心部の
エネルギーは2つのビームのすそが重畳されたものであ
るから、峰の部分よりやや低い程度にしか低下しない、
このようなエネルギー分布を持つビームでアニールする
と、熱の溜りやすい多結晶5i15のエツジ部の温度(
照射時)は極度に高くなることなく、双峰ビームの峰に
対応する位置の温度より低く維持される。しかも。
Insulating films 12 are sequentially laminated on a substrate 11 such as a glass substrate (borosilicate glass, soda glass, etc.). Heat sink layer (polycrystalline Si, VT No., Cr, or silicided high melting point metal, etc.) 13. Of the multilayer film of the insulating film 14 and the polycrystalline Si layer 15, the islands of polycrystalline Si and the insulating film 14 are covered with a cap layer 16 such as SiNx, and a beam (such as a JAr laser or a pulsed mode YAG laser) is applied from above. At this time, the beam shape is made to have a bimodal energy distribution as shown in the figure.To create such a bimodal beam, beams from two light sources are irradiated at the same time. There are two methods: one is to circularly polarize a single laser beam using a quarter-wave plate, and the other is to separate it into two bimodal beams using a quartz crystal multipolar plate. The irradiation method with such a bimodal beam is to scan while maintaining the energy distribution shown in FIG. Beam scanning is performed in the direction Since the energy at the peak is the superposition of the bases of the two beams, it decreases only to a slightly lower level than at the peak.
When annealing with a beam with such an energy distribution, the temperature at the edge of polycrystalline 5i15 where heat tends to accumulate (
(during irradiation) does not become extremely high and remains lower than the temperature at the position corresponding to the peak of the bimodal beam. Moreover.

このエツジ部の温度は溶融するのに十分な値に保たれる
。従って、温度の低いエツジ部から峰に対応する部分に
向かって結晶化が進み、ビームを照射したエツジから峰
に対応する領域までの範囲Aは粒界を生じろことなく均
質に結晶化される。この場合、ビームの峰はエツジ部に
当たっていないから、エツジ部に熱が異常に溜ることが
なく、多結晶5i15が飛散するようなことはない。
The temperature at this edge is maintained at a value sufficient to cause melting. Therefore, crystallization progresses from the edge part where the temperature is low to the part corresponding to the peak, and the area A from the edge irradiated with the beam to the area corresponding to the peak is uniformly crystallized without grain boundaries. . In this case, since the peak of the beam does not hit the edge portion, heat will not accumulate abnormally at the edge portion, and the polycrystalline 5i15 will not be scattered.

また、多結晶5i15のエツジより内側の領域に対して
は、市に走査した領域の峰に対応する部分に、21−■
〜21−I■に示すようにビームの一方の峰をほぼ一致
させてビームアニールする。これにより、双峰ビームの
峰の間に対応する領域はビームの谷に対応する領域(ビ
ームの中央部)から峰に対応する領域(外側)に向けて
結晶化が進み、全体的に均質な良結晶化膜が得られる。
In addition, for the area inside the edge of the polycrystal 5i15, 21-■
As shown in ~21-I■, beam annealing is performed with one peak of the beam almost aligned. As a result, the region corresponding to the peaks of the bimodal beam progresses from crystallization from the region corresponding to the beam valley (center of the beam) to the region corresponding to the peak (outside), resulting in an overall homogeneous state. A well crystallized film can be obtained.

このようなビームアニールを順次ピッチをシフトして行
えば、数十pm以上の大きな幅を有する島状の多結晶S
i膜について走査毎のビームの境界に1本の粒界が生じ
るだけでほぼ均質に結晶化されたSi膜が得られる。
If such beam annealing is performed by sequentially shifting the pitch, island-shaped polycrystalline S with a large width of several tens of pm or more can be formed.
With respect to the i-film, a substantially homogeneously crystallized Si film can be obtained with only one grain boundary occurring at the beam boundary for each scan.

