JPH10197709A - Binary optics and laser working device using the same - Google Patents

Binary optics and laser working device using the same

Info

Publication number
JPH10197709A
JPH10197709A JP9004662A JP466297A JPH10197709A JP H10197709 A JPH10197709 A JP H10197709A JP 9004662 A JP9004662 A JP 9004662A JP 466297 A JP466297 A JP 466297A JP H10197709 A JPH10197709 A JP H10197709A
Authority
JP
Japan
Prior art keywords
binary optics
point
intensity distribution
distance
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9004662A
Other languages
Japanese (ja)
Inventor
Satoru Yamaguchi
哲 山口
Masashi Oikawa
昌志 及川
Katsuhiro Minamida
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9004662A priority Critical patent/JPH10197709A/en
Publication of JPH10197709A publication Critical patent/JPH10197709A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain the laser beam of linear beam form and uniform intensity distribution from the laser light of circular beam form and projected intensity distribution by specifying the arranging direction and pitch of rotary gratings at respective positions on binary optics. SOLUTION: Assuming that a light beam made incident on a point P on the binary optics is diffracted and arrives at a position separated from the binary optics just for a distance (h) and a position parallelly advanced from a point Q on the binary optics just for the distance (h) parallelly with an optical axis at that position within a plane vertical to the optical axis, the point Q is found so as to provide a beam profile having the intensity distribution of power density distribution uniform in uniaxial direction at that position. In order to let the light beam arrive at the point Q on the plane, the arranging direction of diffraction gratings, namely, the extending direction of gratings at the point P on the binary optics is made coincident with the direction of line segment PQ and a pitch (p) of diffraction gratings is defined as p=λ√(1+h<2> /d<2> ). In this case, (d) is a distance PQ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光の強度分
布を均一化して直線形状のビームに整形する光学素子及
びそれを用いた集光光学系及びそれを用いてより望まし
い加工を施すことを可能とするレーザ加工装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element for uniformizing the intensity distribution of a laser beam and shaping the laser beam into a linear beam, a condensing optical system using the same, and performing more desirable processing using the same. The present invention relates to a laser processing apparatus that enables the laser processing.

【0002】[0002]

【従来の技術】バイナリーオプティクスはガラス基板の
表面に刻まれた回折格子により集光する光学素子である
(G. J. Swanson et al., US Patent 4895790, (199
0))。図5に示されているように、バイナリーオプティ
クスの断面の構造は光の波長オーダーの階段状になって
おり、進行する光の波面は階段の厚みの違いによりその
進行方向が変えられる。即ち、光の透過長が隣の階段と
異なるために、光の位相がずれ、光の干渉効果により回
折して光路が曲げられる。階段の繰り返しピッチは光路
長を一波長だけ違える幅として与えられる。YAGレー
ザー光を集光する目的のバイナリーオプティックスはそ
の階段構造として幅が数μm、厚さが1μm程度のもの
である。通常のバイナリーオプティクスは図5のように
同心円状のパターンよりなっており、凸レンズのような
単レンズの機能を有している。凸レンズ機能のバイナリ
ーオプティクスは、入射した平行光線を一点につまり焦
点に集めるように働く。このような機能をバイナリーオ
プティクスのピッチp(r)と中心からの距離rとの関係
は、例えば、
2. Description of the Related Art Binary optics is an optical element that focuses light by a diffraction grating cut on the surface of a glass substrate (GJ Swanson et al., US Patent 4895790, (199)
0)). As shown in FIG. 5, the cross-sectional structure of the binary optics has a stepped shape in the order of the wavelength of light, and the traveling direction of the wavefront of traveling light is changed by the difference in the thickness of the step. That is, since the transmission length of the light is different from that of the adjacent steps, the phase of the light is shifted, and the light path is bent by diffraction due to the light interference effect. The repetition pitch of the stairs is given as a width that changes the optical path length by one wavelength. The binary optics for condensing the YAG laser beam has a stepped structure having a width of several μm and a thickness of about 1 μm. Normal binary optics has a concentric pattern as shown in FIG. 5, and has the function of a single lens such as a convex lens. The binary optics of the convex lens function works to collect the incident parallel light rays at one point, that is, at a focal point. The relationship between the pitch p (r) of binary optics and the distance r from the center is as follows.

