WO2022091992A1 - Terahertz light source, fluid detector, and terahertz wave generating method - Google Patents

Terahertz light source, fluid detector, and terahertz wave generating method Download PDF

Info

Publication number
WO2022091992A1
WO2022091992A1 PCT/JP2021/039209 JP2021039209W WO2022091992A1 WO 2022091992 A1 WO2022091992 A1 WO 2022091992A1 JP 2021039209 W JP2021039209 W JP 2021039209W WO 2022091992 A1 WO2022091992 A1 WO 2022091992A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
lens
light source
optical element
layer
Prior art date
Application number
PCT/JP2021/039209
Other languages
French (fr)
Japanese (ja)
Inventor
誠 中嶋
ウサラ バリン カトリン ペンダン マグ
幹彦 西谷
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2022559104A priority Critical patent/JPWO2022091992A1/ja
Publication of WO2022091992A1 publication Critical patent/WO2022091992A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Definitions

  • the present invention relates to a terahertz light source that emits a terahertz wave based on a laser beam, a fluid detector, and a method for generating a terahertz wave.
  • Terahertz waves refer to electromagnetic waves with a frequency of around 1 THz (wavelength 300 ⁇ m).
  • a terahertz wave refers to an electromagnetic wave of 0.03 THz or more and 30 THz in the frequency domain, and refers to an electromagnetic wave of 10 ⁇ m or more and 10 mm or less in the wavelength domain.
  • Terahertz waves are applied to security technology for checking dangerous goods at airports, for example.
  • the terahertz wave is an element in 6G (6th Generation Mobile Communication System, 6th generation mobile communication system), Beyond 5G, which is the next generation wireless communication system of 5G (5th Generation Mobile Communication System, 5th generation mobile communication system). It is expected to be a major candidate for technology.
  • a terahertz light source having a terahertz radiation layer having a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal in order to emit a terahertz wave based on a laser beam.
  • Patent Document 1 This terahertz radiation layer is formed on a substrate layer containing one of glass, quartz, sapphire, polyethylene terephthalate (PET), silicon and the like. This substrate layer may be composed of metals, insulators, semiconductors and other materials.
  • One aspect of the present invention is to realize a terahertz light source, a fluid detector, and a terahertz wave generation method having a simple and compact configuration for performing optical processing on a terahertz wave.
  • the terahertz light source includes a non-planar optical element in which a non-plane is formed and a terahertz radiation layer that radiates a terahertz wave based on a laser beam.
  • the terahertz radiation layer has a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal, and the terahertz radiation layer is formed on the non-planar optical element. It is characterized by that.
  • the fluid detector according to one aspect of the present invention relates to a pipeline member for flowing a fluid inside and one aspect of the present invention arranged inside the pipeline member. It is characterized by including a terahertz light source and a terahertz wave detector provided on an inner wall of the pipeline member in order to detect a terahertz wave radiated from the terahertz radiation layer of the terahertz light source.
  • the terahertz wave generation method includes a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal.
  • the terahertz radiation layer formed in the non-planar optical element is irradiated with a laser beam for generating a terahertz wave, and the terahertz wave emitted from the terahertz radiation layer is detected based on the laser beam. It is characterized by including a detection step.
  • another terahertz wave generation method emits a terahertz wave based on a non-planar optical element and a laser beam formed on the non-planar optical element. It is characterized by including a step of providing a terahertz light source including a terahertz radiation layer and an irradiation step of irradiating the terahertz light source with the laser beam.
  • a terahertz light source a fluid detector, and a terahertz wave generation method having a simple and compact configuration for performing optical processing on a terahertz wave.
  • FIG. It is a front view of the terahertz light source which concerns on Embodiment 1.
  • FIG. It is a front view of the plano-convex lens provided in the terahertz light source. It is a perspective view of the terahertz radiation zone provided in the said terahertz light source. It is sectional drawing which shows the manufacturing method of the said terahertz light source. It is a figure for demonstrating the operation of the said terahertz light source. It is a figure for demonstrating the operation of the terahertz light source which concerns on a comparative example. It is a front view of the modification of the terahertz light source. It is a front view of the terahertz light source which concerns on Embodiment 2.
  • FIG. 1 It is a front view of the plano-concave lens provided in the terahertz light source. It is a figure for demonstrating the operation of the said terahertz light source. It is a figure for demonstrating the operation of the terahertz light source which concerns on a comparative example. It is a front view of the modification of the terahertz light source which concerns on Embodiment 2. FIG. It is a perspective view of the terahertz light source which concerns on Embodiment 3.
  • FIG. It is a perspective view for demonstrating the operation of the cylinder lens provided in the said terahertz light source. It is a perspective view for demonstrating the operation of the spherical lens which concerns on a comparative example.
  • FIG. 1 It is a figure for demonstrating the operation of the terahertz light source which concerns on a comparative example. It is a figure for demonstrating another operation of the terahertz light source which concerns on Embodiment 3.
  • FIG. It is a figure for demonstrating the operation of the terahertz light source which concerns on a comparative example.
  • FIG. It is a front view of another terahertz light source which concerns on Embodiment 4.
  • FIG. It is a front view of the terahertz light source which concerns on a comparative example.
  • FIG. 1 is a front view of the terahertz light source 1 according to the first embodiment.
  • FIG. 2 is a front view of the plano-convex lens 5 provided in the terahertz light source 1.
  • FIG. 3 is a perspective view of the terahertz radiating zone 2 provided in the terahertz light source 1.
  • the terahertz light source 1 includes a plano-convex lens 5 (non-planar optical element, lens) irradiated with laser light, and a terahertz radiation layer 2 that emits terahertz waves based on the laser light. To prepare for.
  • one of both side surfaces is a convex surface 6 (non-planar), and the other of both side surfaces is a flat surface 7.
  • the convex surface 6 is preferably a spherical surface having a positive focal length.
  • the plano-convex lens 5 is typically used for condensing laser light.
  • the plano-convex lens 5 can be made of a transparent material such as glass, quartz, or plastic. This laser beam may be, for example, visible light, and the plano-convex lens 5 may be a lens for visible light.
  • the terahertz radiation layer 2 is formed on the convex surface 6 of the plano-convex lens 5.
  • the terahertz radiation layer 2 has a non-magnetic layer 3 containing a non-magnetic metal and a ferromagnetic layer 4 laminated on the non-magnetic layer 3 and containing a ferromagnetic metal.
  • the terahertz radiation layer 2 may have a ferromagnetic layer 4 and a non-magnetic layer 3 laminated on the ferromagnetic layer 4.
  • the ferromagnetic metal contains at least one of, for example, Fe, Co, Ni, CoFeB, GdFe and the like.
  • the non-magnetic metal contains at least one of the metals having a large spin-orbit interaction such as Pt, Au, Ru, Cu, Ta, Pd, W, and Al.
  • the ferromagnetic layer 4 is made of Fe and the non-magnetic layer 3 is made of Pt.
  • each of the non-magnetic layer 3 and the ferromagnetic layer 4 is, for example, 5 nm, which is extremely thin.
  • the thickness of the non-magnetic layer 3 and the ferromagnetic layer 4 is preferably 2 nm or more and 5 nm or less from the viewpoint of the intensity of the emitted terahertz wave.
  • the thickness of the non-magnetic layer 3 and the ferromagnetic layer 4 may be 1 nm or more and 20 nm or less.
  • the spin orbital coupling deflects the electrons by the spin hole angle ⁇ , and the terahertz wave is radiated from the terahertz radiation layer 2 in the direction intersecting the interface between the non-magnetic layer 3 and the ferromagnetic layer 4.
  • FIG. 4 is a cross-sectional view showing a method of manufacturing the terahertz light source 1.
  • the terahertz light source 1 As a method for producing the terahertz light source 1, for example, as shown in FIG. 4, first, as shown in FIG. 4, Pt is first formed on the convex surface 6 of the plano-convex lens 5 placed on the glass substrate 23 and the surface of the glass substrate 23 by magnetron sputtering. Sputtering is performed to form the non-magnetic layer 3. Then, Fe is sputtered onto Pt to form the ferromagnetic layer 4.
  • the thicknesses of the non-magnetic layer 3 and the ferromagnetic layer 4 vary depending on the position on the convex surface 6 of the plano-convex lens 5. Therefore, control to reduce such spatial variation in thickness is important, and it is preferable to design and create a spatial filter (spatial mask) in consideration of the variation in thickness. Since the intensity of the terahertz wave changes depending on the thickness of the non-magnetic layer 3 and the ferromagnetic layer 4, the intensity of the terahertz wave can be increased in the plane of the terahertz light source 1 by controlling the thickness of the non-magnetic layer 3 and the ferromagnetic layer 4. It will be possible to adjust. By controlling the beam pattern of sputtering, it is possible to control the thickness of the non-magnetic layer 3 and the ferromagnetic layer 4.
  • a method for producing the terahertz light source As a method for producing the terahertz light source 1, another thin film production method such as MBE (Molecular Beam Epitaxy) may be used.
  • MBE Molecular Beam Epitaxy
  • FIG. 5 is a diagram for explaining the operation of the terahertz light source 1.
  • FIG. 6 is a diagram for explaining the operation of the terahertz light source according to the comparative example.
  • the laser beam is focused by the plano-convex lens 5 and incident on the terahertz radiation layer 2 formed on the convex surface 6 of the plano-convex lens 5.
  • the terahertz radiation layer 2 radiates a terahertz wave to the opposite side of the plano-convex lens 5 based on the laser beam incident from the plano-convex lens 5 side.
  • the terahertz wave emitted from the terahertz radiating zone 2 is focused on the focal point of the plano-convex lens 5. Due to the structure of the plano-convex lens 5, the phase of the laser beam incident on the plano-convex lens 5 is delayed, and the terahertz wave emitted from the terahertz radiation layer 2 is narrowed down.
  • the terahertz light source 1 incorporates the function of a focal lens that collects the generated terahertz wave.
  • the terahertz radiation layer 2 is arranged independently, in order to collect the generated terahertz wave, an optical element for focusing such as a convex lens is used. Will need to be provided separately. In the first place, the lens for terahertz waves has a large chromatic aberration and is not suitable for focusing.
  • the non-magnetic layer 3 is formed on the convex surface 6 of the plano-convex lens 5, and the ferromagnetic layer 4 is formed on the non-magnetic layer 3.
  • the ferromagnetic layer 4 may be formed on the convex surface 6 and the non-magnetic layer 3 may be formed on the ferromagnetic layer 4.
  • the terahertz radiation layer 2 of the terahertz light source 1 is configured to have a large diameter and the terahertz wave radiated from the large diameter terahertz radiation layer 2 has a radiation intensity distribution pattern according to the emission position, the radiation intensity of the terahertz wave is provided.
  • Distribution patterns can be used for computational applications such as optical computing.
  • FIG. 7 is a front view of the terahertz light source 1A according to the modified example.
  • the terahertz light source 1A includes a plano-convex lens 5 and a terahertz radiation layer 2 formed on a plane 7 of the plano-convex lens 5.
  • the terahertz radiation zone 2 may be formed on the plane 7 of the plano-convex lens 5.
  • the terahertz radiation layer 2 may be formed on one convex surface of the biconvex lens.
  • the femtosecond laser beam is emitted from the side of the plano-convex lens 5 opposite to the side on which the terahertz radiation layer 2 is formed. However, it may be irradiated from the side where the terahertz radiation layer 2 is formed.
  • FIG. 8 is a front view of the terahertz light source 1B according to the second embodiment.
  • FIG. 9 is a front view of the plano-concave lens 8 provided in the terahertz light source 1B.
  • FIG. 10 is a diagram for explaining the operation of the terahertz light source 1B.
  • FIG. 11 is a diagram for explaining the operation of the terahertz light source according to the comparative example.
  • the terahertz light source 1B includes a plano-concave lens 8 (non-planar optical element, lens) in which one of both side surfaces is concave surface 9 (non-planar surface) and the other side surface is flat surface 10, and the terahertz radiation zone 2 is concave surface 9. Formed on top.
  • the concave surface 9 is preferably a spherical surface having a negative focal length.
  • the plano-concave lens 8 is typically used to extend the laser beam or increase the focal length in the optical system.
  • the laser light passes through the plano-concave lens 8 and is expanded to enter the terahertz radiating zone 2 formed on the concave surface 9 of the plano-concave lens 8.
  • the terahertz radiation layer 2 radiates a terahertz wave on the opposite side of the plano-concave lens 8 based on the laser beam incident from the plano-concave lens 8.
  • the terahertz light source 1B incorporates the function of a beam expander that expands the generated terahertz wave.
  • the terahertz radiation layer 2 is arranged independently, in order to expand the generated terahertz wave, an expansion optical element such as a concave lens is separately provided. It will be necessary to provide it. In the first place, the lens for terahertz waves has a large chromatic aberration and is not suitable for focusing.
  • the non-magnetic layer 3 is formed on the concave surface 9 of the plano-concave lens 8 and the ferromagnetic layer 4 is formed on the non-magnetic layer 3.
  • the ferromagnetic layer 4 may be formed on the concave surface 9, and the non-magnetic layer 3 may be formed on the ferromagnetic layer 4.
  • FIG. 12 is a front view of the terahertz light source 1C according to the modified example of the second embodiment.
