JPS59121913A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59121913A
JPS59121913A JP22870982A JP22870982A JPS59121913A JP S59121913 A JPS59121913 A JP S59121913A JP 22870982 A JP22870982 A JP 22870982A JP 22870982 A JP22870982 A JP 22870982A JP S59121913 A JPS59121913 A JP S59121913A
Authority
JP
Japan
Prior art keywords
scanning
spot
laser
laser beam
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22870982A
Other languages
Japanese (ja)
Inventor
Nobuo Sasaki
伸夫 佐々木
Seiichiro Kawamura
河村 誠一郎
Takashi Iwai
崇 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22870982A priority Critical patent/JPS59121913A/en
Publication of JPS59121913A publication Critical patent/JPS59121913A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable to form a large SOI single crystal by a method wherein a laser beam radiated from a laser oscillator is converged and irradiated from the slant direction to form an elliptic spot, and scanning is performed in parallel with the direction of the minor axis of said elliptic spot. CONSTITUTION:A laser beam 1 of 2mm. diameter generated from a 20W laser oscillator, for example, is irradiated from the aslant upper side to a loading base 7 loading a wafer 8, a convergent lens 2 is provided at the middle to converge the beam up to the prescribed size, and a spot is formed to perform scanning. Namely, the laser spot is converged up to have intensity sufficient to melt polycrystalline silicon and to convert into a single crystal, an elliptic spot 10 is formed on the concerned wafer 8, and scanning is performed in the direction in parallel with the minor axis. At the scanning method thereof, to perform scanning in the direction in parallel with the minor axis of the elliptic spot 10 formed on the wafer 8, scanning is performed along the direction of the minor axis making the prescribed width of the major axis, the degree of 50mum, for example, as scanning width. Accordingly, scanning having the broad width can be attained, and a large single crystal construction can be obtained.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は半導体装置の製造方法に係り、特にレーザビー
ムを用いたSol技術による半導体装置の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device using Sol technology using a laser beam.

(2)技術の背景 1960年にメーマンによりルビーレーザが出現して以
来レーザの研究開発はめざましくその応用分野に関して
も例えばレーザ光線の示す空間的コヒーレンス性を利用
して集束レンズにより実現する高い照射強度を試料に照
射して微少領域の加工を行うレーザ加工方法が各種提案
されている。
(2) Technical background Since the emergence of the ruby laser by Mehman in 1960, laser research and development has been remarkable, and its application fields include, for example, high irradiation intensity achieved by using a focusing lens by utilizing the spatial coherence of laser beams. Various laser processing methods have been proposed in which microscopic areas are processed by irradiating the sample with laser beams.

例えば、半導体素子のレーザアニール、プローブ検査の
レーザマーカ、半導体メモリの冗長回路切断、厚膜抵抗
素子のトリミング等エレクトロニクスにおけるレーザの
利用技術は広範囲に亘っている。
For example, laser is used in a wide range of technologies in electronics, such as laser annealing of semiconductor devices, laser markers for probe inspection, redundant circuit cutting of semiconductor memories, and trimming of thick film resistive elements.

(3)従来技術と問題点 従来レーザを用いたS OI  (Silcon on
 In5ula−tor )技術すなわち絶縁物上にポ
リシリコンを付けておき係るポリシリコン上にレーザビ
ームを照射させて単結晶化させるという方法が既に開発
されている。しかしながら広い範囲に亘る単結晶の形成
には係るレーザビームのスポット幅の大小が大きな要素
を占めており、換言すれば、レーザ光線の作るスポット
幅が大きい程単結晶化される領域も大きくなる。これは
レーザビームをスポット照射することにより、ポリシリ
コンの溶融領域のうち一部周辺部分を除く領域が単結晶
化されることによるものである。
(3) Conventional technology and problems S OI (Silcon on
A method has already been developed in which polysilicon is attached on an insulator and a laser beam is irradiated onto the polysilicon to form a single crystal. However, the size of the spot width of the laser beam is a major factor in forming a single crystal over a wide range.In other words, the larger the spot width created by the laser beam, the larger the area to be single crystallized. This is because by spot irradiation with a laser beam, a region of the melted polysilicon except for a part of the periphery is turned into a single crystal.