【0003】[0003]

【数2】p(r)=λ√(1+f2/r2## EQU2 ## p (r) = λ√ (1 + f 2 / r 2 )

【0004】として表される。ここで、λはレーザ光の
波長、fは焦点距離である。このようなバイナリーオプ
ティクスにビーム形状が円形のレーザ光を入射すると、
バイナリーオプティクスからの出射光はどの位置におい
てもビーム形状が円形であり、強度分布もやはりガウス
型である。
[0004] Here, λ is the wavelength of the laser beam, and f is the focal length. When laser light with a circular beam shape is incident on such binary optics,
The light emitted from the binary optics has a circular beam shape at any position, and the intensity distribution is also Gaussian.

【0005】レーザ発振器を用いてレーザ加工を行う場
合、単にレーザ光を集束して照射することが一般的であ
る。この場合、通常は集束されたビームスポット形状は
円形であるが、加工する対象によってはビーム形状が円
形以外の所望の形状、例えば矩形であり、かつその強度
分布が可及的に均一になっていることが望ましいことが
ある。その場合にはレーザ光をビーム拡大した後、矩形
の形状をした開口を通し、レンズで集束して矩形のビー
ムスポット形状を得ていた。
When laser processing is performed using a laser oscillator, it is general to simply focus and irradiate laser light. In this case, the focused beam spot shape is usually circular, but depending on the object to be processed, the beam shape is a desired shape other than circular, for example, rectangular, and its intensity distribution is as uniform as possible. May be desirable. In this case, the laser beam is expanded, then passed through a rectangular opening, and focused by a lens to obtain a rectangular beam spot shape.

【0006】しかしながら、この方法では開口を通して
ビームの中央部分の強度の高い部分のみを取り出してい
たため、開口から外れた光線はロスとなり効率の面で問
題があった。しかも開口の形状によっては強度が不均一
になり易い。
However, in this method, only the high intensity part of the central part of the beam is taken out through the aperture, so that the light rays deviating from the aperture are lost and there is a problem in efficiency. In addition, the strength tends to be uneven depending on the shape of the opening.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる状況
に鑑みてなされたものであり、ビーム形状が円形で強度
分布が山型のレーザ光からビーム形状が直線形状をな
し、強度分布が均一なレーザビームを効率よく得ること
が可能なバイナリーオプティクス、または集光光学系を
提供すること及び上記バイナリーオプティクス、または
集光光学系を用いて効果的なレーザ加工を可能とするレ
ーザ加工装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and a laser beam having a circular beam shape and an intensity distribution having a mountain shape has a linear beam shape and a uniform intensity distribution. Provided is a binary optics or condensing optical system capable of efficiently obtaining a simple laser beam, and a laser processing device capable of performing effective laser processing using the binary optics or the condensing optical system. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明では、回折格子よりなるバイナリーオプテ
ィクスに於て、当該バイナリーオプティクス上の各位置
における回折格子の配列方向とピッチとが、入射光の形
状及び強度分布と、変換したい出射光の直線形状及び均
一な強度分布に対応させて設計したバイナリーオプティ
クス及びこれを用いた集光光学系並びにレーザ加工装置
を提供する。
In order to achieve the above object, according to the present invention, in a binary optics comprising a diffraction grating, an arrangement direction and a pitch of the diffraction grating at each position on the binary optics are as follows. Provided are binary optics designed to correspond to the shape and intensity distribution of incident light and the linear shape and uniform intensity distribution of outgoing light to be converted, and a condensing optical system and laser processing apparatus using the same.