  • the terahertz light source 1C includes a plano-concave lens 8 and a terahertz radiation layer 2 formed on a flat surface 10 of the plano-concave lens 8.
  • the terahertz radiation layer 2 may be formed on the plane 10 of the plano-concave lens 8.
  • the terahertz radiation layer 2 may be formed on one concave surface of both concave lenses.
  • the femtosecond laser beam is emitted from the side of the plano-concave lens 8 opposite to the side on which the terahertz radiation layer 2 is formed.
  • a femtosecond laser beam may be irradiated from the side where the terahertz radiation layer 2 is formed.
  • FIG. 13 is a perspective view of the terahertz light source 1D according to the third embodiment.
  • FIG. 14 is a perspective view for explaining the operation of the cylinder lens 11 provided in the terahertz light source 1D.
  • FIG. 15 is a perspective view for explaining the operation of the spherical lens according to the comparative example.
  • FIG. 16 is a diagram for explaining the operation of the terahertz light source according to the comparative example.
  • the terahertz light source 1D includes a cylinder lens 11 (non-planar optical element, lens) in which one of both side surfaces is a half peripheral surface 12 (non-planar surface) and the other side of both side surfaces is a flat surface 13, and the terahertz radiation zone 2 is a flat surface 13. Formed on top. Since refraction occurs in the cylinder lens 11 only along one plane, as shown in FIG. 14, a circular beam spot passing through the cylinder lens 11 from the half peripheral surface 12 toward the plane 13 becomes closer to its focal point. It gradually becomes elliptical and linear.
  • one of the two side surfaces is a spherical surface and the other side of the both side surfaces is a flat surface, and the refraction is uniformly generated.
  • the circular beam spot passing through the spherical lens toward is maintained its circular shape even at the focal position of the spherical lens.
  • the terahertz light source 1D emits light from the terahertz radiation layer 2 based on the femtosecond laser beam emitted from the half peripheral surface 12 side of the cylinder lens 11.
  • the beam of the terahertz wave to be generated is automatically shaped and emitted to the outside of the cylinder lens 11. If a femtosecond laser beam having a circular beam spot is incident on the terahertz radiation layer 2, the beam spot of the terahertz wave emitted from the terahertz radiation layer 2 is shaped into an elliptical shape at the focal position of the cylinder lens 11. ..
  • the terahertz light source according to the comparative example since the terahertz radiation layer 2 is arranged independently, the terahertz wave of the generated circular beam spot is shaped into an elliptical beam spot and collected. In order to illuminate, it is necessary to separately provide a light collecting optical element such as a cylinder lens.
  • the terahertz radiation layer 2 may be formed on the half peripheral surface 12 of the cylinder lens 11. In this case, it is preferable to irradiate the femtosecond laser beam from the plane 13 side of the cylinder lens 11.
  • the cylinder lens 11 may have half peripheral surfaces 12 on both side surfaces.
  • FIG. 17 is a diagram for explaining other operations of the terahertz light source 1D according to the third embodiment.
  • FIG. 18 is a diagram for explaining the operation of the terahertz light source according to the comparative example.
  • a femtosecond laser beam having an elliptical beam spot is emitted from the half-peripheral surface 12 side toward the plane 13 side of the cylinder lens 11.
  • the beam spot of the terahertz wave radiated from the terahertz radiation layer 2 is automatically shaped into a circle at the focal position of the cylinder lens 11.
  • the terahertz light source according to the comparative example since the terahertz radiation layer 2 is arranged independently, the terahertz wave of the generated elliptical beam spot is shaped into a circular beam spot and collected. In order to illuminate, it is necessary to separately provide a light collecting optical element such as a cylinder lens.
  • FIG. 19 is a perspective view of the terahertz light source 1E according to the third embodiment.
  • the terahertz light source 1E includes a parabolic mirror 14 (non-planar optical element), and the terahertz radiation layer 2 is formed on the surface of the parabolic mirror 14.
  • the terahertz radiation layer 2 is formed on the surface of the parabolic mirror 14, the terahertz light source 1E has a built-in function of condensing the collimated light.
  • FIG. 20 is a front view of the terahertz light source 1F according to the fourth embodiment.
  • FIG. 21 is a front view of the terahertz light source according to the comparative example.
  • the terahertz light source 1F includes a parabolic mirror 14 and a parabolic mirror 22 arranged to face the parabolic mirror 14. Then, the terahertz radiation layer 2 is formed on the surface of the parabolic mirror 14.
  • the collimated terahertz wave is directed toward the parabolic mirror 22 along the Y-axis direction. Be radiated. Then, the terahertz wave incident on the parabolic mirror 22 is reflected so as to be focused at the focal position of the parabolic mirror 22 toward the ⁇ X axis direction.
  • the terahertz light source 1F includes a parabolic mirror 14 and a parabolic mirror 22 arranged to face the parabolic mirror 14, and the terahertz radiation layer 2 has a parabolic shape. Since it is formed on the surface of the mirror 14, it incorporates the function of a collimator.
  • the terahertz radiation layer 2 is arranged independently, it is necessary to separately provide parabolic mirrors 14, 22, and 23 in order to collimate the generated terahertz wave. Occurs.
  • the parabolic mirrors 14, 22, and 23 may be any of an ellipsoidal mirror, a hyperboloid mirror, a spherical mirror, and an aspherical mirror.
  • FIG. 22 is a perspective view of the fluid detector 19 according to the fifth embodiment.
  • FIG. 23 is a diagram showing an optical fiber cable 15 provided in the fluid detector 19.
  • FIG. 24 is an enlarged cross-sectional image of part A shown in FIG. 23.
  • FIG. 25 is a cross-sectional view of the fluid detector 19.
  • the fluid detector 19 includes a pipeline member 20 for flowing a fluid inside, and a terahertz light source 1G arranged inside the pipeline member 20.
  • the terahertz light source 1G has an optical fiber cable 15 (non-planar optical element) to which a femtosecond laser beam is irradiated.
  • the optical fiber cable 15 has a core 16 to which a femtosecond laser beam is incident, and a clad 17 formed so as to cover the outer peripheral surface of the core 16.
  • the terahertz radiation layer 2 is formed so as to cover the outer peripheral surface (non-planar surface) of the clad 17.
  • the clad 17 has a through groove 18 for incidenting the femtosecond laser beam incident on the core 16 onto the terahertz radiation layer 2.
  • a plurality of through grooves 18 arranged along the axial direction of the clad 17 are formed along the circumferential direction of the clad 17.
  • the through groove 18 can be formed by removing the clad 17 at a constant pitch along the axial direction.
  • the clad 17 can be made of, for example, acrylic. Further, the clad 17 may be formed of a substance in which the femtosecond laser beam incident on the core 16 is scattered at a constant frequency.
  • the fluid flowing inside the pipeline member 20 includes gas and liquid to be monitored or analyzed.
  • the femtosecond laser beam incident on the core 16 passes through the through groove 18 formed in the clad 17. Then, it is incident on the inner peripheral surface of the terahertz radial layer 2 that covers the outer peripheral surface of the clad 17.
  • the terahertz wave is radiated from the outer peripheral surface of the terahertz radiation layer 2 toward the inner wall of the pipeline member 20.
  • the terahertz wave detector 21 provided on the inner wall of the pipeline member 20 detects the terahertz wave radiated from the outer peripheral surface of the terahertz radiation layer 2. This makes it possible to monitor or analyze the fluid flowing inside the pipeline member 20.
  • the terahertz light source includes a non-planar optical element in which a non-plane is formed and a terahertz radiation layer that radiates a terahertz wave based on a laser beam.
  • the terahertz radiation layer has a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal, and the terahertz radiation layer is formed on the non-planar optical element. It is characterized by that.
  • the terahertz radiation layer having a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal is formed with a non-plane through which laser light passes. It is formed on a planar optical element. Therefore, when the non-planar optical element is irradiated with the laser beam, the terahertz radiation zone formed on the non-planar optical element emits a terahertz wave based on the laser beam.
  • the laser beam When the laser beam is irradiated from the side opposite to the terahertz radiating zone formed on the non-planar optical element, the laser beam is optically processed by the non-planar optical element and incident on the terahertz radiating zone. Next, the terahertz radiating zone emits a terahertz wave based on the incident laser beam. Further, when the laser beam is irradiated from the terahertz radiation layer side formed on the non-planar optical element, the terahertz radiation layer emits a terahertz wave based on the incident laser light.
  • the non-planar optical element on which the terahertz radiating zone is formed applies optical processing to the terahertz wave radiated from the terahertz radiating zone.
  • the terahertz wave optically processed by the non-planar optical element is emitted from the non-planar optical element on the opposite side of the terahertz radiation zone.
  • the laser beam passes through the non-planar optical element and then enters the terahertz radiation zone.
  • the terahertz wave radiated from the terahertz radiative zone is directly radiated to the outside of the terahertz light source without passing through the non-planar optical element. Therefore, it is not necessary for the terahertz wave to pass through the non-planar optical element for the terahertz wave having a large chromatic aberration.
  • the non-planar optical element includes a lens and the terahertz radiation layer is formed on one side surface of the lens.
  • the laser light incident on the terahertz radiating zone or the terahertz wave radiated from the terahertz radiating zone can be optically processed by a lens.
  • the terahertz radiating zone is formed on the side surface opposite to the side surface where the laser beam is incident on the lens.
  • the terahertz wave radiated from the terahertz radiative zone is directly radiated to the outside of the terahertz light source without passing through the lens. Therefore, it is not necessary for the terahertz wave to pass through the lens for the terahertz wave having a large chromatic aberration.
  • the terahertz light source according to one aspect of the present invention preferably includes a plano-convex lens in which one of both side surfaces of the lens is convex and the other side of the lens is flat.
  • the terahertz wave radiated from the terahertz radiation zone can be focused by the plano-convex lens.
  • the terahertz light source according to one aspect of the present invention preferably includes a plano-concave lens in which one of both side surfaces of the lens is concave and the other side of the lens is flat.
  • the terahertz wave radiated from the terahertz radiation zone can be expanded by the plano-concave lens.
  • the terahertz light source according to one aspect of the present invention preferably includes a cylinder lens in which one of both side surfaces of the lens is a half peripheral surface and the other side of the both side surfaces is a flat surface.
  • the terahertz wave emitted from the terahertz radiation zone can be shaped by the cylinder lens.
  • the terahertz light source preferably includes a biconvex lens in which both sides of the lens are convex, or a biconcave lens in which both sides of the lens are concave.
  • the terahertz wave radiated from the terahertz radiation zone can be focused or expanded by a biconvex lens or a biconcave lens.
  • the aspherical optical element includes a mirror, the terahertz radiation layer is formed on the surface of the mirror, and the mirror is a parabolic mirror, an elliptical mirror, or a twin. It is preferable to include at least one of a curved mirror, a spherical mirror, and an aspherical mirror.
  • the beam of the terahertz wave radiated from the terahertz radiative zone can be focused by a mirror and deformed by collimating or the like.
  • the non-planar optical element includes an optical fiber cable, and the optical fiber cable is formed so as to cover a core to which the laser beam is incident and an outer peripheral surface of the core.
  • the terahertz radiation layer is formed so as to cover the outer peripheral surface of the clad, and the clad has a through groove for incidenting a laser beam incident on the core into the terahertz radiation layer. Is preferable.
  • the fluid detector according to one aspect of the present invention relates to a pipeline member for flowing a fluid inside and one aspect of the present invention arranged inside the pipeline member. It is characterized by including a terahertz light source and a terahertz wave detector provided on an inner wall of the pipeline member in order to detect a terahertz wave radiated from the terahertz radiation layer of the terahertz light source.
  • the terahertz wave generation method includes a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal.
  • the terahertz radiation layer formed in the non-planar optical element is irradiated with a laser beam for generating a terahertz wave, and the terahertz wave emitted from the terahertz radiation layer is detected based on the laser beam. It is characterized by including a detection step.
  • another terahertz wave generation method emits a terahertz wave based on a non-planar optical element and a laser beam formed on the non-planar optical element. It is characterized by including a step of providing a terahertz light source including a terahertz radiation layer and an irradiation step of irradiating the terahertz light source with the laser beam.
  • the non-planar optical element includes a lens, and in the irradiation step, the laser beam is emitted from the side opposite to the side on which the terahertz radiation layer is formed. It is preferable to irradiate.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a simple and compact configuration for performing optical processing on a terahertz wave. A terahertz light source (1) is provided with a lens (5) formed with a convex surface (6) for passing laser light, and a terahertz radiating layer (2) for radiating a terahertz wave on the basis of laser light. The terahertz radiating layer (2) comprises a non-magnetic layer (3) and a ferromagnetic layer (4) stacked on the non-magnetic layer (3). The terahertz radiating layer (2) is formed on the lens (5).