従ってレーザビームのポリシリコン上へ照射されるスポ
ット幅を大きくすれば、係る単結晶化領域も大きくなる
のであるが、照射部分における単位面積当りの照射強度
にも最低の基準がある。すなわち、レーザビームにある
程度のパワーがないとポリシリコンを溶かすことが不可
能となっている。従って車にレーザビームを広げたので
は、単位面積当りの照射強度が低下して良好な単結晶シ
リコンが形成されないという不都合を生じている。
Therefore, if the spot width of the laser beam irradiated onto polysilicon is increased, the area of single crystallization will also become larger, but there is also a minimum standard for the irradiation intensity per unit area in the irradiated area. In other words, it is impossible to melt polysilicon unless the laser beam has a certain amount of power. Therefore, if a laser beam is spread across a car, the irradiation intensity per unit area decreases, resulting in the inconvenience that good single crystal silicon cannot be formed.

第1図(a)及びtb)は、各々従来の方法でのレーザ
光線の集光レンズによる円形スポット形成の光路図と、
円形スポットの走査を示す概略的斜視図である。
FIGS. 1(a) and 1b) are optical path diagrams for forming a circular spot of a laser beam using a condensing lens in a conventional method, respectively;
FIG. 3 is a schematic perspective view showing the scanning of a circular spot;

例えば第1図(alの如〈従来通常用いられている数±
W程度の出力のレーザ発振器で形成される直(予2關程
度のレーザビーム1を集束レーザ2にて20μm程度に
絞って円形のスポット3を形成すると、直径がレーザビ
ーム時のi o −’程度に小さくなる。また、一般に
円形スポットにおける照度は直径(若しくは半径の)平
方に逆比例するために円形スポット3のレーザビーム1
に比べて照度は10 程度に大きくなる。このように係
るレーザビーム1を絞りウェーハ8上でのスポット3に
おける所定の必要量の照射強度を確保して単結晶化を行
っている。即ち、従来同図(b)のごとくレーザビーム
1と集束レンズ(略図)によりおよそ20μm程度の幅
の円形のスポット3を形成しある必要量以上の照射強度
を確保して一定方向に走査4を行い単結晶化を行ってい
るが、あまりスポット幅を大きくすると係るレーザ発振
器即ち数十W程度の出力のレーザ発振器では所定の照射
強度を得られないため良好な単結晶シリコンは得られな
い。
For example, as shown in Figure 1 (al.
When a circular spot 3 is formed by narrowing a laser beam 1 of approximately 20 μm with a focused laser 2 to a diameter of approximately 20 μm, the diameter of the laser beam is i o −' In addition, since the illumination intensity at a circular spot is generally inversely proportional to the square of the diameter (or radius), the laser beam 1 at the circular spot 3
The illuminance is about 10 degrees higher than that of the previous year. In this way, the laser beam 1 is focused to ensure a predetermined required amount of irradiation intensity at the spot 3 on the wafer 8 to perform single crystallization. That is, conventionally, as shown in FIG. 2(b), a circular spot 3 with a width of approximately 20 μm is formed using a laser beam 1 and a focusing lens (schematic diagram), and scanning 4 is performed in a certain direction while securing an irradiation intensity of more than a certain required amount. However, if the spot width is made too large, a laser oscillator with an output of about several tens of watts will not be able to obtain the desired irradiation intensity, making it impossible to obtain good single crystal silicon.

また、特殊なレンズを用いて照射強度を弱めること無く
大きな単結晶シリコンを得ることも可能となっている。
Furthermore, it has become possible to obtain large single crystal silicon without weakening the irradiation intensity using a special lens.