【0009】レーザ発振器から出射したレーザ光は細い
ので、例えば焦点距離の異なる2枚のレンズを組み合わ
せることにより構成されるビーム拡大器を通じて拡大さ
れ、平行光に変換された後、バイナリーオプティクスに
到達して回折される。その回折格子のピッチをpとする
と、平行光線が通過したときに、
Since the laser light emitted from the laser oscillator is thin, it is expanded through a beam expander constituted by combining two lenses having different focal lengths, converted into parallel light, and then reaches binary optics. Is diffracted. Assuming that the pitch of the diffraction grating is p, when a parallel light beam passes,

【0010】[0010]

【数3】cot-1√((p/λ)2−1)## EQU3 ## cot -1 √ ((p / λ) 2 -1)

【0011】の回折角だけ、進行方向を回折格子の配列
方向、即ち格子の延在方向と直交する方向に変えたビー
ムに変換される。いま、レーザビームがガウス型の強度
分布を持つとすると、バイナリーオプティクスを通過し
たとき、中央部で高く周辺部で低い強度分布からなるレ
ーザビームは、バイナリーオプティクスに刻まれたパタ
ーンにより、各位置でそれぞれの方向に光の進行方向が
変えられ、バイナリーオプティクスから距離hだけ離れ
た位置では、変換したい出射光の直線形状及び均一強度
分布のレーザビームスポットが得られる。
The beam is converted by the diffraction angle into a beam whose traveling direction is changed to the direction in which the diffraction gratings are arranged, that is, the direction perpendicular to the direction in which the gratings extend. Now, assuming that the laser beam has a Gaussian intensity distribution, when passing through binary optics, a laser beam having a high intensity distribution at the center and a low intensity distribution at the peripheral portion has a pattern engraved on the binary optics at each position. The traveling direction of the light is changed in each direction, and at a position away from the binary optics by a distance h, a laser beam spot having a linear shape and uniform intensity distribution of the emitted light to be converted is obtained.

【0012】[0012]

【発明の実施の形態】以下に、本発明の好適な実施形態
について添付の図面を参照して詳しく説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0013】図1に本願発明の第1の実施形態に於ける
バイナリーオプティクスによる光路変換の模式図を示
す。バイナリーオプティクス1は半導体微細加工技術を
利用し、石英基板(直径100mm)にマスクをかけ露
光した後、エッチングして図1に示すような断面形状3
に作製される。
FIG. 1 is a schematic diagram of an optical path conversion by binary optics in the first embodiment of the present invention. The binary optics 1 utilizes a semiconductor fine processing technology, and after exposing a quartz substrate (diameter 100 mm) with a mask, etching and etching, the sectional shape 3 as shown in FIG.
Produced.

【0014】このようなバイナリーオプティクスに入射
する光源としては平均出力500Wのレーザ加工用のN
d:YAGレーザが用いられる。レーザ光はビーム形状
が円形をなし、バイナリーオプティクス1に入射する前
にビーム拡大器で拡大されその光軸がバイナリーオプテ
ィクス1の中心Oと一致するように入射する。その入射
光強度分布I(r)は、rを中心からの距離、aを係
数、wをビーム半径として、次式に示すようなガウス型
強度分布となっている。
As a light source incident on such binary optics, an N output for laser processing with an average output of 500 W is used.
A d: YAG laser is used. The laser beam has a circular beam shape and is expanded by a beam expander before entering the binary optics 1 so that the optical axis of the laser beam coincides with the center O of the binary optics 1. The incident light intensity distribution I (r) is a Gaussian intensity distribution as shown in the following equation, where r is the distance from the center, a is a coefficient, and w is the beam radius.

【0015】[0015]

【数4】I(r)=aexp(−r2/w2)[Number 4] I (r) = aexp (-r 2 / w 2)

【0016】バイナリーオプティクス1上の点P(図1
(a)、図4(a))に入射した光線は、回折されて、
バイナリーオプティクス1から距離hだけ離れた位置
(図1の照射位置9)に到達し、その位置に於ける光軸
と垂直な面内にて、バイナリーオプティックス1上の点
Q(図4(a))を光軸と平行に距離hだけ並進した位
置Q’(図1(a))に到達したとする。その位置でパ
ワー密度分布が一軸方向に均一な強度分布を有するビー
ムプロフィールを得るように点Qを決めてやれば良い。
光線が面F上の点Qに対応する位置に到達するために
は、バイナリーオプティクスの点Pに於ける回折格子の
配列方向、即ち格子の延在方向をを線分PQの方向に一
致させ、回折格子のピッチpを、
A point P on the binary optics 1 (FIG. 1)
(A), the ray incident on FIG. 4 (a) is diffracted,
A point Q (FIG. 4 (a) on the binary optics 1 arrives at a position (irradiation position 9 in FIG. 1) at a distance h from the binary optics 1 and in a plane perpendicular to the optical axis at that position. )) Reaches a position Q ′ (FIG. 1A) translated parallel to the optical axis by a distance h. At that position, the point Q may be determined so that a beam profile having a power density distribution having a uniform intensity distribution in one axial direction is obtained.
In order for the light beam to reach the position corresponding to the point Q on the surface F, the arrangement direction of the diffraction grating at the point P of the binary optics, that is, the extending direction of the grating is made to coincide with the direction of the line segment PQ, The pitch p of the diffraction grating is

