TWI582407B - Three dimensional particle localization and tracking device and method thereof - Google Patents

Three dimensional particle localization and tracking device and method thereof Download PDF

Info

Publication number
TWI582407B
TWI582407B TW105114139A TW105114139A TWI582407B TW I582407 B TWI582407 B TW I582407B TW 105114139 A TW105114139 A TW 105114139A TW 105114139 A TW105114139 A TW 105114139A TW I582407 B TWI582407 B TW I582407B
Authority
TW
Taiwan
Prior art keywords
cylindrical lens
imaging
fluorescent
particle
lens
Prior art date
Application number
TW105114139A
Other languages
Chinese (zh)
Other versions
TW201740099A (en
Inventor
簡汎清
連啓翔
戴揚紘
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW105114139A priority Critical patent/TWI582407B/en
Application granted granted Critical
Publication of TWI582407B publication Critical patent/TWI582407B/en
Publication of TW201740099A publication Critical patent/TW201740099A/en

Links

Description

粒子三維定位與追蹤裝置及其方法 Particle three-dimensional positioning and tracking device and method thereof

本發明係關於一種粒子定位與追蹤裝置,特別係關於一種粒子三維定位與追蹤裝置。 The present invention relates to a particle positioning and tracking device, and more particularly to a particle three-dimensional positioning and tracking device.

近年來,粒子追蹤裝置在生物檢測上日益受到重視。一般而言,粒子追蹤裝置係使用光激發螢光顯微技術,發射一激發光至待測物,造成待測物之螢光粒子或螢光分子中的電子躍遷至激發態,而後電子從激發態回到基態,發射一螢光光束,接著偵測且分析待測物所發射之螢光光束。如此一來,可定位與追蹤待測物之粒子的二維位置。然而,傳統的粒子追蹤裝置需要透過軸向連續移動擷取複數個二維成像,再進行三維成像疊圖,才能獲得螢光粒子或螢光分子的三維位置,這樣的方式耗時較長,無法即時追蹤粒子的三維移動軌跡。 In recent years, particle tracking devices have received increasing attention in biological detection. In general, the particle tracking device uses a photoexcited fluorescence microscopy technique to emit an excitation light to the object to be tested, causing electrons in the fluorescent particles or fluorescent molecules of the analyte to transition to an excited state, and then the electrons are excited. The state returns to the ground state, emits a fluorescent beam, and then detects and analyzes the fluorescent beam emitted by the object to be tested. In this way, the two-dimensional position of the particles of the object to be tested can be located and tracked. However, the conventional particle tracking device needs to capture a plurality of two-dimensional images through axial continuous movement, and then perform three-dimensional imaging overlay to obtain the three-dimensional position of the fluorescent particles or fluorescent molecules, which is time consuming and cannot be obtained. Instantly track the three-dimensional movement of particles.

本揭露提供一種粒子三維定位與追蹤裝置,其可定位與追蹤粒子三維移動軌跡。 The present disclosure provides a particle three-dimensional positioning and tracking device that can locate and track a three-dimensional movement trajectory of a particle.

於本揭露之部分實施方式中,粒子三維定位與追 蹤裝置包含光源模組、成像透鏡組以及光偵測模組。光源模組係用以激發待測物,使待測物產生螢光光束。成像透鏡組包含一第一柱面透鏡、一第二柱面透鏡以及成像透鏡,其中第一柱面透鏡具有第一焦距,第一焦距為正值,且第二柱面透鏡具有第二焦距,第二焦距為負值,第一柱面透鏡與第二柱面透鏡係共同用以調整螢光光束之成像形狀。成像透鏡係用以將螢光光束成像於光偵測模組,且光偵測模組係用以偵測通過成像透鏡組之螢光光束。 In some embodiments of the disclosure, particle three-dimensional positioning and chasing The tracking device comprises a light source module, an imaging lens group and a light detecting module. The light source module is used to excite the object to be tested, so that the object to be tested generates a fluorescent beam. The imaging lens assembly includes a first cylindrical lens, a second cylindrical lens, and an imaging lens, wherein the first cylindrical lens has a first focal length, the first focal length is a positive value, and the second cylindrical lens has a second focal length, The second focal length is a negative value, and the first cylindrical lens and the second cylindrical lens system are used together to adjust the imaging shape of the fluorescent light beam. The imaging lens is used to image the fluorescent light beam to the light detecting module, and the light detecting module is configured to detect the fluorescent light beam passing through the imaging lens group.