即ち、一般的に照射強度は照射面積が一定の場合には変
わらないことを利用して例えば円形のスポットを同一面
積の楕円形のスポットに変えて、係る楕円形のスポット
の短軸方向に平行に走査することによって円形スポット
による単結晶シリコンよりも大きな単結晶シリコンを形
成することが可能となる。S2図は円形レーザビームを
楕円形のレーザビームに変える光学装置の概略的構成図
である。例えば第2図の様な装置を用いて即ぢレーザビ
ーム1を集束レンズ2で集束し、更に2個の特殊なレン
ズ即ち断面が放物線の一部を形成する様な形状をなすレ
ンズ5 (以下、カマボコレンズと称す。)を透過させ
ることによって円形のレーザビームが楕円形のレンズと
に取り出せるため短軸方向に平行に走査することによっ
て長軸の幅で走査することになり大きな単結晶シリコン
を得ることが可能である。しかしながらこの場合前記2
個のカマボコレンズの適正な組合せ位置が難しく組合せ
たレンズ系自体があまり安定した特性を有さないため楕
円形スポットの形成のための調整が甚だ微妙である事に
加えて、ウェーハをのせているX−Yステージがら伝わ
る振動等のため使用に伴って調整がずれるという実用に
はあまり適してない欠点を有している。
That is, taking advantage of the fact that generally the irradiation intensity does not change when the irradiation area is constant, for example, a circular spot is changed to an elliptical spot with the same area, and the irradiation intensity is parallel to the short axis direction of the elliptical spot. By scanning, it is possible to form larger single crystal silicon than that produced by a circular spot. Figure S2 is a schematic diagram of an optical device that converts a circular laser beam into an elliptical laser beam. For example, using a device as shown in FIG. 2, a laser beam 1 is focused by a focusing lens 2, and two special lenses, that is, a lens 5 whose cross section forms part of a parabola (hereinafter referred to as , a circular laser beam can be taken out to an elliptical lens by transmitting it through a lens (referred to as a kamaboko lens), so by scanning parallel to the short axis direction, the laser beam can be scanned in the width of the long axis. It is possible to obtain. However, in this case, the above 2
It is difficult to properly combine the individual kamaboko lenses, and the combined lens system itself does not have very stable characteristics, making it extremely delicate to make adjustments to form an elliptical spot. It has the disadvantage that it is not very suitable for practical use because the adjustment may deviate with use due to vibrations transmitted from the X-Y stage.

(4)発明の目的 本発明の目的は、レーザ発振器からのレーザビームを集
束して斜め方向から照射して楕円形のスポットを形成し
、係る楕円形スポットの短軸方向に平行に走査すること
によって大きなSo lff1結晶を形成する半導体製
造装置を提供することにある。
(4) Purpose of the Invention The purpose of the present invention is to focus a laser beam from a laser oscillator and irradiate it from an oblique direction to form an elliptical spot, and to scan parallel to the short axis direction of the elliptical spot. An object of the present invention is to provide a semiconductor manufacturing apparatus that forms a large Solff1 crystal by using the following method.

(5)本発明の構成 本発明の特徴は、レーザ発振器から発生するレーザ光線
を照射面に対し斜め方向から照射し、集束レンズにより
集束して照射面上に楕円形のスポット光を形成すること
を特徴とする半導体装置の製造方法を提供することによ
って達成される。
(5) Structure of the present invention The feature of the present invention is that a laser beam generated from a laser oscillator is irradiated obliquely to the irradiation surface, and is focused by a focusing lens to form an elliptical spot light on the irradiation surface. This is achieved by providing a method for manufacturing a semiconductor device characterized by the following.

(6)発明の実施例 以下、本発明の一実施例について図面を用いて説明する
(6) Embodiment of the Invention An embodiment of the present invention will be described below with reference to the drawings.

第3図(a)および(b)は、夫々本発明を説明するた
めの立体図と本発明を用いた実施例の説明図である。
FIGS. 3(a) and 3(b) are a three-dimensional diagram for explaining the present invention and an explanatory diagram of an embodiment using the present invention, respectively.

