JPH10282450A - Binary optics and laser beam machining device - Google Patents

Binary optics and laser beam machining device

Info

Publication number
JPH10282450A
JPH10282450A JP9083969A JP8396997A JPH10282450A JP H10282450 A JPH10282450 A JP H10282450A JP 9083969 A JP9083969 A JP 9083969A JP 8396997 A JP8396997 A JP 8396997A JP H10282450 A JPH10282450 A JP H10282450A
Authority
JP
Japan
Prior art keywords
point
intensity distribution
binary optics
axis
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9083969A
Other languages
Japanese (ja)
Inventor
Satoru Yamaguchi
哲 山口
Masashi Oikawa
昌志 及川
Katsuhiro Minamida
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9083969A priority Critical patent/JPH10282450A/en
Publication of JPH10282450A publication Critical patent/JPH10282450A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make a laser machining process advantageous and to enable efficient machining by designating the arraying direction and the pitch of diffraction grating at each position on a binary optics corresponding to the shape and the intensity distribution of incident light the straight, belt-like of desired intensity distribution of an emitted light to convert. SOLUTION: A laser beam forms a circular beam shape and is magnified by a beam magnifier before entering the binary optics 3 to enter to match its optical axis with the center of the optics. At the time of setting the length of a line segment PQ to be (d) and the wavelength of light to be λ, a distance to the position of obtaining desired intensity distribution from the optics 3 to be (h), the pitch (p) is expressed as p=λ√(1+h<2> /d<2> ) at the diffraction grating of this optics 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光の強度分
布を両端で高く中央で低いM字型に変換して直線もしく
は帯形状のビームに整形する光学素子及びそれを用いた
集光光学系及びそれを用いてより望ましい加工を施すこ
とを可能とするレーザ加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element for converting an intensity distribution of a laser beam into an M-shape which is high at both ends and low at a center and shapes the beam into a linear or band-shaped beam, and a condensing optical system using it Further, the present invention relates to a laser processing apparatus capable of performing more desirable processing using the same.

【0002】[0002]

【従来の技術】バイナリーオプティクスはガラス基板の
表面に刻まれた回折格子により集光する光学素子である
(G. J. Swanson et al., US Patent 4895790, (199
0))。図6に示されているように、バイナリーオプティ
クスの断面の構造は光の波長オーダーの階段状になって
おり、進行する光の波面は階段の厚みの違いによりその
進行方向が変えられる。即ち、光の透過長が隣の階段と
異なるために、光の位相がずれ、光の干渉効果により回
折して光路が曲げられる。階段の繰り返しピッチは光路
長を一波長だけ違える幅として与えられる。YAGレー
ザー光を集光する目的のバイナリーオプティクスはその
階段構造として幅が数μm、厚さが1μm程度のもので
ある。通常のバイナリーオプティクスは図6のように同
心円状のパターンよりなっており、凸レンズのような単
レンズの機能を有している。凸レンズ機能のバイナリー
オプティクスは、入射した平行光線を一点につまり焦点
に集めるように働く。このような機能をバイナリーオプ
ティクスのピッチp(r)と中心からの距離rとの関係
は、例えば、
2. Description of the Related Art Binary optics is an optical element that focuses light by a diffraction grating cut on the surface of a glass substrate (GJ Swanson et al., US Patent 4895790, (199)
0)). As shown in FIG. 6, the cross-sectional structure of the binary optics has a stepped shape in the order of the wavelength of light, and the traveling direction of the wavefront of traveling light is changed by the difference in the thickness of the step. That is, since the transmission length of the light is different from that of the adjacent steps, the phase of the light is shifted, and the light path is bent by diffraction due to the light interference effect. The repetition pitch of the stairs is given as a width that changes the optical path length by one wavelength. The binary optics for condensing the YAG laser light has a stepped structure having a width of several μm and a thickness of about 1 μm. Ordinary binary optics has a concentric pattern as shown in FIG. 6 and has the function of a single lens such as a convex lens. The binary optics of the convex lens function works to collect the incident parallel light rays at one point, that is, at a focal point. The relationship between the pitch p (r) of binary optics and the distance r from the center is as follows.

【0003】[0003]

【数3】p(r)=λ√(1+f2/r2) として表される。ここで、λはレーザ光の波長、fは焦
点距離である。このようなバイナリーオプティクスにビ
ーム形状が円形のレーザ光を入射すると、バイナリーオ
プティクスからの出射光はどの位置においてもビーム形
状が円形であり、強度分布もやはりガウス型である。
## EQU3 ## It is expressed as p (r) = λf (1 + f 2 / r 2 ). Here, λ is the wavelength of the laser beam, and f is the focal length. When a laser beam having a circular beam shape is incident on such binary optics, the beam emitted from the binary optics has a circular beam shape at any position, and the intensity distribution is also Gaussian.

