JPH0618700A - X-ray monochrometer - Google Patents

X-ray monochrometer

Info

Publication number
JPH0618700A
JPH0618700A JP3148689A JP14868991A JPH0618700A JP H0618700 A JPH0618700 A JP H0618700A JP 3148689 A JP3148689 A JP 3148689A JP 14868991 A JP14868991 A JP 14868991A JP H0618700 A JPH0618700 A JP H0618700A
Authority
JP
Japan
Prior art keywords
sample
dispersive crystal
rays
optical axis
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3148689A
Other languages
Japanese (ja)
Inventor
Shigeo Matsumoto
松本成夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP3148689A priority Critical patent/JPH0618700A/en
Publication of JPH0618700A publication Critical patent/JPH0618700A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To increase an angle of X-ray incidence with respect to a sample surface by improving resolutions with a narrowed line width of X-rays. CONSTITUTION:A target 11 is irradiated with an electron beam from an electron gun 12 put on an optical axis and X-rays generated from the target 11 are subjected to a Bragg reflection with a ring-shaped spectroscopic crystal 13 having a narrow width arranged about an optical axis. The X-rays focused once are reflected with a spectroscopic crystal 14 having a paraboloid in a rotation symmetry to other optical axes and then, applied to a sample 15. This allows increase in the angle of incidence of X-rays with respect to a sample surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子顕微鏡ケミカルアナ
ライザ(ESCA)用X線モノクロメータに関する。
FIELD OF THE INVENTION The present invention relates to an X-ray monochromator for an electron microscope chemical analyzer (ESCA).

【0002】[0002]

【従来の技術】従来、ターゲットに電子線を照射して発
生するX線を分光結晶により波長選択して試料に照射
し、試料から放出される光電子を検出することにより試
料の元素を特定するESCAが開発されている。
2. Description of the Related Art Conventionally, an ESCA for identifying an element of a sample by irradiating a sample with X-rays generated by irradiating a target with an electron beam and irradiating the sample with the wavelength selected, and detecting photoelectrons emitted from the sample Is being developed.

【0003】図2はESCA用モノクロメータを示して
おり、電子銃12からの電子線がターゲット11に照射
され、その照射領域から発生したX線は分光結晶20に
照射されると、分光結晶の面で反射したX線の中で、ブ
ラッグの式 2dsinθ1=nλ1 ……(1) を満たす波長λ1のX線が試料15に照射される。この
とき試料15から発生した光電子は静電レンズ17を通
り、アナライザ18で分光され、検出器19で検出さ
れ、試料の元素が同定される。
FIG. 2 shows an ESCA monochromator. When an electron beam from an electron gun 12 is irradiated on a target 11 and X-rays generated from the irradiation region are irradiated on a dispersive crystal 20, the dispersive crystal is irradiated. Among the X-rays reflected by the surface, the sample 15 is irradiated with the X-ray having the wavelength λ1 that satisfies the Bragg equation 2d sin θ1 = nλ1 (1). At this time, the photoelectrons generated from the sample 15 pass through the electrostatic lens 17, are dispersed by the analyzer 18, are detected by the detector 19, and the elements of the sample are identified.

【0004】分光結晶20は、図3(a)に示すよう
に、ターゲット及び試料を含む面内で半径r1の曲率半
径を有し、また図3(b)に示すようにターゲット11
と試料15の中点(O)を中心に、ターゲットと試料を
結ぶ線に直交する面内で半径r2の曲率半径も有するト
ロイダル面を有している。通常、このような分光結晶と
してはヨハンタイプの結晶を使用しているので図3
(a)の曲率r1の面内では分光結晶面の中心位置から
外れると収差が大きくなるので幅Wは余り大きくするこ
とができないが、図3(b)の曲率r2の面では収差が
ない。
As shown in FIG. 3A, the dispersive crystal 20 has a radius of curvature of a radius r1 in a plane including the target and the sample, and as shown in FIG.
And a toroidal surface having a radius of curvature r2 in a plane orthogonal to the line connecting the target and the sample, centered on the midpoint (O) of the sample 15. Normally, a Johan type crystal is used as such a dispersive crystal.
In the in-plane of the curvature r1 of (a), the aberration becomes large when it deviates from the center position of the dispersive crystal plane, and therefore the width W cannot be increased so much, but there is no aberration in the surface of the curvature r2 of FIG. 3 (b).