Description

テラヘルツ光源、流体検知器、及び、テラヘルツ波生成方法Terahertz light source, fluid detector, and terahertz wave generation method
 本発明は、レーザ光に基づいてテラヘルツ波を放射するテラヘルツ光源、流体検知器、及び、テラヘルツ波生成方法に関する。 The present invention relates to a terahertz light source that emits a terahertz wave based on a laser beam, a fluid detector, and a method for generating a terahertz wave.
 テラヘルツ波は、周波数1THz(波長300μm)前後の電磁波を指す。例えばテラヘルツ波は、周波数領域では0.03THz以上30THzの電磁波を指し、波長領域では10μm以上10mm以下の電磁波を指す。 Terahertz waves refer to electromagnetic waves with a frequency of around 1 THz (wavelength 300 μm). For example, a terahertz wave refers to an electromagnetic wave of 0.03 THz or more and 30 THz in the frequency domain, and refers to an electromagnetic wave of 10 μm or more and 10 mm or less in the wavelength domain.
 テラヘルツ波は、例えば、空港の危険物チェック等のためのセキュリティ技術に応用されている。そして、テラヘルツ波は、5G(5th Generation Mobile Communication System、第5世代移動通信システム)の次世代の無線通信システムである6G(6th Generation Mobile Communication System、第6世代移動通信システム)、Beyond 5Gにおける要素技術の主要な候補として期待されている。 Terahertz waves are applied to security technology for checking dangerous goods at airports, for example. And the terahertz wave is an element in 6G (6th Generation Mobile Communication System, 6th generation mobile communication system), Beyond 5G, which is the next generation wireless communication system of 5G (5th Generation Mobile Communication System, 5th generation mobile communication system). It is expected to be a major candidate for technology.
 レーザ光に基づいてテラヘルツ波を放射するために、非磁性金属を含む非磁性層と、この非磁性層に積層されて強磁性金属を含む強磁性層とを有するテラヘルツ放射層を備えたテラヘルツ光源が従来技術として知られている(特許文献1)。このテラヘルツ放射層は、ガラス、水晶、サファイヤ、ポリエチレンテレフタレート(PolyEthylene Terephthalate、PET)、及びシリコン等のうちの一つを含む基板層の上に形成される。この基板層は、金属、絶縁体、半導体、その他の物質により構成され得る。 A terahertz light source having a terahertz radiation layer having a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal in order to emit a terahertz wave based on a laser beam. Is known as a prior art (Patent Document 1). This terahertz radiation layer is formed on a substrate layer containing one of glass, quartz, sapphire, polyethylene terephthalate (PET), silicon and the like. This substrate layer may be composed of metals, insulators, semiconductors and other materials.
国際公開第2018/017018号パンフレットInternational Publication No. 2018/017018 Pamphlet
 しかしながら、上述のような従来のテラヘルツ光源は、放射したテラヘルツ波に対して収束、拡散等の光学的加工を施すためには、当該光学的加工を施すレンズ等の光学素子を別途設ける必要が生じるので、光学系の構成が複雑になるという問題がある。 However, in the conventional terahertz light source as described above, in order to perform optical processing such as convergence and diffusion on the radiated terahertz wave, it is necessary to separately provide an optical element such as a lens to be subjected to the optical processing. Therefore, there is a problem that the configuration of the optical system becomes complicated.
 本発明の一態様は、テラヘルツ波に対して光学的加工を施すための構成が簡素且つコンパクトなテラヘルツ光源、流体検知器、及び、テラヘルツ波生成方法を実現することを目的とする。 One aspect of the present invention is to realize a terahertz light source, a fluid detector, and a terahertz wave generation method having a simple and compact configuration for performing optical processing on a terahertz wave.
 上記の課題を解決するために、本発明の一態様に係るテラヘルツ光源は、非平面が形成された非平面光学素子と、レーザ光に基づいてテラヘルツ波を放射するテラヘルツ放射層とを備え、前記テラヘルツ放射層が、非磁性金属を含む非磁性層と、前記非磁性層に積層されて強磁性金属を含む強磁性層とを有し、前記テラヘルツ放射層が前記非平面光学素子に形成されることを特徴とする。 In order to solve the above problems, the terahertz light source according to one aspect of the present invention includes a non-planar optical element in which a non-plane is formed and a terahertz radiation layer that radiates a terahertz wave based on a laser beam. The terahertz radiation layer has a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal, and the terahertz radiation layer is formed on the non-planar optical element. It is characterized by that.
 上記の課題を解決するために、本発明の一態様に係る流体検知器は、内部に流体を流すためのパイプライン部材と、前記パイプライン部材の内部に配置された本発明の一態様に係るテラヘルツ光源と、前記テラヘルツ光源のテラヘルツ放射層から放射されたテラヘルツ波を検知するために、前記パイプライン部材の内壁に設けられたテラヘルツ波検知器とを備えることを特徴とする。 In order to solve the above problems, the fluid detector according to one aspect of the present invention relates to a pipeline member for flowing a fluid inside and one aspect of the present invention arranged inside the pipeline member. It is characterized by including a terahertz light source and a terahertz wave detector provided on an inner wall of the pipeline member in order to detect a terahertz wave radiated from the terahertz radiation layer of the terahertz light source.
 上記の課題を解決するために、本発明の一態様に係るテラヘルツ波生成方法は、非磁性金属を含む非磁性層と前記非磁性層に積層されて強磁性金属を含む強磁性層とを有して非平面光学素子に形成されたテラヘルツ放射層に、テラヘルツ波を生成するためのレーザ光を照射する照射工程と、前記レーザ光に基づいて前記テラヘルツ放射層から放射されたテラヘルツ波を検知する検知工程とを包含することを特徴とする。 In order to solve the above problems, the terahertz wave generation method according to one aspect of the present invention includes a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal. The terahertz radiation layer formed in the non-planar optical element is irradiated with a laser beam for generating a terahertz wave, and the terahertz wave emitted from the terahertz radiation layer is detected based on the laser beam. It is characterized by including a detection step.
 上記の課題を解決するために、本発明の一態様に係る他のテラヘルツ波生成方法は、非平面光学素子と、前記非平面光学素子に形成された、レーザ光に基づいてテラヘルツ波を放射するテラヘルツ放射層とを備えるテラヘルツ光源を設ける工程と、前記テラヘルツ光源に、前記レーザ光を照射する照射工程とを包含することを特徴とする。 In order to solve the above problems, another terahertz wave generation method according to one aspect of the present invention emits a terahertz wave based on a non-planar optical element and a laser beam formed on the non-planar optical element. It is characterized by including a step of providing a terahertz light source including a terahertz radiation layer and an irradiation step of irradiating the terahertz light source with the laser beam.
 本発明の一態様によれば、テラヘルツ波に対して光学的加工を施すための構成が簡素且つコンパクトなテラヘルツ光源、流体検知器、及び、テラヘルツ波生成方法を実現することができる。 According to one aspect of the present invention, it is possible to realize a terahertz light source, a fluid detector, and a terahertz wave generation method having a simple and compact configuration for performing optical processing on a terahertz wave.
実施形態1に係るテラヘルツ光源の正面図である。It is a front view of the terahertz light source which concerns on Embodiment 1. FIG. 上記テラヘルツ光源に設けられた平凸レンズの正面図である。It is a front view of the plano-convex lens provided in the terahertz light source. 上記テラヘルツ光源に設けられたテラヘルツ放射層の斜視図である。It is a perspective view of the terahertz radiation zone provided in the said terahertz light source. 上記テラヘルツ光源の作製方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the said terahertz light source. 上記テラヘルツ光源の動作を説明するための図である。It is a figure for demonstrating the operation of the said terahertz light source. 比較例に係るテラヘルツ光源の動作を説明するための図である。It is a figure for demonstrating the operation of the terahertz light source which concerns on a comparative example. 上記テラヘルツ光源の変形例の正面図である。It is a front view of the modification of the terahertz light source. 実施形態2に係るテラヘルツ光源の正面図である。It is a front view of the terahertz light source which concerns on Embodiment 2. FIG. 上記テラヘルツ光源に設けられた平凹レンズの正面図である。It is a front view of the plano-concave lens provided in the terahertz light source. 上記テラヘルツ光源の動作を説明するための図である。It is a figure for demonstrating the operation of the said terahertz light source. 比較例に係るテラヘルツ光源の動作を説明するための図である。It is a figure for demonstrating the operation of the terahertz light source which concerns on a comparative example. 実施形態2に係るテラヘルツ光源の変形例の正面図である。It is a front view of the modification of the terahertz light source which concerns on Embodiment 2. FIG. 実施形態3に係るテラヘルツ光源の斜視図である。It is a perspective view of the terahertz light source which concerns on Embodiment 3. FIG. 上記テラヘルツ光源に設けられたシリンダレンズの動作を説明するための斜視図である。It is a perspective view for demonstrating the operation of the cylinder lens provided in the said terahertz light source. 比較例に係る球面レンズの動作を説明するための斜視図である。It is a perspective view for demonstrating the operation of the spherical lens which concerns on a comparative example. 比較例に係るテラヘルツ光源の動作を説明するための図である。It is a figure for demonstrating the operation of the terahertz light source which concerns on a comparative example. 実施形態3に係るテラヘルツ光源の他の動作を説明するための図である。It is a figure for demonstrating another operation of the terahertz light source which concerns on Embodiment 3. FIG. 比較例に係るテラヘルツ光源の動作を説明するための図である。It is a figure for demonstrating the operation of the terahertz light source which concerns on a comparative example. 実施形態4に係るテラヘルツ光源の正面図である。It is a front view of the terahertz light source which concerns on Embodiment 4. FIG. 実施形態4に係る他のテラヘルツ光源の正面図である。It is a front view of another terahertz light source which concerns on Embodiment 4. FIG. 比較例に係るテラヘルツ光源の正面図である。It is a front view of the terahertz light source which concerns on a comparative example. 実施形態5に係る流体検知器の斜視図である。It is a perspective view of the fluid detector which concerns on Embodiment 5. 上記流体検知器に設けられたテラヘルツ光源の光ファイバーケーブルを示す図である。It is a figure which shows the optical fiber cable of the terahertz light source provided in the said fluid detector. 図23に示されるA部の拡大断面画像である。It is an enlarged cross-sectional image of the part A shown in FIG. 23. 上記流体検知器の断面図である。It is sectional drawing of the said fluid detector.
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
[Embodiment 1]
Hereinafter, one embodiment of the present invention will be described in detail.
 図1は実施形態1に係るテラヘルツ光源1の正面図である。図2はテラヘルツ光源1に設けられた平凸レンズ5の正面図である。図3はテラヘルツ光源1に設けられたテラヘルツ放射層2の斜視図である。 FIG. 1 is a front view of the terahertz light source 1 according to the first embodiment. FIG. 2 is a front view of the plano-convex lens 5 provided in the terahertz light source 1. FIG. 3 is a perspective view of the terahertz radiating zone 2 provided in the terahertz light source 1.
 テラヘルツ光源1は、図1及び図2に示すように、レーザ光が照射される平凸レンズ5(非平面光学素子、レンズ)と、このレーザ光に基づいてテラヘルツ波を放射するテラヘルツ放射層2とを備える。 As shown in FIGS. 1 and 2, the terahertz light source 1 includes a plano-convex lens 5 (non-planar optical element, lens) irradiated with laser light, and a terahertz radiation layer 2 that emits terahertz waves based on the laser light. To prepare for.
 平凸レンズ5は、両側面の一方が凸面6(非平面)であり、両側面の他方が平面7である。凸面6は、正の焦点距離を有する球面であることが好ましい。この平凸レンズ5は、典型的にレーザ光の集光に用いられる。平凸レンズ5は、ガラス、石英、又はプラスチック等の透明材料により構成することができる。このレーザ光は例えば可視光であり、平凸レンズ5は可視光用のレンズであり得る。 In the plano-convex lens 5, one of both side surfaces is a convex surface 6 (non-planar), and the other of both side surfaces is a flat surface 7. The convex surface 6 is preferably a spherical surface having a positive focal length. The plano-convex lens 5 is typically used for condensing laser light. The plano-convex lens 5 can be made of a transparent material such as glass, quartz, or plastic. This laser beam may be, for example, visible light, and the plano-convex lens 5 may be a lens for visible light.
 そして、テラヘルツ放射層2は、平凸レンズ5の凸面6の上に形成される。 Then, the terahertz radiation layer 2 is formed on the convex surface 6 of the plano-convex lens 5.
 テラヘルツ放射層2は、図3に示すように、非磁性金属を含む非磁性層3と、非磁性層3に積層されて強磁性金属を含む強磁性層4とを有する。あるいは、テラヘルツ放射層2は、強磁性層4と、強磁性層4に積層された非磁性層3とを有してもよい。強磁性金属は例えばFe、Co、Ni、CoFeB、及びGdFe等のうちの少なくとも一つを含む。非磁性金属は例えばPt、Au、Ru、Cu、Ta、Pd、W、及びAl等のスピン軌道相互作用の大きな金属のうちの少なくとも一つを含む。本実施形態では、強磁性層4はFeにより構成され、非磁性層3はPtにより構成される。 As shown in FIG. 3, the terahertz radiation layer 2 has a non-magnetic layer 3 containing a non-magnetic metal and a ferromagnetic layer 4 laminated on the non-magnetic layer 3 and containing a ferromagnetic metal. Alternatively, the terahertz radiation layer 2 may have a ferromagnetic layer 4 and a non-magnetic layer 3 laminated on the ferromagnetic layer 4. The ferromagnetic metal contains at least one of, for example, Fe, Co, Ni, CoFeB, GdFe and the like. The non-magnetic metal contains at least one of the metals having a large spin-orbit interaction such as Pt, Au, Ru, Cu, Ta, Pd, W, and Al. In this embodiment, the ferromagnetic layer 4 is made of Fe and the non-magnetic layer 3 is made of Pt.
 非磁性層3及び強磁性層4の厚みは、それぞれ、例えば5nmであって、極めて薄い。非磁性層3及び強磁性層4の厚みは、放射されるテラヘルツ波の強度の観点から、2nm以上5nm以下が好ましい。非磁性層3及び強磁性層4の厚みは、1nm以上20nm以下であってもよい。 The thickness of each of the non-magnetic layer 3 and the ferromagnetic layer 4 is, for example, 5 nm, which is extremely thin. The thickness of the non-magnetic layer 3 and the ferromagnetic layer 4 is preferably 2 nm or more and 5 nm or less from the viewpoint of the intensity of the emitted terahertz wave. The thickness of the non-magnetic layer 3 and the ferromagnetic layer 4 may be 1 nm or more and 20 nm or less.