【0004】レーザ発振器を用いてレーザ加工を行う場
合、単にレーザ光を集束して照射することが一般的であ
る。この場合、通常は集束されたビームスポット形状は
円形であるが、加工する対象によってはビーム形状が円
形以外の所望の形状、例えば矩形であり、かつその強度
分布が可及的に均一になっていることが望ましいことが
ある。その場合にはレーザ光をビーム拡大した後、矩形
の形状をした開口を通し、レンズで集束して矩形のビー
ムスポット形状を得ていた。
When laser processing is performed using a laser oscillator, it is common to simply focus and irradiate laser light. In this case, the focused beam spot shape is usually circular, but depending on the object to be processed, the beam shape is a desired shape other than circular, for example, rectangular, and its intensity distribution is as uniform as possible. May be desirable. In this case, the laser beam is expanded, then passed through a rectangular opening, and focused by a lens to obtain a rectangular beam spot shape.

【0005】しかしながら、この方法では開口を通して
ビームの中央部分の強度の高い部分のみを取り出してい
たため、開口から外れた光線はロスとなり効率の面で問
題があった。しかも開口の形状によっては強度が不均一
になり易い。
However, in this method, only the high-intensity portion at the center of the beam is taken out through the aperture, so that the light rays deviating from the aperture are lost, and there is a problem in efficiency. In addition, the strength tends to be uneven depending on the shape of the opening.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる状況
に鑑みてなされたものであり、ビーム形状が円形で強度
分布が山型のレーザ光からビーム形状が直線もしくは帯
形状をなし、長手方向の強度分布が両端で高く中央で低
いM字型をなすレーザビームを効率よく得ることが可能
なバイナリーオプティクス、または集光光学系を提供す
ること及び上記バイナリーオプティクス、または集光光
学系を用いて効果的なレーザ加工を可能とするレーザ加
工装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a laser beam having a circular beam shape and an intensity distribution having a mountain shape has a linear or band-like beam shape, and has a longitudinal direction. The present invention provides binary optics or a focusing optical system capable of efficiently obtaining an M-shaped laser beam whose intensity distribution is high at both ends and low at the center, and using the binary optics or the focusing optical system. It is an object of the present invention to provide a laser processing device that enables effective laser processing.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明では、回折格子よりなるバイナリーオプテ
ィクスに於て、当該バイナリーオプティクス上の各位置
における回折格子の配列方向とピッチとが、入射光の形
状及び強度分布と、変換したい出射光の直線もしくは帯
形状及び所望の強度分布に対応させて設計したバイナリ
ーオプティクス及びこれを用いた集光光学系並びにレー
ザ加工装置を提供する。
In order to achieve the above object, according to the present invention, in a binary optics comprising a diffraction grating, an arrangement direction and a pitch of the diffraction grating at each position on the binary optics are as follows. Provided are binary optics designed to correspond to the shape and intensity distribution of incident light, the straight or band shape of output light to be converted, and a desired intensity distribution, and a condensing optical system and laser processing apparatus using the same.

【0008】レーザ発振器から出射したレーザ光は細い
ので、例えば焦点距離の異なる2枚のレンズを組み合わ
せることにより構成されるビーム拡大器を通じて拡大さ
れ、平行光に変換された後、バイナリーオプティクスに
到達して回折される。その回折格子のピッチをpとする
と、平行光線が通過したときに、
Since the laser light emitted from the laser oscillator is thin, the laser light is expanded through a beam expander constituted by combining two lenses having different focal lengths, converted into parallel light, and then reaches binary optics. Is diffracted. Assuming that the pitch of the diffraction grating is p, when a parallel light beam passes,

【0009】[0009]

【数4】cot-1√((p/λ)2−1) の回折角だけ、進行方向を回折格子の配列方向、即ち格
子の延在方向と直交する方向に変えたビームに変換され
る。いま、レーザビームがガウス型の強度分布を持つと
すると、バイナリーオプティクスを通過したとき、中央
部で高く周辺部で低い強度分布からなるレーザビーム
は、バイナリーオプティクスに刻まれたパターンによ
り、各位置でそれぞれの方向に光の進行方向が変えら
れ、バイナリーオプティクスから距離hだけ離れた位置
では、変換したい出射光の直線もしくは帯形状及び長手
方向にM字型強度分布のレーザビームスポットが得られ
る。
## EQU4 ## The beam is converted by a diffraction angle of cot -1 √ ((p / λ) 2 -1) into a beam whose traveling direction is changed to the direction of arrangement of the diffraction grating, that is, the direction orthogonal to the direction in which the grating extends. . Now, assuming that the laser beam has a Gaussian intensity distribution, when passing through binary optics, a laser beam having a high intensity distribution at the center and a low intensity at the periphery will have a pattern engraved on the binary optics at each position. The traveling direction of the light is changed in each direction, and at a position apart from the binary optics by a distance h, a laser beam spot having an M-shaped intensity distribution is obtained in the straight or band shape of the emitted light to be converted and in the longitudinal direction.