【0017】[0017]

【数5】p=λ√(1+h2/d2) とすれば良い。ここで、dは距離PQである。Equation 5: p = λ√ (1 + h 2 / d 2 ) Here, d is the distance PQ.

【0018】また、照射位置で、x軸に関して強度分布
が平均化され、均一なビームプロフィール7を得るため
の、点Pと点Qの関係は次のように決められる。すなわ
ち、図3(a)に於て、バイナリーオプティクス上に光
軸を原点とする直角座標を定義し、前記点P(x0,y
0)を通りy軸に平行な直線でビーム断面を二つの領域
に分割し、次式で示される各々の領域に於ける強度の積
分値m、n、
At the irradiation position, the intensity distribution is averaged with respect to the x-axis, and the relationship between points P and Q for obtaining a uniform beam profile 7 is determined as follows. That is, in FIG. 3A, rectangular coordinates with the optical axis as the origin are defined on the binary optics, and the point P (x0, y
0), the beam cross section is divided into two regions by a straight line parallel to the y-axis, and the integral values m, n,

【0019】[0019]

【数6】 (Equation 6)

【0020】[0020]

【数7】 (Equation 7)

【0021】の比で直線を内分する点のx座標を点Qの
x座標とし、点Pのy座標を点Qのy座標とするように
決められる。即ち、点Qの座標は、
The x coordinate of the point which internally divides the straight line is determined as the x coordinate of the point Q, and the y coordinate of the point P is determined as the y coordinate of the point Q. That is, the coordinates of the point Q are

【0022】[0022]

【数8】(x0(m/(m+n)−1/2),y0) で与えられる。(X 0 (m / (m + n) −1/2), y 0 ).

【0023】以下、p=λ√(1+h2/d2)に従っ
て、点Pに入射した光線が点Q’に到達するよう、バイ
ナリーオプティクス1の点Pに於ける回折格子の配列方
向を線分PQの方向に一致させ、回折格子のピッチpを
決めてやれば良い。
In the following, according to p = λ√ (1 + h 2 / d 2 ), the arrangement direction of the diffraction grating at the point P of the binary optics 1 is segmented so that the light beam incident on the point P reaches the point Q ′. What is necessary is to match the direction of PQ and determine the pitch p of the diffraction grating.

【0024】照射位置を通過する光の強度はx軸と平行
な方向について一定となる。バイナリーオプティクスと
照射位置との間にy軸と平行な方向に曲率がついたシリ
ンドリカルレンズを挿入すると、x軸と平行にラインフ
ォーカスされる。そして、ラインはどの位置に於いても
強度が一定に保たれる。
The intensity of light passing through the irradiation position is constant in a direction parallel to the x-axis. When a cylindrical lens having a curvature in a direction parallel to the y-axis is inserted between the binary optics and the irradiation position, the line is focused parallel to the x-axis. The intensity of the line is kept constant at any position.

【0025】このように、バイナリーオプティクスの回
折格子のピッチを、入射光の強度分布とバイナリーオプ
ティクス上の位置に応じて定めてやることにより、シリ
ンドリカルレンズと組み合わせた時、照射位置に於て均
一な強度分布のビームプロフィールでラインフォーカス
させることができる。また、このようなレーザ光を用い
て表面加工処理ができる。
As described above, by determining the pitch of the diffraction grating of binary optics according to the intensity distribution of incident light and the position on the binary optics, when combined with a cylindrical lens, the pitch is uniform at the irradiation position. Line focus can be achieved with the beam profile of the intensity distribution. Further, surface processing can be performed using such a laser beam.