於本揭露之部分實施方式中,一種粒子三維定位與追蹤的方法包含下列步驟:激發待測物,使待測物產生螢光光束;利用一聚焦的柱面透鏡與一發散的柱面透鏡共同調整螢光光束之成像形狀;以及偵測通過的聚焦的柱面透鏡與的發散的柱面透鏡之螢光光束。 In some embodiments of the present disclosure, a method for three-dimensional positioning and tracking of a particle includes the steps of: exciting a sample to be measured to generate a fluorescent beam; and using a focused cylindrical lens to share a divergent cylindrical lens Adjusting the imaging shape of the fluorescent beam; and detecting the passing fluorescent lens of the focused cylindrical lens and the diverging cylindrical lens.

於本揭露之部分實施方式中,成像透鏡組具有可聚焦的第一柱面透鏡、可發散的第二柱面透鏡與一成像透鏡。也就是說,可聚焦的第一柱面透鏡與可發散的第二柱面透鏡於不同軸向下的聚焦能力係不同的,藉由組合這樣的第一柱面透鏡與第二柱面透鏡可控制像散效應,使得通過成像透鏡組之螢光光束的成像產生適當的像散,再經成像透鏡成像於光偵測器,俾利於建立較精確的粒子定位軸向位置的校正曲線,增加粒子三維定位與追蹤的準確性。 In some embodiments of the present disclosure, the imaging lens assembly has a first cylindrical lens that is focusable, a second cylindrical lens that is divergent, and an imaging lens. That is to say, the focusing ability of the first cylindrical lens that can be focused and the divergent second cylindrical lens are different under different axial directions, by combining such a first cylindrical lens and a second cylindrical lens Controlling the astigmatic effect, so that the imaging of the fluorescent beam passing through the imaging lens group produces appropriate astigmatism, and then imaging the imaging lens to the photodetector, thereby facilitating the establishment of a more accurate calibration curve of the axial position of the particle positioning, increasing the particle The accuracy of 3D positioning and tracking.