【0005】[0005]

【発明が解決しようとする課題】ところで、試料面上で
のX線の輝度を上げるためには、分光結晶面を大きくす
ればよいが、曲率r1の面では収差があるので大きくす
ることができず、収差の生じない曲率r2の面内360
°結晶面とすればよく、図4に示すように、分光結晶2
0を、ターゲット11と試料15の中点(O)を中心に
円筒状にし、光軸に対して回転対称の面を有するように
配置すればよい。しかしESCA用のX線モノクロメー
タにおいては、分解能を上げるためにX線の線幅を狭く
する必要があり、そのためブラッグの(1)式のθ1を
できるだけ広角にする必要がある。図4から分かるよう
に、θ1を大きくするためにはターゲットと分光結晶2
0間の間隔を短くする必要があり、その結果分光結晶と
試料との間隔も短くなり、X線の試料面に対する入射角
αが小さくなってしまい、その結果、静電レンズ、アナ
ライザ等を配置する空間がなくなってしまうという欠点
があった。
By the way, in order to increase the brightness of X-rays on the surface of the sample, it is sufficient to increase the size of the dispersive crystal surface, but it can be increased because of the aberration on the surface having the curvature r1. In-plane 360 of curvature r2 without aberration
The crystal plane may be used, and as shown in FIG.
It suffices to arrange 0 so that it has a cylindrical shape centered on the midpoint (O) of the target 11 and the sample 15 and has a plane rotationally symmetrical with respect to the optical axis. However, in the X-ray monochromator for ESCA, it is necessary to narrow the line width of the X-ray in order to improve the resolution, and therefore it is necessary to make the angle θ1 in Bragg's equation (1) as wide as possible. As can be seen from FIG. 4, in order to increase θ1, the target and the dispersive crystal 2
It is necessary to shorten the interval between 0s, and as a result, the interval between the dispersive crystal and the sample is also shortened, and the incident angle α of the X-ray with respect to the sample surface becomes small. As a result, the electrostatic lens, analyzer, etc. are arranged. There was a drawback that there was no space to play.

【0006】本発明は上記課題を解決するためのもの
で、X線の線幅を狭くして分解能を良くするとともに、
試料面に対するX線入射角を大きくして静電レンズ、ア
ナライザを配置する空間を大きくとることが可能なX線
モノクロメータを提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and narrows the line width of X-rays to improve the resolution and
An object of the present invention is to provide an X-ray monochromator capable of enlarging the X-ray incident angle with respect to the sample surface and taking a large space for disposing the electrostatic lens and the analyzer.

【0007】[0007]

【課題を解決するための手段】本発明のX線モノクロメ
ータは、光軸上に配置された電子銃及びターゲットと、
該電子銃からの電子線照射によりターゲットから発生し
たX線をブラッグ反射させるトロイダル面を有するリン
グ状の第1の分光結晶と、第1の分光結晶で反射して光
軸上でフォーカスしたX線が入射され、ブラッグ反射さ
せる光軸に対して回転対称の放物面を有する第2の分光
結晶と、第2の分光結晶で反射したX線照射により試料
から発生する光電子を検出する検出手段とを備えたこと
を特徴とする。
The X-ray monochromator of the present invention comprises an electron gun and a target arranged on the optical axis,
A ring-shaped first dispersive crystal having a toroidal surface that Bragg-reflects X-rays generated from a target by electron beam irradiation from the electron gun, and X-rays focused on the optical axis by being reflected by the first dispersive crystal. A second dispersive crystal having a parabolic surface that is rotationally symmetric with respect to the optical axis to be reflected by the Bragg reflection, and a detection unit that detects photoelectrons generated from the sample by the X-ray irradiation reflected by the second dispersive crystal. It is characterized by having.