【0026】図2に本発明の第2の実施形態に於ける2
枚のバイナリーオプティクス3、8による光路変換の状
態を模式的に示す。本実施例は図2に於けるシリンドリ
カルレンズの位置にシリンドリカルレンズの働きをする
第二のバイナリーオプティクス8を配置するものであ
り、第2のバイナリーオプティクスに入射した光線はこ
れにより照射位置に於てライン状にフォーカスされる。
FIG. 2 shows a second embodiment of the present invention.
The state of optical path conversion by two binary optics 3 and 8 is schematically shown. In the present embodiment, the second binary optics 8 acting as a cylindrical lens is arranged at the position of the cylindrical lens in FIG. 2, and the light beam incident on the second binary optics is thereby located at the irradiation position. Focused on a line.

【0027】図3に本発明の第3の実施形態に於けるバ
イナリーオプティクスを集光光学系に組み込みレーザ加
工装置として使用する模式図を示す。バイナリーオプテ
ィクス3にレーザビームを入射するためにビーム拡大器
を使用している。
FIG. 3 is a schematic diagram showing a binary optics according to a third embodiment of the present invention incorporated in a focusing optical system and used as a laser processing apparatus. A beam expander is used to make the laser beam incident on the binary optics 3.

【0028】[0028]

【発明の効果】上記した説明により明らかなように、本
発明によれば、素子内の各位置に於ける回折格子の配列
方向とピッチとが、入射光の形状及び強度分布と、変換
したい出射光の形状及び強度分布とに対応させて設計さ
れたバイナリーオプティクス及び強度分布とに対応させ
て設計されたバイナリーオプティクス及びこれを用いた
光学系により、ライン状にフォーカスされたレーザビー
ムを容易に、かつエネルギーの損失なく変換することが
できることから、レーザ加工プロセスを有利にすると共
に、効率の高い加工が可能になる。更に、かかる構成の
レーザ装置は、レーザ加工プロセスを有利にすると共
に、効率の高い加工が可能になる。
As is clear from the above description, according to the present invention, the arrangement direction and pitch of the diffraction grating at each position in the element are converted into the shape and intensity distribution of the incident light and the intensity to be converted. By the binary optics designed in correspondence with the shape and intensity distribution of the emitted light and the binary optics designed in correspondence with the intensity distribution and the optical system using the same, a laser beam focused in a line shape can be easily formed. In addition, since the conversion can be performed without loss of energy, the laser processing process is advantageous, and the processing can be performed with high efficiency. Further, the laser device having such a configuration makes the laser processing process advantageous and enables high-efficiency processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく第1の実施形態に於けるバイナ
リーオプティクス及びシリンドリカルレンズによる光路
変換の状態を模式的に示す図であり、(a)は正面図、
(b)は側面図。
FIG. 1 is a diagram schematically showing a state of optical path conversion by a binary optics and a cylindrical lens in a first embodiment according to the present invention, wherein (a) is a front view,
(B) is a side view.

【図2】本発明に基づく第2の実施形態に於けるバイナ
リーオプティクス及び第2のバイナリーオプティクスに
よる光路変換の状態を模式的に示す図であり、(a)は
正面図、(b)は側面図。
FIGS. 2A and 2B are diagrams schematically showing binary optics and a state of optical path conversion by the second binary optics according to a second embodiment of the present invention, wherein FIG. 2A is a front view, and FIG. FIG.

【図3】レーザ加工光学系を模式的に示す図。FIG. 3 is a diagram schematically showing a laser processing optical system.

【図4】本発明に於ける座標の位置関係及び強度分布を
模式的に示す図であり、(a)は平面図、(b)はビー
ムプロフィール。
4A and 4B are diagrams schematically showing a positional relationship of coordinates and an intensity distribution in the present invention, wherein FIG. 4A is a plan view and FIG. 4B is a beam profile.

【図5】従来のバイナリーオプティクスを模式的に示す
図であり、(a)は正面図、(b)は側面図。
5A and 5B are diagrams schematically showing conventional binary optics, wherein FIG. 5A is a front view and FIG. 5B is a side view.