【0010】[0010]

【発明の実施の形態】以下に、本発明の好適な実施形態
について添付の図面を参照して詳しく説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0011】図1に本発明の第1の実施例に於けるバイ
ナリーオプティクスによる光路変換の模式図を示す。バ
イナリーオプティクス3は半導体微細加工技術を利用
し、石英基板(直径100mm)にマスクをかけ露光し
た後、エッチングして図1に示すような断面形状に作製
される。
FIG. 1 is a schematic diagram showing an optical path conversion by binary optics in a first embodiment of the present invention. The binary optics 3 is manufactured by using a semiconductor fine processing technology, exposing a quartz substrate (100 mm in diameter) with a mask, and then etching the quartz substrate to form a cross-sectional shape as shown in FIG.

【0012】このようなバイナリーオプティクスに入射
する光源としては平均出力500Wのレーザ加工用のN
d:YAGレーザが用いられる。レーザ光はビーム形状
が円形をなし、バイナリーオプティクス3に入射する前
にビーム拡大器で拡大されその光軸がバイナリーオプテ
ィクス3の中心Oと一致するように入射する。その入射
光強度分布I(r)は、rを中心からの距離、aを係
数、wをビーム半径として、次式に示すようなガウス型
強度分布となっている。
As a light source incident on such binary optics, an N output for laser processing with an average output of 500 W is used.
A d: YAG laser is used. The laser beam has a circular beam shape, is expanded by a beam expander before being incident on the binary optics 3, and is incident so that its optical axis coincides with the center O of the binary optics 3. The incident light intensity distribution I (r) is a Gaussian intensity distribution as shown in the following equation, where r is the distance from the center, a is a coefficient, and w is the beam radius.

【0013】[0013]

【数5】I(r)=aexp(−r2/w2) バイナリーオプティクス3上の点P(図1(a)、図4
(a))に入射した光線は、回折されて、バイナリーオ
プティクス3から距離hだけ離れた位置(図1の照射位
置8)に到達し、その位置に於ける光軸と垂直な面内に
て、バイナリーオプティクス3上の点Q(図4(a))
を光軸と平行に距離hだけ並進した位置Q’(図1
(a))に到達したとする。その位置でパワー密度分布
がx軸方向にM字型の強度分布を有するビームプロフィ
ールを得るように点Qを決めてやれば良い。光線が面8
上の点Qに対応する位置に到達するためには、バイナリ
ーオプティクス3の点Pに於ける回折格子の配列方向、
即ち格子の延在方向を線分PQの方向に一致させ、さら
に回折格子のピッチpを、
I (r) = aexp (−r 2 / w 2 ) A point P on the binary optics 3 (FIG. 1 (a), FIG. 4)
The light beam incident on (a)) is diffracted and reaches a position (irradiation position 8 in FIG. 1) away from the binary optics 3 by a distance h, and in a plane perpendicular to the optical axis at that position. , Point Q on binary optics 3 (FIG. 4 (a))
Is translated Q by a distance h in parallel with the optical axis (FIG. 1).
It is assumed that (a)) has been reached. At that position, the point Q may be determined so that a beam profile having a power density distribution having an M-shaped intensity distribution in the x-axis direction is obtained. Ray 8
In order to reach the position corresponding to the above point Q, the arrangement direction of the diffraction grating at the point P of the binary optics 3,
That is, the extending direction of the grating is made to coincide with the direction of the line segment PQ, and the pitch p of the diffraction grating is

【0014】[0014]

【数6】p=λ√(1+h2/d2) とすれば良い。ここで、dは距離PQである。Equation 6: p = λ = (1 + h 2 / d 2 ) Here, d is the distance PQ.

【0015】また、照射位置で、x軸に関して強度分布
が両端で高く中央で低いM字型であるビームプロフィー
ル7を得るための、点Pと点Qの関係は次のように決め
られる。即ち、図4(a)に於て、バイナリーオプティ
クス上に光軸を原点とする直角座標を定義し、前記点P
(x0,y0)を通りy軸に平行な直線でビーム断面を二
つの領域に分割し、各々の領域に於ける強度の積分値
m、nを、
Further, at the irradiation position, the relationship between the points P and Q for obtaining an M-shaped beam profile 7 whose intensity distribution is high at both ends and low at the center with respect to the x-axis is determined as follows. That is, in FIG. 4A, rectangular coordinates with the optical axis as the origin are defined on the binary optics, and the point P
The beam cross section is divided into two regions by a straight line passing through (x0, y0) and parallel to the y-axis, and the integral values m and n of the intensity in each region are calculated as