10‧‧‧粒子三維定位與追蹤裝置 10‧‧‧Particle three-dimensional positioning and tracking device

100‧‧‧光源模組 100‧‧‧Light source module

110‧‧‧待測物 110‧‧‧Test object

112‧‧‧粒子 112‧‧‧ particles

120‧‧‧載台 120‧‧‧ stage

130‧‧‧光源 130‧‧‧Light source

142‧‧‧偏極鏡 142‧‧‧polar mirror

144‧‧‧快門 144‧‧ ‧Shutter

151‧‧‧反射鏡 151‧‧‧Mirror

152‧‧‧反射鏡 152‧‧‧Mirror

153‧‧‧反射鏡 153‧‧‧Mirror

154‧‧‧反射鏡 154‧‧‧Mirror

160‧‧‧光柵 160‧‧‧Raster

170‧‧‧第一透鏡組 170‧‧‧First lens group

180‧‧‧第二分色鏡 180‧‧‧Second dichroic mirror

190‧‧‧物鏡組 190‧‧‧ objective lens group

200‧‧‧成像透鏡組 200‧‧‧ imaging lens set

200a‧‧‧成像透鏡組 200a‧‧‧ imaging lens set

210‧‧‧第一柱面透鏡 210‧‧‧First cylindrical lens

210a‧‧‧第一柱面透鏡 210a‧‧‧first cylindrical lens

212‧‧‧第一旋轉支撐架 212‧‧‧First rotating support

214‧‧‧旋轉致動器 214‧‧‧Rotary actuator

220‧‧‧第二柱面透鏡 220‧‧‧second cylindrical lens

220a‧‧‧第二柱面透鏡 220a‧‧‧second cylindrical lens

222‧‧‧第二旋轉支撐架 222‧‧‧Second rotating support

224‧‧‧旋轉致動器 224‧‧‧Rotary actuator

230‧‧‧成像透鏡 230‧‧‧ imaging lens

300‧‧‧光偵測模組 300‧‧‧Light detection module

310‧‧‧第一光偵測器 310‧‧‧First Light Detector

320‧‧‧第二光偵測器 320‧‧‧Second light detector

330‧‧‧第一分色鏡 330‧‧‧First dichroic mirror

1122‧‧‧第一粒子 1122‧‧‧First particle

1124‧‧‧第二粒子 1124‧‧‧Second particles

3102‧‧‧第一螢光濾片 3102‧‧‧First fluorescent filter

3202‧‧‧第二螢光濾片 3202‧‧‧Second Fluorescent Filter

L‧‧‧光束 L‧‧‧beam

Lt‧‧‧子午平面之光線 Light of the Lt‧‧ meridian plane

Ls‧‧‧弧矢平面之光線 Light of Ls‧‧, sagittal plane

F‧‧‧螢光光束 F‧‧‧Fluorescent beam

f1‧‧‧第一焦距 F1‧‧‧first focal length

f2‧‧‧第二焦距 F2‧‧‧second focal length

fa1‧‧‧第一焦距 Fa1‧‧‧first focal length

fa2‧‧‧第二焦距 Fa2‧‧‧second focal length

F1‧‧‧第一螢光光束 F1‧‧‧First fluorescent beam

F2‧‧‧第二螢光光束 F2‧‧‧second fluorescent beam

Fv‧‧‧焦點 Fv‧‧ focus

Fp‧‧‧焦點 Fp‧‧ Focus

I1‧‧‧成像 I1‧‧‧ imaging

I2‧‧‧成像 I2‧‧‧ imaging

I3‧‧‧成像 I3‧‧· imaging

S‧‧‧點光源 S‧‧‧ point light source

t1‧‧‧中央厚度 T1‧‧‧ central thickness

t2‧‧‧邊緣厚度 T2‧‧‧ edge thickness

t3‧‧‧中央厚度 T3‧‧‧ central thickness

t4‧‧‧邊緣厚度 T4‧‧‧Edge thickness

t5‧‧‧中央厚度 T5‧‧‧ central thickness

t6‧‧‧邊緣厚度 T6‧‧‧ edge thickness

t7‧‧‧中央厚度 T7‧‧‧ central thickness

t8‧‧‧邊緣厚度 T8‧‧‧ edge thickness

Op‧‧‧光學透鏡 Op‧‧‧ optical lens

P1‧‧‧點 P1‧‧ points

P2‧‧‧位置 P2‧‧‧ position

P3‧‧‧位置 P3‧‧‧ position

Z1~Z5‧‧‧深度 Z1~Z5‧‧‧Deep

閱讀以下詳細敘述並搭配對應之圖式,可了解本 揭露之多個樣態。需留意的是,圖式中的多個特徵並未依照該業界領域之標準作法繪製實際比例。事實上,所述之特徵的尺寸可以任意的增加或減少以利於討論的清晰性。 Read the following detailed description and match the corresponding drawings to understand this Reveal the multiple forms. It should be noted that the various features in the drawings do not draw actual proportions in accordance with standard practice in the industry. In fact, the dimensions of the features described can be arbitrarily increased or decreased to facilitate clarity of discussion.

第1圖為依據本揭露之部分實施方式之粒子三維定位與追蹤裝置的示意圖。 FIG. 1 is a schematic diagram of a three-dimensional particle positioning and tracking device according to some embodiments of the present disclosure.

第2A圖為依據本揭露之部分實施方式之像散效應的示意圖。 2A is a schematic diagram of an astigmatic effect in accordance with some embodiments of the present disclosure.

第2B圖為依據本揭露之部分實施方式之點光源相對於光學透鏡之不同軸向位置時的成像形狀示意圖。 FIG. 2B is a schematic view showing the imaging shape of the point light source according to some embodiments of the present disclosure with respect to different axial positions of the optical lens.

第3圖為依據本揭露之部分實施方式之粒子三維定位與追蹤裝置之成像透鏡組的示意圖。 3 is a schematic diagram of an imaging lens group of a particle three-dimensional positioning and tracking device according to some embodiments of the present disclosure.

第4A圖為依據本揭露之部分實施方式之不同螢光光束之成像形狀的示意圖。 4A is a schematic diagram of the imaging shape of different fluorescent beams in accordance with some embodiments of the present disclosure.

第4B圖為依據本揭露之部分實施方式之焦距絕對值相等的第一柱面透鏡與第二柱面透鏡未相對旋轉時之螢光光束的成像形狀示意圖。 FIG. 4B is a schematic diagram showing the imaging shape of the fluorescent light beam when the first cylindrical lens and the second cylindrical lens are not rotated relative to each other according to the embodiment of the present disclosure.

第5圖為依據本揭露之部分實施方式之粒子三維定位與追蹤裝置之粒子定位軸向位置的校正曲線圖。 FIG. 5 is a calibration graph of the axial position of the particle positioning of the particle three-dimensional positioning and tracking device according to some embodiments of the present disclosure.

第6圖為依據本揭露之部分實施方式之粒子三維定位與追蹤裝置之另一成像透鏡組的示意圖。 Figure 6 is a schematic illustration of another imaging lens assembly of a particle three-dimensional positioning and tracking device in accordance with some embodiments of the present disclosure.

以下將以圖式及詳細說明清楚說明本揭露之精神,任何所屬技術領域中具有通常知識者在瞭解本揭露之實施 例後,當可由本揭露所教示之技術,加以改變及修飾,其並不脫離本揭露之精神與範圍。舉例而言,敘述「第一特徵形成於第二特徵上方或上」,於實施例中將包含第一特徵及第二特徵具有直接接觸;且也將包含第一特徵和第二特徵為非直接接觸,具有額外的特徵形成於第一特徵和第二特徵之間。此外,本揭露在多個範例中將重複使用元件標號以及/或文字。重複的目的在於簡化與釐清,而其本身並不會決定多個實施例以及/或所討論的配置之間的關係。 The spirit of the disclosure will be clearly described in the following drawings and detailed description, and those skilled in the art will understand the implementation of the disclosure. The invention may be modified and modified by the teachings of the present disclosure without departing from the spirit and scope of the disclosure. For example, the description "the first feature is formed above or above the second feature", in the embodiment, the first feature and the second feature are included in direct contact; and the first feature and the second feature are also included as indirect The contact has additional features formed between the first feature and the second feature. Moreover, the present disclosure will reuse component numbers and/or text in various examples. The purpose of the repetition is to simplify and clarify, and does not in itself determine the relationship between the various embodiments and/or the configurations in question.