【符号の説明】[Explanation of symbols]

1 入射光 2 入射光強度分布 3 バイナリーオプティクス 4 バイナリーオプティクスからの出射光 5 シリンドリカルレンズ 6 シリンドリカルレンズまたは第2のバイナリーオプ
ティクスからの出射光 7 強度分布 8 第2のバイナリーオプティクス 9 レーザ 10 レーザ出射光 11 ビーム拡大器 12 試料
REFERENCE SIGNS LIST 1 incident light 2 incident light intensity distribution 3 binary optics 4 output light from binary optics 5 cylindrical lens 6 output light from cylindrical lens or second binary optics 7 intensity distribution 8 second binary optics 9 laser 10 laser output light 11 Beam expander 12 samples

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中心部で強度が高く点対称のビーム
を、一軸方向に均一な強度分布に変換するべく前記ビー
ムの光軸を中心として該光軸に直交する面に形成された
回折格子からなるバイナリーオプティクスに於て、 当該バイナリーオプティクス上のある点Pの位置に於け
る回折格子の配列方向は、前記点対称の強度分布と、変
換したい出射光の強度分布とから当該バイナリーオプテ
ィクス上に求められる点Qと前記点Pとを結ぶ方向であ
り、 前記点Qは、当該バイナリーオプティクス上に光軸を原
点とし変換したい均一な強度分布の方向をx軸とする直
角座標を定義し、 前記点Pを通りy軸に平行な直線でビームの断面を二つ
の領域に分割し、各々の領域に於ける強度の積分値の比
で均一な強度分布の幅を内分する点のx座標を点Qのx
座標とし、点Pのy座標を点Qのy座標とするように決
められており、 当該バイナリーオプティクスの前記回折格子にピッチp
が、線分PQの長さをd,光の波長λ、当該バイナリー
オプティクスからの変換したい均一強度分布を得る位置
までの距離hとして、 【数1】p=λ√(1+h2/d2) として表されることを特徴とするバイナリーオプティク
ス。
1. A diffraction grating formed on a plane perpendicular to the optical axis of the beam centered on the optical axis of the beam so as to convert a point-symmetric beam having a high intensity at the center to a uniform intensity distribution in one axis direction. In the binary optics, the arrangement direction of the diffraction grating at the position of a certain point P on the binary optics is obtained on the binary optics from the point-symmetric intensity distribution and the intensity distribution of the output light to be converted. A point connecting the point Q to the point P and the point P, wherein the point Q defines rectangular coordinates with the optical axis as the origin on the binary optics and the direction of the uniform intensity distribution to be converted as the x-axis; The beam cross section is divided into two regions by a straight line passing through P and parallel to the y-axis, and the x-coordinate of a point that internally divides the width of the uniform intensity distribution by the ratio of the integrated value of the intensity in each region is defined as a point. X of Q
The y coordinate of the point P is determined as the y coordinate of the point Q, and the diffraction grating of the binary optics has a pitch p.
Where p is the length of the line segment PQ, d is the wavelength of light, and h is the distance from the binary optics to a position at which a uniform intensity distribution to be converted is obtained. P = λ√ (1 + h 2 / d 2 ) Binary optics characterized by being represented as
【請求項2】 請求項1に記載のバイナリーオプティ
クス及び一軸方向に均一な強度分布を得る位置の途中に
位置し、一軸方向に均一な強度分布を得る位置からの距
離を焦点距離とする、y軸方向を集束するシリンドリカ
ルレンズを配置したことを特徴とする集光光学系。
2. The focal length is a distance between the binary optics according to claim 1 and a position at which a uniform intensity distribution is obtained in one axis direction, and a distance from a position at which a uniform intensity distribution is obtained in one axis direction. A condensing optical system comprising a cylindrical lens that focuses in an axial direction.
【請求項3】 請求項1に記載のバイナリーオプティ
クス及び一軸方向に均一な強度分布を得る位置の途中に
位置し、一軸方向に均一な強度分布を得る位置からの距
離を焦点距離とする、y軸方向を集束する第2のバイナ
リオプティクスを配置したことを特徴とする集光光学
系。
3. The focal length is a distance between the binary optics according to claim 1 and a position at which a uniform intensity distribution is obtained in one axis direction, and a distance from the position at which a uniform intensity distribution is obtained in one axis direction. A condensing optical system characterized by disposing second binary optics for focusing in the axial direction.
【請求項4】 請求項1乃至請求項3のいずれかに記
載のバイナリーオプティクス若しくは集光光学系を集光
光学系として備えたことを特徴とするレーザ加工装置。
4. A laser processing apparatus comprising the binary optics or the focusing optical system according to claim 1 as a focusing optical system.
JP9004662A 1997-01-14 1997-01-14 Binary optics and laser working device using the same Withdrawn JPH10197709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9004662A JPH10197709A (en) 1997-01-14 1997-01-14 Binary optics and laser working device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9004662A JPH10197709A (en) 1997-01-14 1997-01-14 Binary optics and laser working device using the same