【0016】[0016]

【数7】 (Equation 7)

【0017】[0017]

【数8】 から求め、その比でx軸方向に関してM字型の強度分布
を内分する点のx座標x1を点Qのx座標とし、点Pの
y座標を点Qのy座標とするように決められる。即ち、
M字型の強度分布関数を、
(Equation 8) The x coordinate x 1 of a point that internally divides the M-shaped intensity distribution in the x-axis direction at that ratio is determined as the x coordinate of the point Q, and the y coordinate of the point P is determined as the y coordinate of the point Q. Can be That is,
M-shaped intensity distribution function,

【0018】[0018]

【数9】I=f(x) とすると、x1Assuming that I = f (x), x 1 is

【0019】[0019]

【数10】 (Equation 10)

【0020】[0020]

【数11】 を満足するように決められ、点Qの座標は[Equation 11] And the coordinates of the point Q are

【0021】[0021]

【数12】(x1,y0) で与えられる。(X 1 , y 0 )

【0022】以下、d=x1−x0 として、p=λ√
(1+h2/d2)に従って、点Pに入射した光線が点
Q’に到達するよう、バイナリーオプティクスの点Pに
於ける回折格子の配列方向を線分PQの方向に一致さ
せ、回折格子のピッチpを決めてやれば良い。
Hereinafter, assuming that d = x 1 −x 0 , p = λ√
According to (1 + h 2 / d 2 ), the arrangement direction of the diffraction grating at the point P of the binary optics is made to coincide with the direction of the line segment PQ so that the light beam incident on the point P reaches the point Q ′. What is necessary is just to determine the pitch p.

【0023】照射位置を通過する光の強度はx軸と平行
な方向にM字型の強度分布となる。
The intensity of light passing through the irradiation position has an M-shaped intensity distribution in a direction parallel to the x-axis.

【0024】バイナリーオプティクスと照射位置との間
にy軸と平行な方向に曲率がついたシリンドリカルレン
ズ5を挿入すると、x軸と平行にラインフォーカスされ
る。そして、ライン上はM字型の強度分布となってい
る。
When a cylindrical lens 5 having a curvature in a direction parallel to the y-axis is inserted between the binary optics and the irradiation position, line focus is performed in parallel with the x-axis. The line has an M-shaped intensity distribution.

【0025】このように、バイナリーオプティクスの回
折格子のピッチを、入射光の強度分布とバイナリーオプ
ティクス上の位置に応じて定めてやることにより、シリ
ンドリカルレンズと組み合わせた時、照射位置に於て所
望の強度分布のビームプロフィールでラインフォーカス
させることができる。また、このようなレーザ光を用い
て表面加工処理や溶接加工ができる。
As described above, by determining the pitch of the diffraction grating of the binary optics according to the intensity distribution of the incident light and the position on the binary optics, when combined with a cylindrical lens, the desired pitch at the irradiation position is obtained. Line focus can be achieved with the beam profile of the intensity distribution. Surface processing and welding can be performed using such a laser beam.

【0026】図2に本発明の第2の実施例に於けるバイ
ナリーオプティクスによる光路変換の状態を模式的に示
す。
FIG. 2 schematically shows a state of optical path conversion by binary optics in the second embodiment of the present invention.

【0027】バイナリーオプティクス上の入射光の位置
Pに対する前記の点Qの座標は次のように決められる。
即ち、x座標は前記で求めたx1に等しい。y座標は、
前記点P(x0,y0)を通りx軸に平行な直線でビーム断
面を二つの領域に分割し、各々の領域に於ける強度の積
分値m’、n’を、
The coordinates of the point Q with respect to the position P of the incident light on the binary optics are determined as follows.
That is, the x coordinate is equal to x 1 obtained above. The y coordinate is
The beam cross section is divided into two regions by a straight line passing through the point P (x 0 , y 0 ) and parallel to the x-axis, and the integrated values m ′ and n ′ of the intensity in each region are calculated as

【0028】[0028]

【数13】 (Equation 13)

【0029】[0029]

【数14】 から求め、その比でy軸方向に関して均一な強度分布を
内分する点のy座標y1を点Qのy座標とするように決
められる。
[Equation 14] The y coordinate y 1 of the point that internally divides the uniform intensity distribution in the y-axis direction at that ratio is determined as the y coordinate of the point Q.

【0030】[0030]

【数15】 (Equation 15)

【0031】即ち、点Qの座標は、That is, the coordinates of the point Q are

【0032】[0032]

【数16】(x1,y1) で与えられる。(X 1 , y 1 ).