 このように構成されたテラヘルツ放射層2にフェムト秒のレーザ光が照射されると、図3に示すように、非磁性層3と強磁性層4との間の界面にスピン偏極(Spin polarization)が発生し、強磁性層4から非磁性層3に向かって流れるスピン流jが、非磁性層3と強磁性層4との間の界面と平行な方向に流れるチャージ電流jに変換される逆スピンホール効果(Inverse Spin-Hall Effect、ISHE)が現れる。これにより、スピン軌道結合が、スピンホール角度γにより電子を偏向させ、テラヘルツ波が、非磁性層3と強磁性層4との間の界面と交差する方向に向かってテラヘルツ放射層2から放射される。 When the terahertz radiation layer 2 configured in this way is irradiated with a laser beam of femtoseconds, as shown in FIG. 3, a spin polarization (Spin polarization) occurs at the interface between the non-magnetic layer 3 and the ferromagnetic layer 4. ) Is generated, and the spin current j s flowing from the ferromagnetic layer 4 to the non-magnetic layer 3 is converted into a charge current j c flowing in a direction parallel to the interface between the non-magnetic layer 3 and the ferromagnetic layer 4. Inverse Spin-Hall Effect (ISHE) appears. As a result, the spin orbital coupling deflects the electrons by the spin hole angle γ, and the terahertz wave is radiated from the terahertz radiation layer 2 in the direction intersecting the interface between the non-magnetic layer 3 and the ferromagnetic layer 4. To.
 図4はテラヘルツ光源1の作製方法を示す断面図である。 FIG. 4 is a cross-sectional view showing a method of manufacturing the terahertz light source 1.
 テラヘルツ光源1の作製方法としては、例えば、図4に示すように、まず、ガラス基板23の上に載置した平凸レンズ5の凸面6及びガラス基板23の表面に対してマグネトロンスパッタリングにより、Ptをスパッタリングして非磁性層3を形成する。その後、Pt上にFeをスパッタリングして強磁性層4を形成する。 As a method for producing the terahertz light source 1, for example, as shown in FIG. 4, first, as shown in FIG. 4, Pt is first formed on the convex surface 6 of the plano-convex lens 5 placed on the glass substrate 23 and the surface of the glass substrate 23 by magnetron sputtering. Sputtering is performed to form the non-magnetic layer 3. Then, Fe is sputtered onto Pt to form the ferromagnetic layer 4.
 大口径のテラヘルツ光源1を上記の方法で作製するとき、平凸レンズ5の凸面6上の位置によって非磁性層3、強磁性層4の厚みにバラツキが発生する。このため、このような厚みの空間的なバラツキを低減する制御が重要となり、厚みのバラツキを考慮した空間フィルタ(空間マスク)を設計・作成することが好ましい。非磁性層3、強磁性層4の厚みによりテラヘルツ波の強度が変わるので、非磁性層3、強磁性層4の厚みを制御することにより、テラヘルツ光源1の面内で、テラヘルツ波の強度を調節することが可能になる。スパッタリングのビームパターンを制御することにより、非磁性層3、強磁性層4の厚みを制御することが可能である。 When the large-diameter terahertz light source 1 is manufactured by the above method, the thicknesses of the non-magnetic layer 3 and the ferromagnetic layer 4 vary depending on the position on the convex surface 6 of the plano-convex lens 5. Therefore, control to reduce such spatial variation in thickness is important, and it is preferable to design and create a spatial filter (spatial mask) in consideration of the variation in thickness. Since the intensity of the terahertz wave changes depending on the thickness of the non-magnetic layer 3 and the ferromagnetic layer 4, the intensity of the terahertz wave can be increased in the plane of the terahertz light source 1 by controlling the thickness of the non-magnetic layer 3 and the ferromagnetic layer 4. It will be possible to adjust. By controlling the beam pattern of sputtering, it is possible to control the thickness of the non-magnetic layer 3 and the ferromagnetic layer 4.
 テラヘルツ光源1の作製方法としては、MBE(Molecular Beam Epitaxy、分子線エピタキシー法)等の他の薄膜作製方法でもよい。 As a method for producing the terahertz light source 1, another thin film production method such as MBE (Molecular Beam Epitaxy) may be used.
 図5はテラヘルツ光源1の動作を説明するための図である。図6は比較例に係るテラヘルツ光源の動作を説明するための図である。 FIG. 5 is a diagram for explaining the operation of the terahertz light source 1. FIG. 6 is a diagram for explaining the operation of the terahertz light source according to the comparative example.
 フェムト秒のレーザ光が平凸レンズ5の平面7側から照射されると、レーザ光は平凸レンズ5により集光されて、平凸レンズ5の凸面6に形成されたテラヘルツ放射層2に入射する。テラヘルツ放射層2は、平凸レンズ5側から入射されたレーザ光に基づいて、テラヘルツ波を平凸レンズ5と反対側に放射する。テラヘルツ放射層2から放射されたテラヘルツ波は平凸レンズ5の焦点に集光される。平凸レンズ5の構造により平凸レンズ5に入射したレーザ光の位相の遅延が生じて、テラヘルツ放射層2から放射されるテラヘルツ波が絞られる。 When the femtosecond laser beam is emitted from the plane 7 side of the plano-convex lens 5, the laser beam is focused by the plano-convex lens 5 and incident on the terahertz radiation layer 2 formed on the convex surface 6 of the plano-convex lens 5. The terahertz radiation layer 2 radiates a terahertz wave to the opposite side of the plano-convex lens 5 based on the laser beam incident from the plano-convex lens 5 side. The terahertz wave emitted from the terahertz radiating zone 2 is focused on the focal point of the plano-convex lens 5. Due to the structure of the plano-convex lens 5, the phase of the laser beam incident on the plano-convex lens 5 is delayed, and the terahertz wave emitted from the terahertz radiation layer 2 is narrowed down.
 このように、テラヘルツ光源1は、テラヘルツ放射層2が平凸レンズ5の凸面6上に形成されているので、生成したテラヘルツ波を集光する焦点レンズの機能が組み込まれている。 As described above, since the terahertz radiation layer 2 is formed on the convex surface 6 of the plano-convex lens 5, the terahertz light source 1 incorporates the function of a focal lens that collects the generated terahertz wave.
 これに対して、図6に示す比較例に係るテラヘルツ光源は、テラヘルツ放射層2が単独で配置されるので、生成したテラヘルツ波を集光するためには、凸レンズのような集光用光学素子を別途設ける必要が生じる。そして、そもそも、テラヘルツ波用のレンズは色収差が大きく集光には不向きである。 On the other hand, in the terahertz light source according to the comparative example shown in FIG. 6, since the terahertz radiation layer 2 is arranged independently, in order to collect the generated terahertz wave, an optical element for focusing such as a convex lens is used. Will need to be provided separately. In the first place, the lens for terahertz waves has a large chromatic aberration and is not suitable for focusing.
 テラヘルツ放射層2は、非磁性層3が平凸レンズ5の凸面6上に形成され、非磁性層3上に強磁性層4が形成されることが好ましい。但し、逆に、強磁性層4が凸面6上に形成され、非磁性層3が強磁性層4上に形成されてもよい。 In the terahertz radiation layer 2, it is preferable that the non-magnetic layer 3 is formed on the convex surface 6 of the plano-convex lens 5, and the ferromagnetic layer 4 is formed on the non-magnetic layer 3. However, conversely, the ferromagnetic layer 4 may be formed on the convex surface 6 and the non-magnetic layer 3 may be formed on the ferromagnetic layer 4.
 テラヘルツ光源1のテラヘルツ放射層2を大口径に構成し、大口径のテラヘルツ放射層2から放射されるテラヘルツ波に、出射位置に応じた放射強度分布パターンを持たせると、そのテラヘルツ波の放射強度分布パターンを光コンピューティングのような演算応用に利用することができる。 When the terahertz radiation layer 2 of the terahertz light source 1 is configured to have a large diameter and the terahertz wave radiated from the large diameter terahertz radiation layer 2 has a radiation intensity distribution pattern according to the emission position, the radiation intensity of the terahertz wave is provided. Distribution patterns can be used for computational applications such as optical computing.
 図7は変形例に係るテラヘルツ光源1Aの正面図である。 FIG. 7 is a front view of the terahertz light source 1A according to the modified example.
 テラヘルツ光源1Aは、平凸レンズ5と、平凸レンズ5の平面7に形成されたテラヘルツ放射層2とを備える。このように、テラヘルツ放射層2は平凸レンズ5の平面7に形成されてもよい。この場合、フェムト秒のレーザ光は平凸レンズ5の凸面側から照射することが好ましい。 The terahertz light source 1A includes a plano-convex lens 5 and a terahertz radiation layer 2 formed on a plane 7 of the plano-convex lens 5. In this way, the terahertz radiation zone 2 may be formed on the plane 7 of the plano-convex lens 5. In this case, it is preferable to irradiate the femtosecond laser beam from the convex surface side of the plano-convex lens 5.
 また、テラヘルツ放射層2は、両凸レンズの一方の凸面に形成されてもよい。 Further, the terahertz radiation layer 2 may be formed on one convex surface of the biconvex lens.
 フェムト秒のレーザ光は、平凸レンズ5のテラヘルツ放射層2が形成される側と反対側から照射されることが好ましい。但し、テラヘルツ放射層2が形成される側から照射されてもよい。 It is preferable that the femtosecond laser beam is emitted from the side of the plano-convex lens 5 opposite to the side on which the terahertz radiation layer 2 is formed. However, it may be irradiated from the side where the terahertz radiation layer 2 is formed.
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals are given to the members having the same functions as the members described in the above-described embodiment, and the description thereof will not be repeated.
 図8は実施形態2に係るテラヘルツ光源1Bの正面図である。図9はテラヘルツ光源1Bに設けられた平凹レンズ8の正面図である。図10はテラヘルツ光源1Bの動作を説明するための図である。図11は比較例に係るテラヘルツ光源の動作を説明するための図である。 FIG. 8 is a front view of the terahertz light source 1B according to the second embodiment. FIG. 9 is a front view of the plano-concave lens 8 provided in the terahertz light source 1B. FIG. 10 is a diagram for explaining the operation of the terahertz light source 1B. FIG. 11 is a diagram for explaining the operation of the terahertz light source according to the comparative example.
 テラヘルツ光源1Bは、両側面の一方が凹面9(非平面)であり、両側面の他方が平面10である平凹レンズ8(非平面光学素子、レンズ)を備え、テラヘルツ放射層2が凹面9の上に形成される。凹面9は負の焦点距離を有する球面であることが好ましい。平凹レンズ8は、典型的にレーザ光の拡張、又は、光学系における焦点距離の増加に用いられる。 The terahertz light source 1B includes a plano-concave lens 8 (non-planar optical element, lens) in which one of both side surfaces is concave surface 9 (non-planar surface) and the other side surface is flat surface 10, and the terahertz radiation zone 2 is concave surface 9. Formed on top. The concave surface 9 is preferably a spherical surface having a negative focal length. The plano-concave lens 8 is typically used to extend the laser beam or increase the focal length in the optical system.
 フェムト秒のレーザ光が平凹レンズ8の平面10側から照射されると、レーザ光は平凹レンズ8を透過し拡張されて、平凹レンズ8の凹面9に形成されたテラヘルツ放射層2に入射する。テラヘルツ放射層2は、平凹レンズ8から入射されたレーザ光に基づいて、テラヘルツ波を平凹レンズ8と反対側に放射する。 When a femtosecond laser beam is emitted from the plane 10 side of the plano-concave lens 8, the laser light passes through the plano-concave lens 8 and is expanded to enter the terahertz radiating zone 2 formed on the concave surface 9 of the plano-concave lens 8. The terahertz radiation layer 2 radiates a terahertz wave on the opposite side of the plano-concave lens 8 based on the laser beam incident from the plano-concave lens 8.
 このように、テラヘルツ光源1Bは、テラヘルツ放射層2が平凹レンズ8の凹面9上に形成されているので、生成したテラヘルツ波を拡張するビームエキスパンダの機能が組み込まれている。 As described above, since the terahertz radiation layer 2 is formed on the concave surface 9 of the plano-concave lens 8, the terahertz light source 1B incorporates the function of a beam expander that expands the generated terahertz wave.
 これに対して、図11に示す比較例に係るテラヘルツ光源は、テラヘルツ放射層2が単独で配置されるので、生成したテラヘルツ波を拡張するためには、凹レンズのような拡張用光学素子を別途設ける必要が生じる。そして、そもそも、テラヘルツ波用のレンズは色収差が大きく集光には不向きである。 On the other hand, in the terahertz light source according to the comparative example shown in FIG. 11, since the terahertz radiation layer 2 is arranged independently, in order to expand the generated terahertz wave, an expansion optical element such as a concave lens is separately provided. It will be necessary to provide it. In the first place, the lens for terahertz waves has a large chromatic aberration and is not suitable for focusing.
 テラヘルツ放射層2は、非磁性層3が平凹レンズ8の凹面9上に形成され、非磁性層3上に強磁性層4が形成されることが好ましい。但し、逆に、強磁性層4が凹面9上に形成され、非磁性層3が強磁性層4上に形成されてもよい。 In the terahertz radiation layer 2, it is preferable that the non-magnetic layer 3 is formed on the concave surface 9 of the plano-concave lens 8 and the ferromagnetic layer 4 is formed on the non-magnetic layer 3. However, conversely, the ferromagnetic layer 4 may be formed on the concave surface 9, and the non-magnetic layer 3 may be formed on the ferromagnetic layer 4.
 図12は実施形態2の変形例に係るテラヘルツ光源1Cの正面図である。 FIG. 12 is a front view of the terahertz light source 1C according to the modified example of the second embodiment.
 テラヘルツ光源1Cは、平凹レンズ8と、平凹レンズ8の平面10に形成されたテラヘルツ放射層2とを備える。このように、テラヘルツ放射層2は平凹レンズ8の平面10に形成されてもよい。この場合、フェムト秒のレーザ光は平凹レンズ8の凹面9側から照射することが好ましい。 The terahertz light source 1C includes a plano-concave lens 8 and a terahertz radiation layer 2 formed on a flat surface 10 of the plano-concave lens 8. In this way, the terahertz radiation layer 2 may be formed on the plane 10 of the plano-concave lens 8. In this case, it is preferable to irradiate the femtosecond laser beam from the concave surface 9 side of the plano-concave lens 8.
 また、テラヘルツ放射層2は、両凹レンズの一方の凹面に形成されてもよい。 Further, the terahertz radiation layer 2 may be formed on one concave surface of both concave lenses.
 フェムト秒のレーザ光は、平凹レンズ8のテラヘルツ放射層2が形成される側と反対側から照射されることが好ましい。但し、逆に、テラヘルツ放射層2が形成される側からフェムト秒のレーザ光が照射されてもよい。 It is preferable that the femtosecond laser beam is emitted from the side of the plano-concave lens 8 opposite to the side on which the terahertz radiation layer 2 is formed. However, conversely, a femtosecond laser beam may be irradiated from the side where the terahertz radiation layer 2 is formed.
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals are given to the members having the same functions as the members described in the above-described embodiment, and the description thereof will not be repeated.