【0008】[0008]

【作用】本発明は、光軸上に置かれた電子銃からターゲ
ットに電子線を照射し、ターゲットから発生したX線を
光軸周りに配置された幅の狭いリング状の第1の分光結
晶でブラッグ反射させ、一旦フォーカスしたX線を光軸
に対して回転対称の放物面を有する第2の分光結晶で反
射させた後、X線を試料に照射すると、第2の分光結晶
はブラッグ反射角を大きくする必要がないので、X線の
試料面に対する入射角を大きくとることができ、試料周
りの自由度が大きくなって、レンズ、アナライザを容易
に配置することか可能となり、高分解能、高輝度で測定
することができる。
The present invention irradiates an electron beam to a target from an electron gun placed on the optical axis, and a narrow ring-shaped first dispersive crystal arranged around the optical axis for X-rays generated from the target. Bragg reflection with the X-ray, and once the focused X-ray is reflected by the second dispersive crystal having a parabolic surface rotationally symmetric with respect to the optical axis, the sample is irradiated with the X-ray. Since there is no need to increase the reflection angle, it is possible to increase the angle of incidence of X-rays on the sample surface, which increases the degree of freedom around the sample, making it possible to easily dispose the lens and analyzer, resulting in high resolution. It can be measured with high brightness.

【0009】[0009]

【実施例】図1は本発明のX線モノクロメータの構成を
示す図である。図中、11はターゲット、12は電子
銃、13、14は分光結晶、15は試料、16は試料
面、17はレンズ、18はアナライザ、19は検出器で
ある。
1 is a diagram showing the construction of an X-ray monochromator of the present invention. In the figure, 11 is a target, 12 is an electron gun, 13 and 14 are dispersive crystals, 15 is a sample, 16 is a sample surface, 17 is a lens, 18 is an analyzer, and 19 is a detector.

【0010】電子銃12からの電子線はターゲット11
に照射され、その照射領域から発生したX線は円筒状に
配置されたトロイダル面の曲率をもつリング状の分光結
晶13に照射される。図4で説明したように、分解能を
上げるために分光結晶13への入射角(分光結晶面とX
線とのなす角)を大きくする必要があり、そのため分光
結晶13はターゲット11に近接した位置に配置され
る。分光結晶13でブラッグ反射されたX線は光軸上の
点Pで一度フォーカスされ、その後、トロイダル面の曲
率をもち、光軸に対して回転対称の放物面を有する分光
結晶14へ入射し、ブラッグ反射されて試料15に照射
される。分光結晶14は、一度分光結晶13で分光され
たX線を反射させるためのものであるため、ブラッグの
式(1)のθ1が小さい条件の分光結晶を用いることが
可能であるため、分光結晶14と試料15との距離を大
きくして光軸に垂直な試料面16に対するX線の入射角
αを大きくすることができる。
The electron beam from the electron gun 12 is the target 11
The X-ray generated from the irradiation region is irradiated to the ring-shaped dispersive crystal 13 having the curvature of the toroidal surface arranged in a cylindrical shape. As described in FIG. 4, in order to improve the resolution, the incident angle to the dispersive crystal 13 (the dispersive crystal plane and X
It is necessary to increase the angle formed by the line), and therefore the dispersive crystal 13 is arranged at a position close to the target 11. The X-rays Bragg-reflected by the dispersive crystal 13 are once focused at a point P on the optical axis, and then enter the dispersive crystal 14 having a toroidal curvature and a parabolic surface rotationally symmetric with respect to the optical axis. The sample 15 is irradiated with Bragg reflection. Since the dispersive crystal 14 is for reflecting the X-rays once dispersed by the dispersive crystal 13, it is possible to use a dispersive crystal under the condition that θ1 in the Bragg equation (1) is small. By increasing the distance between the sample 14 and the sample 15, the incident angle α of the X-ray with respect to the sample surface 16 perpendicular to the optical axis can be increased.