【0033】以下、dx=x1−x0、dy=y1−y0、線
分PQの長さをdとすると、
In the following, if d x = x 1 -x 0 , d y = y 1 -y 0 , and the length of the line segment PQ is d,

【0034】[0034]

【数17】 [Equation 17]

【0035】に従って、点Pに入射した光線が点Q’に
到達するよう、バイナリーオプティクスの点Pに於ける
回折格子の配列方向を線分PQの方向に一致させ、回折
格子のピッチpを決めてやれば良い。
Accordingly, the arrangement direction of the diffraction grating at the point P of the binary optics is made to coincide with the direction of the line segment PQ so that the light beam incident on the point P reaches the point Q ′, and the pitch p of the diffraction grating is determined. Just do it.

【0036】照射位置を通過する光は、その形状が帯状
であり、その強度はx軸と平行な方向にM字型の強度分
布、y軸と平行な方向に均一な強度分布となる。
The light passing through the irradiation position has a band-like shape, and has an M-shaped intensity distribution in a direction parallel to the x-axis and a uniform intensity distribution in a direction parallel to the y-axis.

【0037】このように、バイナリーオプティクスの回
折格子のピッチを、入射光の強度分布とバイナリーオプ
ティクス上の位置に応じて定めてやることにより、照射
位置に於て所望の強度分布のビームプロフィールで帯状
に照射することができる。また、このようなレーザ光を
用いて表面加工処理ができる。
As described above, the pitch of the diffraction grating of the binary optics is determined according to the intensity distribution of the incident light and the position on the binary optics. Can be irradiated. Further, surface processing can be performed using such a laser beam.

【0038】図3に、上記したバイナリーオプティクス
を集光光学系に組み込み、レーザ加工装置として使用す
る本発明の第3の実施例の模式図を示す。バイナリーオ
プティクス3にレーザビームを入射するためにビーム拡
大器を使用している。尚、バイナリーオプティクスがy
軸と平行な方向に均一な強度分布に変換する機能をも有
する場合はシリンドリカルレンズ5は用いない。
FIG. 3 is a schematic view of a third embodiment of the present invention in which the above-described binary optics is incorporated in a condensing optical system and used as a laser processing apparatus. A beam expander is used to make the laser beam incident on the binary optics 3. Note that the binary optics is y
The cylindrical lens 5 is not used when it also has a function of converting into a uniform intensity distribution in a direction parallel to the axis.

【0039】[0039]

【発明の効果】上記した説明により明らかなように、本
発明によれば、素子内の各位置に於ける回折格子の配列
方向とピッチとが、入射光の形状及び強度分布と、変換
したい出射光の形状及び強度分布とに対応させて設計さ
れたバイナリーオプティクス及び強度分布とに対応させ
て設計されたバイナリーオプティクス及びこれを用いた
光学系により、ライン状にフォーカスされたレーザビー
ムを容易に、かつエネルギーの損失なく変換することが
できることから、レーザ加工プロセスを有利にすると共
に効率の高い加工が可能になる。更に、かかる構成のレ
ーザ装置は、レーザ加工プロセスを有利にすると共に効
率の高い加工が可能になる。
As is clear from the above description, according to the present invention, the arrangement direction and pitch of the diffraction grating at each position in the element are converted into the shape and intensity distribution of the incident light and the intensity to be converted. By the binary optics designed in correspondence with the shape and intensity distribution of the emitted light and the binary optics designed in correspondence with the intensity distribution and the optical system using the same, a laser beam focused in a line shape can be easily formed. In addition, since the conversion can be performed without losing energy, the laser processing process is advantageous and high-efficiency processing can be performed. Further, the laser apparatus having such a configuration makes the laser processing process advantageous and enables high-efficiency processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく第1の実施例に於けるバイナリ
ーオプティクス及びシリンドリカルレンズによる光路変
換の状態を模式的に示す図であり、(a)は正面図、
(b)は側面図。
FIG. 1 is a diagram schematically showing a state of optical path conversion by a binary optics and a cylindrical lens in a first embodiment according to the present invention, wherein (a) is a front view,
(B) is a side view.

【図2】本発明に基づく第2の実施例に於けるバイナリ
ーオプティクスによる光路変換の状態を模式的に示す図
であり、(a)は正面図、(b)は側面図。
FIGS. 2A and 2B are diagrams schematically showing a state of optical path conversion by binary optics in a second embodiment according to the present invention, wherein FIG. 2A is a front view and FIG.

【図3】レーザ加工光学系を模式的に示す図。FIG. 3 is a diagram schematically showing a laser processing optical system.

【図4】本発明に於ける座標の位置関係及び強度分布を
模式的にに示す図であり、(a)は平面図、(b)はビ
ームプロフィール。
4A and 4B are diagrams schematically showing a positional relationship of coordinates and an intensity distribution in the present invention, wherein FIG. 4A is a plan view and FIG. 4B is a beam profile.