一般に例えば第3図<a>の様な直円錐形の立体6にお
いて、底面と平行に前記の立体を切断したときの切口A
は底面と同様の円形を成しており、また一方底面に平行
としない、任意の面で切断するときの切口Bは楕円形を
成すことは周知の事である。而も係る切断面の楕円形状
は、立体深く切断する稈長軸方向の長い長円となること
も良く知られている。
Generally, for example, in a right circular cone-shaped solid 6 as shown in FIG. 3 <a>, the cut A when the solid is cut parallel to the bottom surface.
It is well known that the cut B has a circular shape similar to the bottom surface, and that the cut B when cutting at an arbitrary plane that is not parallel to the bottom surface forms an elliptical shape. Furthermore, it is well known that the elliptical shape of such a cut surface is an ellipse that is long in the long axis direction of the culm and is cut deeply three-dimensionally.

同図(b)に於て、レーザ発振器からのレーザビーム1
は載置台7上に搭載したウェーハ8に対して斜め上方か
ら照射して集束レンズ2で集束し、走査するように構成
されている。
In the same figure (b), laser beam 1 from the laser oscillator
is configured to irradiate the wafer 8 mounted on the mounting table 7 obliquely from above, focus it with the focusing lens 2, and scan it.

例えば20Wのレーザ発振器から発生する直径2關のレ
ーザビーム1をウェーハ8を搭載した載置台7に対し斜
め上方から照射させ途中集束レンズ2を設けて所定の大
きさまで絞りスポットを形成して走査を行う。即ち、ポ
リシリコンを溶がし、単結晶化させるのに十分な強度ま
でレーザスポットを絞り係るウェーハ8上に楕円形のス
ポット10を形成して短軸に平行な方向に走査を行う。
For example, a laser beam 1 of two diameters generated from a 20W laser oscillator is irradiated obliquely from above onto the mounting table 7 on which the wafer 8 is mounted, and a focusing lens 2 is provided midway to form an aperture spot to a predetermined size for scanning. conduct. That is, the laser spot is focused to an intensity sufficient to melt the polysilicon and form a single crystal, forming an elliptical spot 10 on the wafer 8 and scanning in a direction parallel to the short axis.

この走査方法は、ウェーハ8上に形成した楕円形スポッ
ト10の短軸に平行な方向に走査させるため即ち所定の
長軸の幅たとえば50μm程度をスキャンニングの幅と
して短軸方向に沿って走査させることにより、従来に比
べ広い幅を有するスキャンニングが可能となり大きな単
結晶構造を得ることができる。
In this scanning method, the elliptical spot 10 formed on the wafer 8 is scanned in a direction parallel to the short axis thereof, that is, a predetermined long axis width, for example, about 50 μm is used as the scanning width, and scanning is performed along the short axis direction. This makes it possible to perform scanning over a wider width than in the past, and to obtain a large single crystal structure.

第4図は、本発明を用いた半導体製造装置に於ける斜め
上方からのレーザ発振器によるレーザ光線のウェーハ上
への照射を示す概略的断面図である。
FIG. 4 is a schematic cross-sectional view showing the irradiation of a laser beam onto a wafer by a laser oscillator from diagonally above in a semiconductor manufacturing apparatus using the present invention.

同図に於て、説明を簡単にするため係る半導体製造装置
のレーザ光線の照射をうけるウェーハ8以外の構成要素
は省略する。
In the figure, components other than the wafer 8, which is irradiated with the laser beam of the semiconductor manufacturing apparatus, are omitted to simplify the explanation.

例えばアルゴンレーザを用いたレーザ発振器9の場合、
主に両端に反射鏡を設けた光共振器(回路)とその間に
誘導放出により光子を発生するためのレーザ管(回路)
から構成されている。
For example, in the case of a laser oscillator 9 using an argon laser,
Mainly an optical resonator (circuit) with reflecting mirrors at both ends and a laser tube (circuit) between which photons are generated by stimulated emission.
It consists of

高電圧電荷の放電がレーザ管を通して起り高エネルギー
が発生して気体分子と衝突し生したアルゴンイオンAr
+が基底状態から励起されて反転分布が生じ光共振器内
で増幅されて所定方向へ発振する。
A high voltage charge discharge occurs through the laser tube, generating high energy and colliding with gas molecules to create argon ions Ar.
+ is excited from the ground state to produce population inversion, which is amplified within the optical resonator and oscillates in a predetermined direction.