【0011】このように、αを充分大きくとることが可
能であるため、試料周りの自由度が大きくなり、静電レ
ンズ、アナライザを配置する空間を充分とることがで
き、試料から発生した光電子は静電レンズ17を通り、
アナライザ18で分光され、検出器19で検出すること
が可能である。なお、図では試料は光軸に垂直な試料面
に対してαだけ傾けているが、必ずしも傾けなくてもよ
い。
As described above, since α can be set to be sufficiently large, the degree of freedom around the sample is increased, a sufficient space can be provided for disposing the electrostatic lens and the analyzer, and photoelectrons generated from the sample Through the electrostatic lens 17,
It can be separated by the analyzer 18 and detected by the detector 19. Although the sample is tilted by α with respect to the sample surface perpendicular to the optical axis in the figure, the sample need not be tilted.

【0012】また、分光結晶14のトロイダル面の曲率
をもつ分光結晶と同等の働きをするX線レンズ(ゾーン
プレート、全反射ミラー)を分光結晶14の代わりに用
いるようにしてもよい。
An X-ray lens (zone plate, total reflection mirror) having the same function as that of the dispersive crystal having the toroidal surface curvature of the dispersive crystal 14 may be used instead of the dispersive crystal 14.

【0013】[0013]

【発明の効果】以上のように本発明によれば、分光結晶
により一度フォーカスした後に、もう一度分光結晶でブ
ラッグ反射角を小さくさせて試料に照射するようにした
ので、試料面に対するX線の入射角を大きくとることが
でき、試料回りの自由度が高まり、静電レンズ、アナラ
イザを容易に配置することが可能である。
As described above, according to the present invention, after focusing once by the dispersive crystal, the Bragg reflection angle is reduced again by the dispersive crystal to irradiate the sample, so that the X-ray is incident on the sample surface. The angle can be made large, the degree of freedom around the sample is increased, and the electrostatic lens and the analyzer can be easily arranged.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のX線モノクロメータを説明する図で
ある。
FIG. 1 is a diagram illustrating an X-ray monochromator of the present invention.

【図2】 従来のX線モノクロメータを説明する図であ
る。
FIG. 2 is a diagram illustrating a conventional X-ray monochromator.

【図3】 トロイダルタイプ分光結晶を説明する図であ
る。
FIG. 3 is a diagram illustrating a toroidal type dispersive crystal.

【図4】 円筒状分光結晶を用いたX線モノクロメータ
を示す図である。
FIG. 4 is a diagram showing an X-ray monochromator using a cylindrical dispersive crystal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光軸上に配置された電子銃及びターゲッ
トと、該電子銃からの電子線照射によりターゲットから
発生したX線をブラッグ反射させるトロイダル面を有す
るリング状の第1の分光結晶と、第1の分光結晶で反射
して光軸上でフォーカスしたX線が入射され、ブラッグ
反射させる光軸に対して回転対称の放物面を有する第2
の分光結晶と、第2の分光結晶で反射したX線照射によ
り試料から発生する光電子を検出する検出手段とを備え
たX線モノクロメータ。
1. An electron gun and a target arranged on the optical axis, and a ring-shaped first dispersive crystal having a toroidal surface for Bragg-reflecting X-rays generated from the target by electron beam irradiation from the electron gun. A second parabolic surface that is rotationally symmetric with respect to the optical axis on which the X-rays reflected by the first dispersive crystal and focused on the optical axis are incident, and are Bragg reflected
An X-ray monochromator comprising: the dispersive crystal and the detection means for detecting photoelectrons generated from the sample by the X-ray irradiation reflected by the second dispersive crystal.
JP3148689A 1991-06-20 1991-06-20 X-ray monochrometer Withdrawn JPH0618700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3148689A JPH0618700A (en) 1991-06-20 1991-06-20 X-ray monochrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3148689A JPH0618700A (en) 1991-06-20 1991-06-20 X-ray monochrometer