【図5】本発明に於ける座標の位置関係及び強度分布を
模式的にに示す図であり、(a)は平面図、(b)はビ
ームプロフィール。
5A and 5B are diagrams schematically showing a positional relationship of coordinates and an intensity distribution in the present invention, wherein FIG. 5A is a plan view and FIG. 5B is a beam profile.

【図6】従来のバイナリーオプティクスを模式的に示す
図であり、(a)は正面図、(b)は側面図。
6A and 6B are diagrams schematically showing conventional binary optics, wherein FIG. 6A is a front view and FIG. 6B is a side view.

【符号の説明】[Explanation of symbols]

1 入射光 2 入射光強度分布 3 バイナリーオプティクス 4 バイナリーオプティクスからの出射光 5 シリンドリカルレンズ 6 シリンドリカルレンズからの出射光 7 強度分布 8 照射位置 9 レーザ 10 レーザ出射光 11 ビーム拡大器 12 試料 DESCRIPTION OF SYMBOLS 1 Incident light 2 Incident light intensity distribution 3 Binary optics 4 Emitted light from binary optics 5 Cylindrical lens 6 Emitted light from cylindrical lens 7 Intensity distribution 8 Irradiation position 9 Laser 10 Laser emitted light 11 Beam expander 12 Sample

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中心部で強度が高く点対称のビーム
を、一軸方向においてその強度分布が両端で高く中央で
低いM字型をなす強度分布に変換するべく、前記ビーム
の光軸を中心として該光軸に直交する面に形成された回
折格子からなるバイナリーオプティクスに於て、 当該バイナリーオプティクス上のある点Pの位置に於け
る回折格子の配列方向は、前記点対称の強度分布と、変
換したい出射光の強度分布とから当該バイナリーオプテ
ィクス上に求められる点Qと前記点Pとを結ぶ方向であ
り、 前記点Qは、当該バイナリーオプティクス上に光軸を原
点とし変換したい強度分布の方向をx軸とする直角座標
を定義し、前記点Pを通りy軸に平行な直線でビームの
断面を二つの領域に分割し、各々の領域に於ける強度の
積分値の比で所望の強度分布を内分する点のx座標を点
Qのx座標とし、点Pのy座標を点Qのy座標とするよ
うに決められており、 当該バイナリーオプティクスの前記回折格子にピッチp
が、線分PQの長さをd,光の波長λ、当該バイナリー
オプティクスからの所望の強度分布を得る位置までの距
離hとして、 【数1】p=λ√(1+h2/d2) として表されることを特徴とするバイナリーオプティク
ス。
1. A point-symmetric beam having a high intensity at a central portion is converted into an M-shaped intensity distribution whose intensity distribution is high at both ends and low at the center in a uniaxial direction with respect to the optical axis of the beam. In binary optics comprising a diffraction grating formed on a plane perpendicular to the optical axis, the arrangement direction of the diffraction grating at the position of a certain point P on the binary optics is determined by the point-symmetric intensity distribution and the conversion. Is the direction connecting the point P and the point P obtained on the binary optics from the intensity distribution of the emitted light to be obtained, and the point Q is the direction of the intensity distribution to be converted on the binary optics with the optical axis as the origin. Define a rectangular coordinate with the x axis, divide the beam cross section into two regions by a straight line passing through the point P and parallel to the y axis, and obtain a desired intensity by a ratio of integral values of the intensity in each region. The x-coordinate of a point which internally divides the fabric is x-coordinate of the point Q, are determined in a y-coordinate of the point P to the y-coordinate of the point Q, the pitch p in the diffraction grating of the binary optics
Where p is the length of the line segment PQ, d is the wavelength of light, and h is the distance from the binary optics to the position where the desired intensity distribution is obtained, and p = λ√ (1 + h 2 / d 2 ). Binary optics characterized by being represented.
【請求項2】 請求項1に記載のバイナリーオプティ
クス及び所望の強度分布を得る位置の途中に位置し、所
望の強度分布を得る位置からの距離を焦点距離とする、
y軸方向を集束するシリンドリカルレンズを配置したこ
とを特徴とする集光光学系。
2. The focal length is a distance between the binary optics according to claim 1 and a position at which a desired intensity distribution is obtained, and a distance from the position at which the desired intensity distribution is obtained.
A condensing optical system comprising a cylindrical lens for focusing in the y-axis direction.
【請求項3】 中心部で強度が高く点対称のビーム
を、一軸方向においてその強度分布が両端で高く中央で
低いM字型をなし、さらにその方向と直交する軸方向に
おいては均一な強度分布に変換するべく、前記ビームの
光軸を中心として該光軸に直交する面に形成された回折
格子からなるバイナリーオプティクスに於て、 当該バイナリーオプティクス上のある点Pの位置に於け
る回折格子の配列方向は、前記点対称の強度分布と、変
換したい出射光の強度分布とから当該バイナリーオプテ
ィクス上に求められる点Qと前記点Pとを結ぶ方向であ
り、 前記点Qは、当該バイナリーオプティクス上に光軸を原
点とし変換したいM字型強度分布の方向をx軸、均一強
度分布の方向をy軸とする直角座標を定義し、 前記点Pを通りy軸に平行な直線でビームの断面を二つ
の領域に分割し、各々の領域に於ける強度の積分値の比
で所望のM字型強度分布を内分する点のx座標を点Qの
x座標とし、前記点Pを通りx軸に平行な直線でビーム
の断面を二つの領域に分割し、各々の領域に於ける強度
の積分値の比で所望の均一強度分布を内分する点のy座
標を点Qのy座標とするように決められており、 当該バイナリーオプティクスの前記回折格子にピッチp
が、線分PQの長さをd,光の波長λ、当該バイナリー
オプティクスからの所望の強度分布を得る位置までの距
離hとして、 【数2】p=λ√(1+h2/d2) として表されることを特徴とするバイナリーオプティク
ス。