ここでレーザ発振器9から発生するレーザビームはウェ
ーハ8に対して斜め上方から照射されており、ウェーハ
8の楕円形スポット10上にて反射した後反射光線は入
射方向と逆方向へ進行するために係る反射光線が再びレ
ーザ発振器9内へ入射することが阻止された効率の良い
安定したレーザ光線が構成可能となっている。
Here, the laser beam generated from the laser oscillator 9 is irradiated onto the wafer 8 obliquely from above, and after being reflected on the elliptical spot 10 of the wafer 8, the reflected beam travels in the opposite direction to the incident direction. It is possible to construct an efficient and stable laser beam in which the reflected beam is prevented from entering the laser oscillator 9 again.

第5図は、本発明を用いた斜めからのレーザ照射による
楕円スポットの形成を説明する断面図である。
FIG. 5 is a cross-sectional view illustrating the formation of an elliptical spot by oblique laser irradiation using the present invention.

同図に於て、載置台7上に搭載したウェーハ8上に斜上
方からレーザビーム1を照射させ集束レーザ2にて所定
の大きざまで絞って楕円形のスポット10を形成させて
いる。
In the figure, a laser beam 1 is irradiated onto a wafer 8 mounted on a mounting table 7 from diagonally above and focused to a predetermined size by a focused laser 2 to form an elliptical spot 10.

例えば、ウェーハ8上に設けたポリシリコンを単結晶化
させて半導体基板を形成するため、係るウェーハ8上に
斜上方から例えば出力50Wのアルコンレーザ発振器(
回路)によりレーザビーム1を形成し照射させる。そし
て形成された2mIIのレーザビーム1を集束して単結
晶化させるために必要な照射強度をウェーハ8上で得る
ために例えば焦点距離24鶴の凸レンズを集束レンズ2
としてレーザビーム1と同一軸上のウェーハ1のスポッ
ト中心点から入射角度θを例えば63.43’となす斜
上方23.5’bmの位置に設けてウェーハ8上に楕円
形スポットを形成している。このとき長軸の長さ即ちα
は78.6μmで短軸の長さ35.7μmの楕円形スポ
ットが形成されており、短軸方向に沿って走査するため
78.6μmの幅でのスキャンニングを行うことが可能
である。
For example, in order to single-crystallize polysilicon provided on the wafer 8 to form a semiconductor substrate, an Alcon laser oscillator with an output of 50 W, for example, is placed on the wafer 8 diagonally from above.
A laser beam 1 is formed and irradiated by a circuit (circuit). Then, in order to obtain the irradiation intensity necessary for focusing the formed laser beam 1 of 2 mII and crystallizing it on the wafer 8, a convex lens with a focal length of 24 mm, for example, is used as the focusing lens 2.
An elliptical spot is formed on the wafer 8 by placing it at a position 23.5'bm obliquely above the spot center point of the wafer 1 on the same axis as the laser beam 1 with an incident angle θ of 63.43', for example. There is. In this case, the length of the major axis, that is, α
An elliptical spot with a short axis length of 78.6 μm and a short axis length of 35.7 μm is formed, and since scanning is performed along the short axis direction, it is possible to perform scanning with a width of 78.6 μm.

(7)発明の効果 以上述べて来た様に本発明を用いると、レーザ発振器の
出力を高めてな(でも照射強度が大き(且つ広範囲の照
射が実現可能となるために大きなSOI単結晶を得るこ
とができる効果を有する。
(7) Effects of the invention As described above, when the present invention is used, the output of the laser oscillator can be increased (but the irradiation intensity is high (and a wide range of irradiation can be realized), so a large SOI single crystal can be used. It has the effect that can be obtained.