Publications (1)

Publication Number Publication Date
JPH10197709A true JPH10197709A (en) 1998-07-31

Family

ID=11590151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9004662A Withdrawn JPH10197709A (en) 1997-01-14 1997-01-14 Binary optics and laser working device using the same

Country Status (1)

Country Link
JP (1) JPH10197709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643300B1 (en) 1999-08-04 2003-11-04 Minolta Co., Ltd. Laser irradiation optical system
EP1927880A1 (en) * 2005-09-22 2008-06-04 Sumitomo Electric Industries, Ltd. Laser optical device
US7943885B2 (en) * 2001-09-25 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing semiconductor device
JP2012521339A (en) * 2009-03-20 2012-09-13 コーニング インコーポレイテッド Precision laser marking

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643300B1 (en) 1999-08-04 2003-11-04 Minolta Co., Ltd. Laser irradiation optical system
US7943885B2 (en) * 2001-09-25 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing semiconductor device
US8686315B2 (en) 2001-09-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US9748099B2 (en) 2001-09-25 2017-08-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US10366885B2 (en) 2001-09-25 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US10910219B2 (en) 2001-09-25 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
EP1927880A1 (en) * 2005-09-22 2008-06-04 Sumitomo Electric Industries, Ltd. Laser optical device
EP1927880A4 (en) * 2005-09-22 2010-10-20 Sumitomo Electric Industries Laser optical device
JP2012521339A (en) * 2009-03-20 2012-09-13 コーニング インコーポレイテッド Precision laser marking
US9302346B2 (en) 2009-03-20 2016-04-05 Corning, Incorporated Precision laser scoring

Similar Documents

Publication Publication Date Title
TWI273288B (en) Multipoint lump homogenizing optical system
JPH07227686A (en) Optical transmitter device and light irradiation method
JPH02295692A (en) Laser processing device
JPH0961610A (en) Binary optics, and light convergence optical system and laser machining device using binary optics
KR100491558B1 (en) Light projecting device and light projecting method
CN112782799A (en) Diffractive optical element and system for generating a focused flat-topped light spot beam
JPH10282450A (en) Binary optics and laser beam machining device
KR20190072701A (en) F-theta lens with diffractive optical element and optical system including the f-theta lens
KR100659438B1 (en) Apparatus and method for laser processing
CN107643596A (en) The diffraction axis axicon lens system and its Diode laser imaging method of a kind of binary zone plate form
US5982806A (en) Laser beam converter for converting a laser beam with a single high-order transverse mode into a laser beam with a desired intensity distribution and laser resonator for producing a laser beam with a single high-order transverse mode
JPH0961611A (en) Binary optics and laser beam machine using binary optics
JPH10197709A (en) Binary optics and laser working device using the same
JPH0727993A (en) Optical system with uniformalized light beam
CN115113409A (en) Linear flat-top light spot generation system, method and equipment based on Dammann grating
JP3656371B2 (en) Optical processing equipment
JPH07221000A (en) Laser exposure lithography apparatus
JP3549331B2 (en) Binary optics
JPH0498214A (en) Device for irradiating with laser beam
JP3285957B2 (en) Optical device
KR100296386B1 (en) Method and apparatus for transforming laser beam profile and method for processing optical fiber grating
JP4022355B2 (en) LASER PROCESSING DEVICE, LASER PROCESSING METHOD, AND OPTICAL WAVEGUIDE MANUFACTURING METHOD BY THIS PROCESSING METHOD
JPH112763A (en) Illumination optical system for laser beam machine
JP2003220488A (en) Laser beam machining method and machine
JPH10282363A (en) Optical fiber light guide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406