3. A point-symmetric beam having a high intensity at the center, an M-shaped beam whose intensity distribution is high at both ends in the axial direction and low at the center, and is uniform in the axial direction orthogonal to the direction. In the binary optics composed of a diffraction grating formed on a plane perpendicular to the optical axis of the beam, the diffraction grating at a position of a certain point P on the binary optics is converted. The arrangement direction is a direction connecting the point P and the point P obtained on the binary optics from the point symmetric intensity distribution and the intensity distribution of the output light to be converted, and the point Q is on the binary optics. Define the orthogonal coordinates with the optical axis as the origin, the direction of the M-shaped intensity distribution to be converted as the x-axis, and the direction of the uniform intensity distribution as the y-axis, and a straight line passing through the point P and parallel to the y-axis. The cross section of the beam is divided into two regions, and the x coordinate of a point that internally divides the desired M-shaped intensity distribution by the ratio of the integrated value of the intensity in each region is defined as the x coordinate of the point Q. , The beam cross section is divided into two regions by a straight line parallel to the x-axis, and the y coordinate of a point which internally divides the desired uniform intensity distribution is determined by the ratio of the integrated value of the intensity in each region. and the pitch of the diffraction grating of the binary optics is set to p.
Where p is the length of the line segment PQ, d is the wavelength of light, and h is the distance from the binary optics to the position at which the desired intensity distribution is obtained, and p = λ√ (1 + h 2 / d 2 ). Binary optics characterized by being represented.
【請求項4】 請求項1または請求項3に記載のバイ
ナリーオプティクス若しくは請求項2に記載の集光光学
系を集光光学系として備えたことを特徴とするレーザ加
工装置。
4. A laser processing apparatus comprising the binary optics according to claim 1 or 3, or the light-collecting optical system according to claim 2 as a light-collecting optical system.
JP9083969A 1997-04-02 1997-04-02 Binary optics and laser beam machining device Withdrawn JPH10282450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9083969A JPH10282450A (en) 1997-04-02 1997-04-02 Binary optics and laser beam machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9083969A JPH10282450A (en) 1997-04-02 1997-04-02 Binary optics and laser beam machining device

Publications (1)

Publication Number Publication Date
JPH10282450A true JPH10282450A (en) 1998-10-23

Family

ID=13817378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9083969A Withdrawn JPH10282450A (en) 1997-04-02 1997-04-02 Binary optics and laser beam machining device

Country Status (1)

Country Link
JP (1) JPH10282450A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335047A (en) * 2001-05-10 2002-11-22 Hamamatsu Photonics Kk Semiconductor laser device
US6922286B2 (en) 2000-06-16 2005-07-26 Mems Optical, Inc. Off-axis diffractive beam shapers and splitters for reducing sensitivity to manufacturing tolerances
JP2008245833A (en) * 2007-03-29 2008-10-16 Nidek Co Ltd Laser treatment apparatus for ophthalmology
DE102010053781A1 (en) 2010-12-08 2012-06-14 Limo Patentverwaltung Gmbh & Co. Kg Device for converting laser radiation into laser radiation with an M profile
DE102011008192A1 (en) * 2011-01-10 2012-07-12 Limo Patentverwaltung Gmbh & Co. Kg Device for converting laser radiation into laser beam with an M profile
EP3631919A4 (en) * 2016-09-29 2020-12-09 Nlight, Inc. Systems and methods for modifying beam characteristics
JP2021514839A (en) * 2019-01-30 2021-06-17 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド Laser cutting head and laser cutting device for cutting hard and brittle material products
US11173548B2 (en) 2017-04-04 2021-11-16 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
US11331756B2 (en) 2015-11-23 2022-05-17 Nlight, Inc. Fine-scale temporal control for laser material processing
US11465232B2 (en) 2014-06-05 2022-10-11 Nlight, Inc. Laser patterning skew correction
US11858842B2 (en) 2016-09-29 2024-01-02 Nlight, Inc. Optical fiber bending mechanisms