Publications (1)

Publication Number Publication Date
JPH0618700A true JPH0618700A (en) 1994-01-28

Family

ID=15458401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3148689A Withdrawn JPH0618700A (en) 1991-06-20 1991-06-20 X-ray monochrometer

Country Status (1)

Country Link
JP (1) JPH0618700A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526789A (en) * 2003-06-02 2006-11-24 エックス−レイ オプティカル システムズ インコーポレーテッド XANES analysis system and method for performing X-ray absorption edge vicinity structural analysis
WO2014188176A1 (en) * 2013-05-24 2014-11-27 Torr Scientific Ltd. X-ray source
CN109668917A (en) * 2018-09-29 2019-04-23 中国科学院高能物理研究所 A method of different-energy is obtained with broad x-ray using monochromator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526789A (en) * 2003-06-02 2006-11-24 エックス−レイ オプティカル システムズ インコーポレーテッド XANES analysis system and method for performing X-ray absorption edge vicinity structural analysis
JP4723487B2 (en) * 2003-06-02 2011-07-13 エックス−レイ オプティカル システムズ インコーポレーテッド XANES analysis system and method for performing X-ray absorption edge vicinity structural analysis
WO2014188176A1 (en) * 2013-05-24 2014-11-27 Torr Scientific Ltd. X-ray source
US10186341B2 (en) 2013-05-24 2019-01-22 Torr Scientific Ltd. X-ray source
CN109668917A (en) * 2018-09-29 2019-04-23 中国科学院高能物理研究所 A method of different-energy is obtained with broad x-ray using monochromator

Similar Documents

Publication Publication Date Title
US7003075B2 (en) Optical measuring device
US7119953B2 (en) Phase contrast microscope for short wavelength radiation and imaging method
US20030142781A1 (en) X-ray fluorescence spectrometer for semiconductors
US4965454A (en) Method and apparatus for detecting foreign particle
US4916721A (en) Normal incidence X-ray mirror for chemical microanalysis
US6529578B1 (en) X-ray condenser and x-ray apparatus
US7860217B2 (en) X-ray diffraction measuring apparatus having debye-scherrer optical system therein, and an X-ray diffraction measuring method for the same
US4487477A (en) Optical beam splitter
JPH0618700A (en) X-ray monochrometer
JP2007033207A (en) Fluorescence x-ray three-dimensional analyzer
US6285736B1 (en) Method for X-ray micro-diffraction measurement and X-ray micro-diffraction apparatus
JP4160124B2 (en) X-ray spectrometer having an analyzer crystal having a partially varying and partially constant radius of curvature
JP2004333131A (en) Total reflection fluorescence xafs measuring apparatus
JPH0511600B2 (en)
JP3141660B2 (en) X-ray irradiation device
JP2000074648A (en) Surface evaluating device for substrate
JPH08247967A (en) Fine area parallel beam irradiator
JP2522880B2 (en) Particle size distribution measuring device
JP2548960B2 (en) Laser light focus detection method and laser light focus detection device
JPH0443998A (en) X-ray analyzer, fine part x-ray diffracting device, fluorescent x-ray analyzer, and x-ray photoelectron analyzer
JP2943236B2 (en) Total reflection absorption spectrum measurement device
JPH0843717A (en) Focus detector
JPH0560702A (en) Method and device for picking up sectional image using x rays
JPH03140900A (en) X-ray microscope
JPH0445552A (en) Surface analyzer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903