 図13は実施形態3に係るテラヘルツ光源1Dの斜視図である。図14はテラヘルツ光源1Dに設けられたシリンダレンズ11の動作を説明するための斜視図である。図15は比較例に係る球面レンズの動作を説明するための斜視図である。図16は比較例に係るテラヘルツ光源の動作を説明するための図である。 FIG. 13 is a perspective view of the terahertz light source 1D according to the third embodiment. FIG. 14 is a perspective view for explaining the operation of the cylinder lens 11 provided in the terahertz light source 1D. FIG. 15 is a perspective view for explaining the operation of the spherical lens according to the comparative example. FIG. 16 is a diagram for explaining the operation of the terahertz light source according to the comparative example.
 テラヘルツ光源1Dは、両側面の一方が半周面12(非平面)であり、両側面の他方が平面13であるシリンダレンズ11(非平面光学素子、レンズ)を備え、テラヘルツ放射層2が平面13上に形成される。シリンダレンズ11は屈折が一平面に沿ってのみ発生するので、図14に示すように、半周面12から平面13に向かってシリンダレンズ11を通過する円形のビームスポットは、その焦点に近づくに従って、次第に楕円形状、線形状になる。 The terahertz light source 1D includes a cylinder lens 11 (non-planar optical element, lens) in which one of both side surfaces is a half peripheral surface 12 (non-planar surface) and the other side of both side surfaces is a flat surface 13, and the terahertz radiation zone 2 is a flat surface 13. Formed on top. Since refraction occurs in the cylinder lens 11 only along one plane, as shown in FIG. 14, a circular beam spot passing through the cylinder lens 11 from the half peripheral surface 12 toward the plane 13 becomes closer to its focal point. It gradually becomes elliptical and linear.
 これに対して、比較例に係る球面レンズは、図15に示すように、両側面の一方が球面であり、両側面の他方が平面であり、屈折が一様に発生するので、球面から平面に向かって球面レンズを通過する円形のビームスポットは、球面レンズの焦点位置においてもその円形状を維持する。 On the other hand, in the spherical lens according to the comparative example, as shown in FIG. 15, one of the two side surfaces is a spherical surface and the other side of the both side surfaces is a flat surface, and the refraction is uniformly generated. The circular beam spot passing through the spherical lens toward is maintained its circular shape even at the focal position of the spherical lens.
 テラヘルツ光源1Dは、シリンダレンズ11の平面13上にテラヘルツ放射層2が形成されているので、シリンダレンズ11の半周面12側から照射されるフェムト秒のレーザ光に基づいてテラヘルツ放射層2から放射されるテラヘルツ波のビームは、自動的に整形されてシリンダレンズ11の外に出射する。もし、円形のビームスポットを有するフェムト秒のレーザ光がテラヘルツ放射層2に入射すると、テラヘルツ放射層2から放射されるテラヘルツ波のビームスポットはシリンダレンズ11の焦点位置において楕円形に整形されている。 Since the terahertz radiation layer 2 is formed on the plane 13 of the cylinder lens 11, the terahertz light source 1D emits light from the terahertz radiation layer 2 based on the femtosecond laser beam emitted from the half peripheral surface 12 side of the cylinder lens 11. The beam of the terahertz wave to be generated is automatically shaped and emitted to the outside of the cylinder lens 11. If a femtosecond laser beam having a circular beam spot is incident on the terahertz radiation layer 2, the beam spot of the terahertz wave emitted from the terahertz radiation layer 2 is shaped into an elliptical shape at the focal position of the cylinder lens 11. ..
 これに対して、比較例に係るテラヘルツ光源は、図16に示すように、テラヘルツ放射層2が単独で配置されるので、生成した円形ビームスポットのテラヘルツ波を楕円形ビームスポットに整形して集光するためには、シリンダレンズのような集光用光学素子を別途設ける必要が生じる。 On the other hand, in the terahertz light source according to the comparative example, as shown in FIG. 16, since the terahertz radiation layer 2 is arranged independently, the terahertz wave of the generated circular beam spot is shaped into an elliptical beam spot and collected. In order to illuminate, it is necessary to separately provide a light collecting optical element such as a cylinder lens.
 テラヘルツ放射層2は、シリンダレンズ11の半周面12上に形成されてもよい。この場合、フェムト秒のレーザ光はシリンダレンズ11の平面13側から照射することが好ましい。 The terahertz radiation layer 2 may be formed on the half peripheral surface 12 of the cylinder lens 11. In this case, it is preferable to irradiate the femtosecond laser beam from the plane 13 side of the cylinder lens 11.
 シリンダレンズ11は、両側面の双方が半周面12であってもよい。 The cylinder lens 11 may have half peripheral surfaces 12 on both side surfaces.
 図17は実施形態3に係るテラヘルツ光源1Dの他の動作を説明するための図である。図18は比較例に係るテラヘルツ光源の動作を説明するための図である。 FIG. 17 is a diagram for explaining other operations of the terahertz light source 1D according to the third embodiment. FIG. 18 is a diagram for explaining the operation of the terahertz light source according to the comparative example.
 シリンダレンズ11は屈折が一平面に沿ってのみ発生するので、図17に示すように、楕円形のビームスポットを有するフェムト秒のレーザ光が半周面12側から平面13側に向かってシリンダレンズ11を通ってテラヘルツ放射層2に入射すると、テラヘルツ放射層2から放射されるテラヘルツ波のビームスポットはシリンダレンズ11の焦点位置において自動的に円形に整形されている。 Since refraction occurs only along one plane of the cylinder lens 11, as shown in FIG. 17, a femtosecond laser beam having an elliptical beam spot is emitted from the half-peripheral surface 12 side toward the plane 13 side of the cylinder lens 11. When incident on the terahertz radiation layer 2 through the terahertz radiation layer 2, the beam spot of the terahertz wave radiated from the terahertz radiation layer 2 is automatically shaped into a circle at the focal position of the cylinder lens 11.
 これに対して、比較例に係るテラヘルツ光源は、図18に示すように、テラヘルツ放射層2が単独で配置されるので、生成した楕円形ビームスポットのテラヘルツ波を円形ビームスポットに整形して集光するためには、シリンダレンズのような集光用光学素子を別途設ける必要が生じる。 On the other hand, in the terahertz light source according to the comparative example, as shown in FIG. 18, since the terahertz radiation layer 2 is arranged independently, the terahertz wave of the generated elliptical beam spot is shaped into a circular beam spot and collected. In order to illuminate, it is necessary to separately provide a light collecting optical element such as a cylinder lens.
 〔実施形態4〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 4]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals are given to the members having the same functions as the members described in the above-described embodiment, and the description thereof will not be repeated.
 図19は実施形態3に係るテラヘルツ光源1Eの斜視図である。テラヘルツ光源1Eは、放物面状ミラー14(非平面光学素子)を備え、テラヘルツ放射層2が放物面状ミラー14の表面に形成される。 FIG. 19 is a perspective view of the terahertz light source 1E according to the third embodiment. The terahertz light source 1E includes a parabolic mirror 14 (non-planar optical element), and the terahertz radiation layer 2 is formed on the surface of the parabolic mirror 14.
 コリメートされたフェムト秒のレーザ光が、図19に示すように、放物面状ミラー14の表面に向かってY軸方向に照射されると、放物面状ミラー14の表面に形成されたテラヘルツ放射層2からテラヘルツ波が-X軸方向に向かって、放物面状ミラー14の焦点位置に集光するように放射される。 As shown in FIG. 19, when the collimated femtosecond laser beam is irradiated in the Y-axis direction toward the surface of the parabolic mirror 14, terahertz formed on the surface of the parenchymal mirror 14. A terahertz wave is radiated from the radiation layer 2 in the −X-axis direction so as to be focused at the focal position of the parabolic mirror 14.
 このように、テラヘルツ光源1Eは、テラヘルツ放射層2が放物面状ミラー14の表面に形成されているので、コリメートされた光を集光する機能が組み込まれている。 As described above, since the terahertz radiation layer 2 is formed on the surface of the parabolic mirror 14, the terahertz light source 1E has a built-in function of condensing the collimated light.
 図20は実施形態4に係るテラヘルツ光源1Fの正面図である。図21は比較例に係るテラヘルツ光源の正面図である。 FIG. 20 is a front view of the terahertz light source 1F according to the fourth embodiment. FIG. 21 is a front view of the terahertz light source according to the comparative example.
 テラヘルツ光源1Fは、放物面状ミラー14と、この放物面状ミラー14に対向して配置された放物面状ミラー22とを備える。そして、テラヘルツ放射層2が放物面状ミラー14の表面に形成される。 The terahertz light source 1F includes a parabolic mirror 14 and a parabolic mirror 22 arranged to face the parabolic mirror 14. Then, the terahertz radiation layer 2 is formed on the surface of the parabolic mirror 14.
 フェムト秒のレーザ光が、放物面状ミラー14の表面に向かって-X軸方向に照射されると、コリメートされたテラヘルツ波がY軸方向に沿って、放物面状ミラー22に向かって放射される。そして、放物面状ミラー22に入射したテラヘルツ波は、-X軸方向に向かって、放物面状ミラー22の焦点位置に集光するように反射される。 When the femtosecond laser beam is emitted toward the surface of the parabolic mirror 14 in the -X-axis direction, the collimated terahertz wave is directed toward the parabolic mirror 22 along the Y-axis direction. Be radiated. Then, the terahertz wave incident on the parabolic mirror 22 is reflected so as to be focused at the focal position of the parabolic mirror 22 toward the −X axis direction.
 このように、テラヘルツ光源1Fは、放物面状ミラー14と、この放物面状ミラー14に対向して配置された放物面状ミラー22とを備え、テラヘルツ放射層2が放物面状ミラー14の表面に形成されるので、コリメータの機能が組み込まれている。 As described above, the terahertz light source 1F includes a parabolic mirror 14 and a parabolic mirror 22 arranged to face the parabolic mirror 14, and the terahertz radiation layer 2 has a parabolic shape. Since it is formed on the surface of the mirror 14, it incorporates the function of a collimator.
 これに対して、比較例に係るテラヘルツ光源は、テラヘルツ放射層2が単独で配置されるので、生成したテラヘルツ波をコリメートするためには、放物面状ミラー14・22・23を別途設ける必要が生じる。 On the other hand, in the terahertz light source according to the comparative example, since the terahertz radiation layer 2 is arranged independently, it is necessary to separately provide parabolic mirrors 14, 22, and 23 in order to collimate the generated terahertz wave. Occurs.
 放物面状ミラー14・22・23は、楕円面状ミラー、双曲面状ミラー、球面状ミラー、及び非球面状ミラーの何れかでもよい。 The parabolic mirrors 14, 22, and 23 may be any of an ellipsoidal mirror, a hyperboloid mirror, a spherical mirror, and an aspherical mirror.
 〔実施形態5〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 5]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals are given to the members having the same functions as the members described in the above-described embodiment, and the description thereof will not be repeated.
 図22は実施形態5に係る流体検知器19の斜視図である。図23は流体検知器19に設けられた光ファイバーケーブル15を示す図である。図24は図23に示されるA部の拡大断面画像である。図25は流体検知器19の断面図である。 FIG. 22 is a perspective view of the fluid detector 19 according to the fifth embodiment. FIG. 23 is a diagram showing an optical fiber cable 15 provided in the fluid detector 19. FIG. 24 is an enlarged cross-sectional image of part A shown in FIG. 23. FIG. 25 is a cross-sectional view of the fluid detector 19.
 流体検知器19は、内部に流体を流すためのパイプライン部材20と、パイプライン部材20の内部に配置されたテラヘルツ光源1Gとを備える。 The fluid detector 19 includes a pipeline member 20 for flowing a fluid inside, and a terahertz light source 1G arranged inside the pipeline member 20.
 テラヘルツ光源1Gは、フェムト秒レーザ光が照射される光ファイバーケーブル15(非平面光学素子)を有する。 The terahertz light source 1G has an optical fiber cable 15 (non-planar optical element) to which a femtosecond laser beam is irradiated.
 光ファイバーケーブル15は、フェムト秒レーザ光が入射されるコア16と、コア16の外周面を覆うように形成されたクラッド17とを有する。テラヘルツ放射層2が、クラッド17の外周面(非平面)を覆うように形成される。 The optical fiber cable 15 has a core 16 to which a femtosecond laser beam is incident, and a clad 17 formed so as to cover the outer peripheral surface of the core 16. The terahertz radiation layer 2 is formed so as to cover the outer peripheral surface (non-planar surface) of the clad 17.
 そして、クラッド17は、コア16に入射されたフェムト秒レーザ光をテラヘルツ放射層2に入射させるための貫通溝18を有する。クラッド17の軸方向に沿って配列された複数の貫通溝18が、クラッド17の周方向に沿って形成される。貫通溝18は、クラッド17を軸方向に沿って一定ピッチで除去することにより形成することができる。クラッド17は、例えばアクリルによって構成することができる。また、コア16に入射されたフェムト秒レーザ光が一定頻度で散乱される物質でクラッド17を構成してもよい。 The clad 17 has a through groove 18 for incidenting the femtosecond laser beam incident on the core 16 onto the terahertz radiation layer 2. A plurality of through grooves 18 arranged along the axial direction of the clad 17 are formed along the circumferential direction of the clad 17. The through groove 18 can be formed by removing the clad 17 at a constant pitch along the axial direction. The clad 17 can be made of, for example, acrylic. Further, the clad 17 may be formed of a substance in which the femtosecond laser beam incident on the core 16 is scattered at a constant frequency.
 パイプライン部材20の内部に流される流体は、モニタ又は分析しようとするガス及び液体を含む。 The fluid flowing inside the pipeline member 20 includes gas and liquid to be monitored or analyzed.
 パイプライン部材20の内部に流体を流しながら、光ファイバーケーブル15のコア16にフェムト秒レーザ光を入射させると、コア16に入射したフェムト秒レーザ光は、クラッド17に形成された貫通溝18を通って、クラッド17の外周面を覆うテラヘルツ放射層2の内周面に入射する。 When the femtosecond laser beam is incident on the core 16 of the optical fiber cable 15 while flowing the fluid inside the pipeline member 20, the femtosecond laser beam incident on the core 16 passes through the through groove 18 formed in the clad 17. Then, it is incident on the inner peripheral surface of the terahertz radial layer 2 that covers the outer peripheral surface of the clad 17.
 そして、テラヘルツ放射層2の内周面にフェムト秒レーザ光が入射すると、テラヘルツ波が、テラヘルツ放射層2の外周面からパイプライン部材20の内壁に向かって放射される。 Then, when the femtosecond laser beam is incident on the inner peripheral surface of the terahertz radiation layer 2, the terahertz wave is radiated from the outer peripheral surface of the terahertz radiation layer 2 toward the inner wall of the pipeline member 20.