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922286B2 (en) 2000-06-16 2005-07-26 Mems Optical, Inc. Off-axis diffractive beam shapers and splitters for reducing sensitivity to manufacturing tolerances
JP2002335047A (en) * 2001-05-10 2002-11-22 Hamamatsu Photonics Kk Semiconductor laser device
JP2008245833A (en) * 2007-03-29 2008-10-16 Nidek Co Ltd Laser treatment apparatus for ophthalmology
DE102010053781A1 (en) 2010-12-08 2012-06-14 Limo Patentverwaltung Gmbh & Co. Kg Device for converting laser radiation into laser radiation with an M profile
US9448410B2 (en) 2010-12-08 2016-09-20 Limo Patentverwaltung Gmbh & Co. Kg Device for converting laser radiation into laser radiation having an M profile
DE102010053781B4 (en) 2010-12-08 2018-03-01 LIMO GmbH Device for converting laser radiation into laser radiation with an M profile
DE102011008192A1 (en) * 2011-01-10 2012-07-12 Limo Patentverwaltung Gmbh & Co. Kg Device for converting laser radiation into laser beam with an M profile
KR20140004161A (en) * 2011-01-10 2014-01-10 리모 파텐트페어발퉁 게엠베하 운트 코. 카게 Device for converting the profile of a laser beam into a laser beam with a rotationally symmetrical intensity distribution
US11465232B2 (en) 2014-06-05 2022-10-11 Nlight, Inc. Laser patterning skew correction
US11331756B2 (en) 2015-11-23 2022-05-17 Nlight, Inc. Fine-scale temporal control for laser material processing
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
US11794282B2 (en) 2015-11-23 2023-10-24 Nlight, Inc. Fine-scale temporal control for laser material processing
EP3631919A4 (en) * 2016-09-29 2020-12-09 Nlight, Inc. Systems and methods for modifying beam characteristics
US11858842B2 (en) 2016-09-29 2024-01-02 Nlight, Inc. Optical fiber bending mechanisms
US11886052B2 (en) 2016-09-29 2024-01-30 Nlight, Inc Adjustable beam characteristics
US11173548B2 (en) 2017-04-04 2021-11-16 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration
JP2021514839A (en) * 2019-01-30 2021-06-17 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド Laser cutting head and laser cutting device for cutting hard and brittle material products

Similar Documents

Publication Publication Date Title
JP3807374B2 (en) Batch multi-point homogenizing optical system
JP4650837B2 (en) Laser optical device
JP4158481B2 (en) Laser processing method and apparatus, and drilling method using the apparatus
US5148326A (en) Mirror for changing the geometrical form of a light beam
JPH02295692A (en) Laser processing device
KR100487085B1 (en) Illumination optical system and laser processor having the same
JPH10282450A (en) Binary optics and laser beam machining device
KR20010076231A (en) Laser machine
KR101029926B1 (en) Duplication type doe homogenizer optical system
EP0476931B1 (en) Phase shift device and laser apparatus utilizing the same
JPH0961610A (en) Binary optics, and light convergence optical system and laser machining device using binary optics
KR100659438B1 (en) Apparatus and method for laser processing
JP2003053577A (en) Method and device for generating top flat beam and method and device for laser beam machining using the top flat beam
US5982806A (en) Laser beam converter for converting a laser beam with a single high-order transverse mode into a laser beam with a desired intensity distribution and laser resonator for producing a laser beam with a single high-order transverse mode
JPH0961611A (en) Binary optics and laser beam machine using binary optics
CN107643596A (en) The diffraction axis axicon lens system and its Diode laser imaging method of a kind of binary zone plate form
CN115113409B (en) Linear flat-top light spot generation system, method and equipment based on Dammann grating
JPH10197709A (en) Binary optics and laser working device using the same
JP3656371B2 (en) Optical processing equipment
JPH07221000A (en) Laser exposure lithography apparatus
JP2007101844A (en) Diffraction type beam homogenizer
JPH0498214A (en) Device for irradiating with laser beam
JP3549331B2 (en) Binary optics
JP3285957B2 (en) Optical device
KR100296386B1 (en) Method and apparatus for transforming laser beam profile and method for processing optical fiber grating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706