尚、本発明の実施例にはビームアニールされる膜として
多結晶Siを選んで説明を行ったが、非晶質のSi層で
あって、も差しつかえないことは言うまでもない。また
、アニール時に非結晶性Si膜が飛散する現象がなく、
特に熱分布制御を行う上で問題がないビームアニール条
件がある場合には、キャップ層16を設けない構造であ
っても本発明の趣旨を損なうことはない。さらに、基板
としてはガラスに限定されることな(、Si、石英、サ
ファイアやGaAs、InP等の化合物半導体、他のど
のような物質に対しても本発明を適用することができ、
有効である。
In the embodiments of the present invention, polycrystalline Si was selected as the film to be beam-annealed, but it goes without saying that an amorphous Si layer may also be used. In addition, there is no phenomenon of scattering of the amorphous Si film during annealing.
In particular, if there are beam annealing conditions that do not cause problems in controlling heat distribution, a structure in which the cap layer 16 is not provided does not impair the spirit of the present invention. Furthermore, the substrate is not limited to glass (Si, quartz, sapphire, compound semiconductors such as GaAs, InP, etc., and the present invention can be applied to any other material,
It is valid.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば島状の非結晶性Si
のエツジ領域のアニールを、エツジ部から島の内側へ結
晶化が進むような熱分布になるように双峰ビームの照射
する位置を制御して行い、島の内側も双峰ビームの峰を
互いに重ね合わせて、結晶化される領域が連続的に横方
向につながるようにしているので、大面積にわたって結
晶性の良い膜が得られる。即ち、チャネル幅の大きなト
ランジスタも1ケの島だけで形成できるようになるので
、高集積化に非常に有利である。
As explained above, according to the present invention, island-shaped amorphous Si
The edge region of the island is annealed by controlling the irradiation position of the bimodal beam so that the heat distribution is such that crystallization progresses from the edge to the inside of the island. Since the regions to be crystallized are continuously connected in the lateral direction by overlapping, a film with good crystallinity can be obtained over a large area. That is, a transistor with a large channel width can be formed using only one island, which is very advantageous for high integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図、第2図は再
結晶化される膜の平面図、第3図は従来の薄膜の再結晶
化法を説明するための図である。
FIG. 1 is a diagram for explaining the present invention in detail, FIG. 2 is a plan view of a film to be recrystallized, and FIG. 3 is a diagram for explaining a conventional thin film recrystallization method.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に第1の絶縁膜とヒートシンク層を積層し
、該ヒートシンク層上に第2の絶縁膜を介して少なくと
も非結晶性Siを島状に積層し、前記非結晶性Siを再
結晶化する方法において、双峰状のエネルギー分布から
なる高エネルギービームの中心部を前記島状の非結晶性
Siのエッジ領域に照射してビームアニールし、前記エ
ッジ領域を除く部分に対しては双峰ビームの一方の峰が
前に走査した双峰ビームの他方の峰にほぼ重ね合わさる
ように順次ビームアニールすることを特徴とする薄膜再
結晶化法。
(1) A first insulating film and a heat sink layer are laminated on a substrate, at least amorphous Si is laminated in an island shape on the heat sink layer via a second insulating film, and the amorphous Si is re-layered. In the crystallization method, beam annealing is performed by irradiating the center portion of a high-energy beam having a bimodal energy distribution onto the edge region of the island-shaped amorphous Si, and the portion excluding the edge region is A thin film recrystallization method characterized by successive beam annealing such that one peak of the bimodal beam substantially overlaps the other peak of the previously scanned bimodal beam.
JP15556086A 1986-07-01 1986-07-01 Recrystalization of thin film Pending JPS6310516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15556086A JPS6310516A (en) 1986-07-01 1986-07-01 Recrystalization of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15556086A JPS6310516A (en) 1986-07-01 1986-07-01 Recrystalization of thin film

Publications (1)

Publication Number Publication Date
JPS6310516A true JPS6310516A (en) 1988-01-18

Family

ID=15608723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15556086A Pending JPS6310516A (en) 1986-07-01 1986-07-01 Recrystalization of thin film

Country Status (1)

Country Link
JP (1) JPS6310516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282869A (en) * 1991-03-11 1992-10-07 G T C:Kk Manufacturing method of thin film semiconductor device and device for executing this
US7888772B2 (en) * 2007-01-17 2011-02-15 Samsung Electronics Co., Ltd. Electronic fuse having heat spreading structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282869A (en) * 1991-03-11 1992-10-07 G T C:Kk Manufacturing method of thin film semiconductor device and device for executing this
US7888772B2 (en) * 2007-01-17 2011-02-15 Samsung Electronics Co., Ltd. Electronic fuse having heat spreading structure

Similar Documents

Publication Publication Date Title
US8598588B2 (en) Systems and methods for processing a film, and thin films
US6020224A (en) Method for making thin film transistor
US7153359B2 (en) Crystalline semiconductor film and production method thereof, and semiconductor device and production method thereof
US7476629B2 (en) Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor
JPH07249591A (en) Laser annealing method for semiconductor thin film and thin-film semiconductor element
US7816196B2 (en) Laser mask and crystallization method using the same
JPH084067B2 (en) Method for manufacturing semiconductor device
US7033434B2 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
JPS62181419A (en) Recrystallization method of polycrystalline silicon
US7651931B2 (en) Laser beam projection mask, and laser beam machining method and laser beam machine using same
JP2005197656A (en) Method for forming polycrystalline silicon film
KR20010039788A (en) Crystallization of semiconductor thin film and manufacturing method of thin film semiconductor device
JP2507464B2 (en) Method for manufacturing semiconductor device
JPH0362971A (en) Thin-film transistor
JPS6310516A (en) Recrystalization of thin film
KR100611040B1 (en) Apparutus for thermal treatment using laser
JP2003133253A (en) Laser processing device and manufacturing method of semiconductor device
JPH0521343A (en) Thin film transistor and manufacture thereof
JPH02297923A (en) Recrystallizing method for polycrystalline silicon
JPH0350720A (en) Polycrystal silicon recrystallization
JP2001320056A (en) Manufacturing method for thin-film transistor and thin- film semiconductor device
JP2004343093A (en) Beam irradiator, beam irradiation method, and method of manufacturing thin film transistor
JP2000323407A (en) Semiconductor film, semiconductor element, their manufacture, and energy beam irradiator
JP2003249448A (en) Method and apparatus for manufacturing semiconductor device, manufacturing method of semiconductor film, and semiconductor device
JPH0945632A (en) Laser annealing method and melting crystallizing method of semiconductor film