 次に、パイプライン部材20の内壁に設けられたテラヘルツ波検知器21が、テラヘルツ放射層2の外周面から放射されたテラヘルツ波を検知する。これにより、パイプライン部材20の内部を流れる流体をモニタ又は分析することができる。 Next, the terahertz wave detector 21 provided on the inner wall of the pipeline member 20 detects the terahertz wave radiated from the outer peripheral surface of the terahertz radiation layer 2. This makes it possible to monitor or analyze the fluid flowing inside the pipeline member 20.
 (まとめ)
 上記の課題を解決するために、本発明の一態様に係るテラヘルツ光源は、非平面が形成された非平面光学素子と、レーザ光に基づいてテラヘルツ波を放射するテラヘルツ放射層とを備え、前記テラヘルツ放射層が、非磁性金属を含む非磁性層と、前記非磁性層に積層されて強磁性金属を含む強磁性層とを有し、前記テラヘルツ放射層が前記非平面光学素子に形成されることを特徴とする。
(summary)
In order to solve the above problems, the terahertz light source according to one aspect of the present invention includes a non-planar optical element in which a non-plane is formed and a terahertz radiation layer that radiates a terahertz wave based on a laser beam. The terahertz radiation layer has a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal, and the terahertz radiation layer is formed on the non-planar optical element. It is characterized by that.
 この特徴によれば、非磁性金属を含む非磁性層と非磁性層に積層されて強磁性金属を含む強磁性層とを有するテラヘルツ放射層が、レーザ光が通過する非平面が形成された非平面光学素子に形成される。従って、非平面光学素子にレーザ光が照射されると、非平面光学素子に形成されたテラヘルツ放射層が、レーザ光に基づいてテラヘルツ波を放射する。そして、非平面光学素子に形成されたテラヘルツ放射層と反対側からレーザ光が照射されると、レーザ光は非平面光学素子により光学的加工が施されてテラヘルツ放射層に入射する。次に、テラヘルツ放射層は入射したレーザ光に基づいてテラヘルツ波を放射する。また、非平面光学素子に形成されたテラヘルツ放射層側からレーザ光が照射されると、テラヘルツ放射層は入射したレーザ光に基づいてテラヘルツ波を放射する。次に、テラヘルツ放射層が形成された非平面光学素子は、テラヘルツ放射層から放射されたテラヘルツ波に光学的加工を施す。非平面光学素子により光学的加工が施されたテラヘルツ波はテラヘルツ放射層と反対側に非平面光学素子から出射する。この結果、テラヘルツ波に対して光学的加工を施すための構成が簡素且つコンパクトなテラヘルツ光源を実現することができる。 According to this feature, the terahertz radiation layer having a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal is formed with a non-plane through which laser light passes. It is formed on a planar optical element. Therefore, when the non-planar optical element is irradiated with the laser beam, the terahertz radiation zone formed on the non-planar optical element emits a terahertz wave based on the laser beam. When the laser beam is irradiated from the side opposite to the terahertz radiating zone formed on the non-planar optical element, the laser beam is optically processed by the non-planar optical element and incident on the terahertz radiating zone. Next, the terahertz radiating zone emits a terahertz wave based on the incident laser beam. Further, when the laser beam is irradiated from the terahertz radiation layer side formed on the non-planar optical element, the terahertz radiation layer emits a terahertz wave based on the incident laser light. Next, the non-planar optical element on which the terahertz radiating zone is formed applies optical processing to the terahertz wave radiated from the terahertz radiating zone. The terahertz wave optically processed by the non-planar optical element is emitted from the non-planar optical element on the opposite side of the terahertz radiation zone. As a result, it is possible to realize a terahertz light source having a simple and compact configuration for performing optical processing on the terahertz wave.
 本発明の一態様に係るテラヘルツ光源は、前記レーザ光が、前記非平面光学素子を透過した後、前記テラヘルツ放射層に入射することが好ましい。 In the terahertz light source according to one aspect of the present invention, it is preferable that the laser beam passes through the non-planar optical element and then enters the terahertz radiation zone.
 上記構成によれば、テラヘルツ放射層から放射されたテラヘルツ波は、非平面光学素子を通過することなく、テラヘルツ光源の外部に直接放射される。このため、色収差が大きいテラヘルツ波用の非平面光学素子をテラヘルツ波が通過する必要が無くなる。 According to the above configuration, the terahertz wave radiated from the terahertz radiative zone is directly radiated to the outside of the terahertz light source without passing through the non-planar optical element. Therefore, it is not necessary for the terahertz wave to pass through the non-planar optical element for the terahertz wave having a large chromatic aberration.
 本発明の一態様に係るテラヘルツ光源は、前記非平面光学素子がレンズを含み、前記テラヘルツ放射層が前記レンズの一方の側面に形成されることが好ましい。 In the terahertz light source according to one aspect of the present invention, it is preferable that the non-planar optical element includes a lens and the terahertz radiation layer is formed on one side surface of the lens.
 上記構成によれば、テラヘルツ放射層に入射するレーザ光又はテラヘルツ放射層から放射されたテラヘルツ波に対して、レンズにより光学的加工を施すことができる。 According to the above configuration, the laser light incident on the terahertz radiating zone or the terahertz wave radiated from the terahertz radiating zone can be optically processed by a lens.
 本発明の一態様に係るテラヘルツ光源は、前記テラヘルツ放射層は、前記レーザ光が前記レンズに入射する側面の反対側の側面に形成されることが好ましい。 In the terahertz light source according to one aspect of the present invention, it is preferable that the terahertz radiating zone is formed on the side surface opposite to the side surface where the laser beam is incident on the lens.
 上記構成によれば、テラヘルツ放射層から放射されたテラヘルツ波は、レンズを通過することなく、テラヘルツ光源の外部に直接放射される。このため、色収差が大きいテラヘルツ波用のレンズをテラヘルツ波が通過する必要が無くなる。 According to the above configuration, the terahertz wave radiated from the terahertz radiative zone is directly radiated to the outside of the terahertz light source without passing through the lens. Therefore, it is not necessary for the terahertz wave to pass through the lens for the terahertz wave having a large chromatic aberration.
 本発明の一態様に係るテラヘルツ光源は、前記レンズが、前記レンズの両側面の一方が凸面であり、前記両側面の他方が平面である平凸レンズを含むことが好ましい。 The terahertz light source according to one aspect of the present invention preferably includes a plano-convex lens in which one of both side surfaces of the lens is convex and the other side of the lens is flat.
 上記構成によれば、テラヘルツ放射層から放射されるテラヘルツ波を平凸レンズにより集光することができる。 According to the above configuration, the terahertz wave radiated from the terahertz radiation zone can be focused by the plano-convex lens.
 本発明の一態様に係るテラヘルツ光源は、前記レンズが、前記レンズの両側面の一方が凹面であり、前記両側面の他方が平面である平凹レンズを含むことが好ましい。 The terahertz light source according to one aspect of the present invention preferably includes a plano-concave lens in which one of both side surfaces of the lens is concave and the other side of the lens is flat.
 上記構成によれば、テラヘルツ放射層から放射されるテラヘルツ波を平凹レンズにより拡張することができる。 According to the above configuration, the terahertz wave radiated from the terahertz radiation zone can be expanded by the plano-concave lens.
 本発明の一態様に係るテラヘルツ光源は、前記レンズが、前記レンズの両側面の一方が半周面であり、前記両側面の他方が平面であるシリンダレンズを含むことが好ましい。 The terahertz light source according to one aspect of the present invention preferably includes a cylinder lens in which one of both side surfaces of the lens is a half peripheral surface and the other side of the both side surfaces is a flat surface.
 上記構成によれば、テラヘルツ放射層から放射されるテラヘルツ波をシリンダレンズにより整形することができる。 According to the above configuration, the terahertz wave emitted from the terahertz radiation zone can be shaped by the cylinder lens.
 本発明の一態様に係るテラヘルツ光源は、前記レンズが、前記レンズの両側面が凸面である両凸レンズ、又は、前記レンズの両側面が凹面である両凹レンズを含むことが好ましい。 The terahertz light source according to one aspect of the present invention preferably includes a biconvex lens in which both sides of the lens are convex, or a biconcave lens in which both sides of the lens are concave.
 上記構成によれば、テラヘルツ放射層から放射されるテラヘルツ波を両凸レンズ、又は、両凹レンズにより集光又は拡張することができる。 According to the above configuration, the terahertz wave radiated from the terahertz radiation zone can be focused or expanded by a biconvex lens or a biconcave lens.
 本発明の一態様に係るテラヘルツ光源は、前記非平面光学素子がミラーを含み、前記テラヘルツ放射層が前記ミラーの表面に形成され、前記ミラーが、放物面状ミラー、楕円面状ミラー、双曲面状ミラー、球面状ミラー、及び非球面状ミラーのうちの少なくとも一つを含むことが好ましい。 In the terahertz light source according to one aspect of the present invention, the aspherical optical element includes a mirror, the terahertz radiation layer is formed on the surface of the mirror, and the mirror is a parabolic mirror, an elliptical mirror, or a twin. It is preferable to include at least one of a curved mirror, a spherical mirror, and an aspherical mirror.
 上記構成によれば、テラヘルツ放射層から放射されたテラヘルツ波のビームをミラーにより集光、コリメートなどで変形することができる。 According to the above configuration, the beam of the terahertz wave radiated from the terahertz radiative zone can be focused by a mirror and deformed by collimating or the like.
 本発明の一態様に係るテラヘルツ光源は、前記非平面光学素子が光ファイバーケーブルを含み、前記光ファイバーケーブルが、前記レーザ光が入射されるコアと、前記コアの外周面を覆うように形成されたクラッドとを有し、前記テラヘルツ放射層が、前記クラッドの外周面を覆うように形成され、前記クラッドが、前記コアに入射されたレーザ光を前記テラヘルツ放射層に入射させるための貫通溝を有することが好ましい。 In the terahertz light source according to one aspect of the present invention, the non-planar optical element includes an optical fiber cable, and the optical fiber cable is formed so as to cover a core to which the laser beam is incident and an outer peripheral surface of the core. The terahertz radiation layer is formed so as to cover the outer peripheral surface of the clad, and the clad has a through groove for incidenting a laser beam incident on the core into the terahertz radiation layer. Is preferable.
 上記構成によれば、光ファイバーケーブルのコアに入射されて、コアの外周面を覆うクラッドに形成された貫通溝を通って、クラッドの外周面を覆うテラヘルツ放射層の内周面に入射されたレーザ光に基づいて、テラヘルツ放射層の外周面からテラヘルツ波を放射することができる。 According to the above configuration, the laser incident on the core of the optical fiber cable, through the through groove formed in the clad covering the outer peripheral surface of the core, and incident on the inner peripheral surface of the terahertz radiation zone covering the outer peripheral surface of the clad. Based on the light, the terahertz wave can be radiated from the outer peripheral surface of the terahertz radiation zone.
 上記の課題を解決するために、本発明の一態様に係る流体検知器は、内部に流体を流すためのパイプライン部材と、前記パイプライン部材の内部に配置された本発明の一態様に係るテラヘルツ光源と、前記テラヘルツ光源のテラヘルツ放射層から放射されたテラヘルツ波を検知するために、前記パイプライン部材の内壁に設けられたテラヘルツ波検知器とを備えることを特徴とする。 In order to solve the above problems, the fluid detector according to one aspect of the present invention relates to a pipeline member for flowing a fluid inside and one aspect of the present invention arranged inside the pipeline member. It is characterized by including a terahertz light source and a terahertz wave detector provided on an inner wall of the pipeline member in order to detect a terahertz wave radiated from the terahertz radiation layer of the terahertz light source.
 上記の課題を解決するために、本発明の一態様に係るテラヘルツ波生成方法は、非磁性金属を含む非磁性層と前記非磁性層に積層されて強磁性金属を含む強磁性層とを有して非平面光学素子に形成されたテラヘルツ放射層に、テラヘルツ波を生成するためのレーザ光を照射する照射工程と、前記レーザ光に基づいて前記テラヘルツ放射層から放射されたテラヘルツ波を検知する検知工程とを包含することを特徴とする。 In order to solve the above problems, the terahertz wave generation method according to one aspect of the present invention includes a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal. The terahertz radiation layer formed in the non-planar optical element is irradiated with a laser beam for generating a terahertz wave, and the terahertz wave emitted from the terahertz radiation layer is detected based on the laser beam. It is characterized by including a detection step.
 上記の課題を解決するために、本発明の一態様に係る他のテラヘルツ波生成方法は、非平面光学素子と、前記非平面光学素子に形成された、レーザ光に基づいてテラヘルツ波を放射するテラヘルツ放射層とを備えるテラヘルツ光源を設ける工程と、前記テラヘルツ光源に、前記レーザ光を照射する照射工程とを包含することを特徴とする。 In order to solve the above problems, another terahertz wave generation method according to one aspect of the present invention emits a terahertz wave based on a non-planar optical element and a laser beam formed on the non-planar optical element. It is characterized by including a step of providing a terahertz light source including a terahertz radiation layer and an irradiation step of irradiating the terahertz light source with the laser beam.
 本発明の一態様に係る他のテラヘルツ波生成方法は、前記非平面光学素子がレンズを含み、前記照射工程では、前記レンズの前記テラヘルツ放射層が形成された側とは逆側から前記レーザ光を照射することが好ましい。 In another terahertz wave generation method according to one aspect of the present invention, the non-planar optical element includes a lens, and in the irradiation step, the laser beam is emitted from the side opposite to the side on which the terahertz radiation layer is formed. It is preferable to irradiate.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 1 テラヘルツ光源
 2 テラヘルツ放射層
 3 非磁性層
 4 強磁性層
 5 平凸レンズ(非平面光学素子、レンズ)
 6 凸面(非平面)
 7 平面
 8 平凹レンズ(非平面光学素子、レンズ)
 9 凹面(非平面)
10 平面
11 シリンダレンズ(非平面光学素子、レンズ)
12 半周面(非平面)
13 平面
14 放物面状ミラー(非平面光学素子)
15 光ファイバーケーブル(非平面光学素子)
16 コア
17 クラッド
18 貫通溝
19 流体検知器
20 パイプライン部材
21 テラヘルツ波検知器
1 Terahertz light source 2 Terahertz radiative zone 3 Non-magnetic layer 4 Ferromagnetic layer 5 Plano-convex lens (non-planar optical element, lens)
6 Convex surface (non-planar)
7 Plane 8 Planar lens (non-planar optical element, lens)
9 Concave surface (non-planar)
10 Planar 11 Cylinder lens (non-planar optical element, lens)
12 Half-circumferential surface (non-planar)
13 Plane 14 Parabolic mirror (non-planar optical element)
15 Optical fiber cable (non-planar optical element)
16 Core 17 Clad 18 Through groove 19 Fluid detector 20 Pipeline member 21 Terahertz wave detector