さらに、以上の説明はレーザ照射による単結晶化を例に
して説明したが、本発明は半導体装置の製造のための他
の目的であるポリシリコンの低抵抗化、イオン注入層の
活性化等にも使えるのはもちろんである。また、レーザ
ビーJ・に限らず円錐形の形をした電子ビーム、イオン
ビームランプ等第1図 第2M 第3図 第4図
Furthermore, although the above explanation has been made using single crystallization by laser irradiation as an example, the present invention can be applied to other purposes such as lowering the resistance of polysilicon and activating an ion-implanted layer for manufacturing semiconductor devices. Of course, you can also use In addition to laser beam J., conical electron beams, ion beam lamps, etc. Fig. 1, 2M, 3, 4

Claims (1)

【特許請求の範囲】[Claims] レーザ発振器から発生ずるレーザ光線を照射面に対し斜
め方向から照射し、集束レンズにより集束して照射面上
に楕円形のスポット光を形成することを特徴とする半導
体装置の製造方法。
1. A method for manufacturing a semiconductor device, which comprises irradiating a laser beam generated from a laser oscillator obliquely onto an irradiated surface and focusing the laser beam using a focusing lens to form an elliptical spot light on the irradiated surface.
JP22870982A 1982-12-28 1982-12-28 Manufacture of semiconductor device Pending JPS59121913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22870982A JPS59121913A (en) 1982-12-28 1982-12-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22870982A JPS59121913A (en) 1982-12-28 1982-12-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59121913A true JPS59121913A (en) 1984-07-14

Family

ID=16880573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22870982A Pending JPS59121913A (en) 1982-12-28 1982-12-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59121913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028559A1 (en) * 1996-01-30 1997-08-07 Seiko Epson Corporation High-energy body supplying device, method of forming crystalline film, and method of producing thin-film electronic appliance
JP2007103961A (en) * 2001-11-16 2007-04-19 Semiconductor Energy Lab Co Ltd Laser irradiator and irradiation method, and process for fabricating semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS,LETT=1979 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028559A1 (en) * 1996-01-30 1997-08-07 Seiko Epson Corporation High-energy body supplying device, method of forming crystalline film, and method of producing thin-film electronic appliance
JP2007103961A (en) * 2001-11-16 2007-04-19 Semiconductor Energy Lab Co Ltd Laser irradiator and irradiation method, and process for fabricating semiconductor device

Similar Documents

Publication Publication Date Title
US6437284B1 (en) Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same
TWI394627B (en) Laser processing method, laser processing apparatus and manufacturing method thereof
CA1188138A (en) Optical beam concentrator
JP3292294B2 (en) Marking method and marking device using laser
US6890839B2 (en) Method and apparatus for laser annealing configurations of a beam
JP3305206B2 (en) Laser processing equipment
JPS59121913A (en) Manufacture of semiconductor device
JPH0637402A (en) Semiconductor-laser optical reflector element
JP3402124B2 (en) Beam homogenizer and method for producing semiconductor thin film
JP2005109359A (en) Laser device, and manufacturing method of liquid crystal display
JPS5942432A (en) Light scattering type floating particle counting apparatus
JP3285957B2 (en) Optical device
JP2006135308A5 (en)
JP2003033893A (en) Method and device for laser beam machining
JP2002025933A (en) Beam homogenizer and semiconductor thin film generating method
JPH01261820A (en) Laser irradiation apparatus
JPS6247114A (en) Manufacture of semiconductor single crystal film
JPS6358827A (en) Exposure device
JPS62216216A (en) Crescent beam homogenizer
JPS5952831A (en) Beam annealing method
JPH10197709A (en) Binary optics and laser working device using the same
JPS61163681A (en) Laser device for forming micro-beam
JPS6089915A (en) Preparation of semiconductor thin film
JPS62194611A (en) Beam-annealing method
JP2004134785A5 (en)