Claims (14)

  1.  非平面が形成された非平面光学素子と、
     レーザ光に基づいてテラヘルツ波を放射するテラヘルツ放射層とを備え、
     前記テラヘルツ放射層が、非磁性金属を含む非磁性層と、
     前記非磁性層に積層されて強磁性金属を含む強磁性層とを有し、
     前記テラヘルツ放射層が前記非平面光学素子に形成されることを特徴とするテラヘルツ光源。
    A non-planar optical element with a non-planar shape and
    Equipped with a terahertz radiation zone that emits terahertz waves based on laser light,
    The terahertz radiating zone includes a non-magnetic layer containing a non-magnetic metal and a non-magnetic layer.
    It has a ferromagnetic layer laminated on the non-magnetic layer and contains a ferromagnetic metal, and has.
    A terahertz light source characterized in that the terahertz radiating zone is formed on the non-planar optical element.
  2.  前記レーザ光が、前記非平面光学素子を透過した後、前記テラヘルツ放射層に入射する請求項1に記載のテラヘルツ光源。 The terahertz light source according to claim 1, wherein the laser beam passes through the non-planar optical element and then enters the terahertz radiating zone.
  3.  前記非平面光学素子がレンズを含み、
     前記テラヘルツ放射層が前記レンズの一方の側面に形成される請求項1に記載のテラヘルツ光源。
    The non-planar optical element includes a lens.
    The terahertz light source according to claim 1, wherein the terahertz radiation layer is formed on one side surface of the lens.
  4.  前記テラヘルツ放射層は、前記レーザ光が前記レンズに入射する側面の反対側の側面に形成される請求項3に記載のテラヘルツ光源。 The terahertz light source according to claim 3, wherein the terahertz radiation layer is formed on a side surface opposite to the side surface where the laser beam is incident on the lens.
  5.  前記レンズが、前記レンズの両側面の一方が凸面であり、前記両側面の他方が平面である平凸レンズを含む請求項3に記載のテラヘルツ光源。 The terahertz light source according to claim 3, wherein the lens includes a plano-convex lens in which one of both side surfaces of the lens is convex and the other side of the lens is flat.
  6.  前記レンズが、前記レンズの両側面の一方が凹面であり、前記両側面の他方が平面である平凹レンズを含む請求項3に記載のテラヘルツ光源。 The terahertz light source according to claim 3, wherein the lens includes a plano-concave lens in which one of both side surfaces of the lens is concave and the other side of the lens is flat.
  7.  前記レンズが、前記レンズの両側面の一方が半周面であり、前記両側面の他方が平面であるシリンダレンズを含む請求項3に記載のテラヘルツ光源。 The terahertz light source according to claim 3, wherein the lens includes a cylinder lens in which one of both side surfaces of the lens is a half peripheral surface and the other side of the both side surfaces is a flat surface.
  8.  前記レンズが、前記レンズの両側面が凸面である両凸レンズ、又は、前記レンズの両側面が凹面である両凹レンズを含む請求項3に記載のテラヘルツ光源。 The terahertz light source according to claim 3, wherein the lens includes a biconvex lens having both sides of the lens convex, or a biconcave lens having both sides of the lens concave.
  9.  前記非平面光学素子がミラーを含み、
     前記テラヘルツ放射層が前記ミラーの表面に形成され、
     前記ミラーが、放物面状ミラー、楕円面状ミラー、双曲面状ミラー、球面状ミラー、及び非球面状ミラーのうちの少なくとも一つを含む請求項1に記載のテラヘルツ光源。
    The non-planar optical element includes a mirror.
    The terahertz radiation layer is formed on the surface of the mirror,
    The terahertz light source according to claim 1, wherein the mirror includes at least one of a parabolic mirror, an ellipsoidal mirror, a hyperboloid mirror, a spherical mirror, and an aspherical mirror.
  10.  前記非平面光学素子が光ファイバーケーブルを含み、
     前記光ファイバーケーブルが、前記レーザ光が入射されるコアと、
     前記コアの外周面を覆うように形成されたクラッドとを有し、
     前記テラヘルツ放射層が、前記クラッドの外周面を覆うように形成され、
     前記クラッドが、前記コアに入射されたレーザ光を前記テラヘルツ放射層に入射させるための貫通溝を有する請求項1に記載のテラヘルツ光源。
    The non-planar optical element includes an optical fiber cable.
    The optical fiber cable has a core on which the laser beam is incident and
    It has a clad formed so as to cover the outer peripheral surface of the core, and has a clad.
    The terahertz radiation layer is formed so as to cover the outer peripheral surface of the clad.
    The terahertz light source according to claim 1, wherein the clad has a through groove for incidenting a laser beam incident on the core into the terahertz radiating zone.
  11.  内部に流体を流すためのパイプライン部材と、
     前記パイプライン部材の内部に配置された請求項10に記載のテラヘルツ光源と、
     前記テラヘルツ光源のテラヘルツ放射層から放射されたテラヘルツ波を検知するために、前記パイプライン部材の内壁に設けられたテラヘルツ波検知器とを備えることを特徴とする流体検知器。
    A pipeline member for flowing fluid inside,
    The terahertz light source according to claim 10, which is arranged inside the pipeline member,
    A fluid detector comprising a terahertz wave detector provided on an inner wall of the pipeline member in order to detect a terahertz wave radiated from the terahertz radiation layer of the terahertz light source.
  12.  非磁性金属を含む非磁性層と前記非磁性層に積層されて強磁性金属を含む強磁性層とを有して非平面光学素子に形成されたテラヘルツ放射層に、テラヘルツ波を生成するためのレーザ光を照射する照射工程と、
     前記レーザ光に基づいて前記テラヘルツ放射層から放射されたテラヘルツ波を検知する検知工程とを包含することを特徴とするテラヘルツ波生成方法。
    To generate a terahertz wave in a terahertz radiation layer formed in a non-planar optical element having a non-magnetic layer containing a non-magnetic metal and a ferromagnetic layer laminated on the non-magnetic layer and containing a ferromagnetic metal. The irradiation process of irradiating laser light and
    A method for generating a terahertz wave, which comprises a detection step of detecting a terahertz wave emitted from the terahertz radiation layer based on the laser beam.
  13.  非平面光学素子と、前記非平面光学素子に形成された、レーザ光に基づいてテラヘルツ波を放射するテラヘルツ放射層とを備えるテラヘルツ光源を設ける工程と、
     前記テラヘルツ光源に、前記レーザ光を照射する照射工程とを包含することを特徴とするテラヘルツ波生成方法。
    A step of providing a terahertz light source including a non-planar optical element and a terahertz radiation layer that emits a terahertz wave based on a laser beam formed on the non-planar optical element.
    A method for generating a terahertz wave, which comprises an irradiation step of irradiating the terahertz light source with the laser beam.
  14.  前記非平面光学素子がレンズを含み、
     前記照射工程では、前記レンズの前記テラヘルツ放射層が形成された側とは逆側から前記レーザ光を照射する請求項13に記載のテラヘルツ波生成方法。
    The non-planar optical element includes a lens.
    The terahertz wave generation method according to claim 13, wherein in the irradiation step, the laser beam is irradiated from the side of the lens opposite to the side on which the terahertz radiation layer is formed.
PCT/JP2021/039209 2020-10-28 2021-10-25 Terahertz light source, fluid detector, and terahertz wave generating method WO2022091992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022559104A JPWO2022091992A1 (en) 2020-10-28 2021-10-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-180774 2020-10-28
JP2020180774 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022091992A1 true WO2022091992A1 (en) 2022-05-05

Family

ID=81382445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039209 WO2022091992A1 (en) 2020-10-28 2021-10-25 Terahertz light source, fluid detector, and terahertz wave generating method

Country Status (2)

Country Link
JP (1) JPWO2022091992A1 (en)
WO (1) WO2022091992A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228572A (en) * 2010-04-22 2011-11-10 Ibaraki Univ Terahertz electromagnetic wave generator
JP2017084991A (en) * 2015-10-29 2017-05-18 セイコーエプソン株式会社 Terahertz wave generator, imaging device, camera, and measurement device
CN109411993A (en) * 2018-12-28 2019-03-01 中国工程物理研究院电子工程研究所 A kind of THz wave generator based on exchange bias magnetic field
US20190227404A1 (en) * 2016-07-20 2019-07-25 National University Of Singapore Terahertz Radiation Emitters
CN110441929A (en) * 2019-08-14 2019-11-12 上海大学 Based on tunable THz wave transmitter of magneto-electronics array and preparation method thereof
CN110518439A (en) * 2019-09-06 2019-11-29 电子科技大学 A kind of broadband chirality terahertz sources source and launching technique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228572A (en) * 2010-04-22 2011-11-10 Ibaraki Univ Terahertz electromagnetic wave generator
JP2017084991A (en) * 2015-10-29 2017-05-18 セイコーエプソン株式会社 Terahertz wave generator, imaging device, camera, and measurement device
US20190227404A1 (en) * 2016-07-20 2019-07-25 National University Of Singapore Terahertz Radiation Emitters
CN109411993A (en) * 2018-12-28 2019-03-01 中国工程物理研究院电子工程研究所 A kind of THz wave generator based on exchange bias magnetic field
CN110441929A (en) * 2019-08-14 2019-11-12 上海大学 Based on tunable THz wave transmitter of magneto-electronics array and preparation method thereof
CN110518439A (en) * 2019-09-06 2019-11-29 电子科技大学 A kind of broadband chirality terahertz sources source and launching technique

Also Published As

Publication number Publication date
JPWO2022091992A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US20060186098A1 (en) Method and apparatus for laser processing
CA2917764C (en) Optical design method for x-ray focusing system using rotating mirror, and x-ray focusing system
US9964749B2 (en) Total internal reflection fluorescence microscope (TIRFM)
US20090135871A1 (en) Two-Dimensional Photonic Crystal Surface Emitting Laser
JP5144212B2 (en) Optical mask and light source device
JP6303088B2 (en) Laser beam shaping device, removal processing device, and annular phase element
KR102242926B1 (en) Lens array-based illumination for wafer inspection
WO2022091992A1 (en) Terahertz light source, fluid detector, and terahertz wave generating method
US6746128B2 (en) Ultra-high resolution imaging devices
Geints et al. Comparative analysis of key parameters of photonic nanojets from axisymmetric nonspherical microparticles
EP2304739B1 (en) High intensity x-ray beam system
Pan et al. Low chromatic Fresnel lens for broadband attosecond XUV pulse applications
TWI582407B (en) Three dimensional particle localization and tracking device and method thereof
JP4393790B2 (en) Laser processing machine
US8019043B2 (en) High-resolution X-ray optic and method for constructing an X-ray optic
JP3141660B2 (en) X-ray irradiation device
CN109065209A (en) A kind of bimodulus output optical tweezer based on hollow beam
JP2005014018A (en) Laser beam machining apparatus
US20240061264A1 (en) Optical device for controlling a light beam
JPH10197709A (en) Binary optics and laser working device using the same
JPH0618700A (en) X-ray monochrometer
CN111751972A (en) Poisson facula microscope
JP2010025740A (en) X-ray condensing device
JPH03140900A (en) X-ray microscope
JP2012021951A (en) Soft x-ray microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886110

Country of ref document: EP

Kind code of ref document: A1