第1圖為依據本揭露之部分實施方式之粒子三維定位與追蹤裝置10的示意圖。如第1圖所示,粒子三維定位與追蹤裝置10包含光源模組100、成像透鏡組200以及光偵測模組300。光源模組100係用以發射光束L以激發待測物110。待測物110吸收通過光源模組100之光束L後,被激發而產生螢光光束F。成像透鏡組200係用以調整螢光光束F之成像形狀。進一步來說,成像透鏡組200包含第一柱面透鏡210、第二柱面透鏡220及成像透鏡230。第一柱面透鏡210僅於柱面體中心線相垂直方向具有最大曲率和折光能力,第二柱面透鏡220亦於柱面體中心線相垂直方向具有最大曲率和折光能力。第一柱面透鏡210之第一焦距f1>0,且第二柱面透鏡220之第二焦距f2<0。第一柱面透鏡210與第二柱面透鏡220係依序排列於螢光光束F的光路上,兩者係共同用以調整螢光光束F之成像形狀。成像透鏡230係用以將螢光光束成像於光偵測模組300。光偵測模組300係用以偵測通過成像透鏡組200之螢光光束F,進而定位與追蹤粒子三維移動軌跡。 1 is a schematic diagram of a particle three-dimensional positioning and tracking device 10 in accordance with some embodiments of the present disclosure. As shown in FIG. 1 , the particle three-dimensional positioning and tracking device 10 includes a light source module 100 , an imaging lens group 200 , and a light detecting module 300 . The light source module 100 is configured to emit a light beam L to excite the object to be tested 110. After the object to be tested 110 absorbs the light beam L passing through the light source module 100, it is excited to generate a fluorescent light beam F. The imaging lens group 200 is for adjusting the imaging shape of the fluorescent light beam F. Further, the imaging lens group 200 includes a first cylindrical lens 210, a second cylindrical lens 220, and an imaging lens 230. The first cylindrical lens 210 has a maximum curvature and refractive power only in a direction perpendicular to the center line of the cylinder, and the second cylindrical lens 220 also has a maximum curvature and refractive power in a direction perpendicular to the center line of the cylinder. The first focal length f1>0 of the first cylindrical lens 210 and the second focal length f2<0 of the second cylindrical lens 220. The first cylindrical lens 210 and the second cylindrical lens 220 are sequentially arranged on the optical path of the fluorescent light beam F, and the two are used together to adjust the imaging shape of the fluorescent light beam F. The imaging lens 230 is used to image the fluorescent light beam to the light detecting module 300. The light detecting module 300 is configured to detect the fluorescent light beam F passing through the imaging lens group 200, thereby positioning and tracking the three-dimensional moving track of the particles.

值得注意的是,本揭露之粒子三維定位與追蹤裝置與像散效應有關,故在下文中說明像散效應。 It is worth noting that the particle three-dimensional positioning and tracking device of the present disclosure is related to the astigmatism effect, so the astigmatic effect is explained below.

光線於成像系統中行進時,其可分為子午(tangential)方向之光線,亦即垂直方向之光線,與在弧矢(sagittal)方向之光線,亦即水平方向之光線。像散效應係由於在子午方向上之光線與在弧矢方向上之光線聚焦於不同的位置,導致成像像差。參照第2A圖,第2A圖為依據本揭露之部分實施方式之像散效應的示意圖。舉例而言,如第2A圖所示,光學系統包含光學透鏡Op,光學透鏡Op在子午方向(X方向)與弧矢方向(Y方向),會有不同的焦距長。當點光源S發射一光束時,光束可包含在子午平面(XZ平面)之光線Lt及在弧矢平面(YZ平面)之光線Ls。由於光學透鏡Op在弧矢平面上的屈光能力與在子午平面上的屈光能力係不同的,故在子午平面上之光線Lt所受到的聚焦效果與在弧矢平面上之光線Ls所受到的聚焦效果係不同,導致在子午平面上之光線Lt的成像焦點與在弧矢平面上之光線Ls的成像焦點係不同,因此產生一模糊影像,此現象稱為像散效應。 When light travels through the imaging system, it can be divided into rays in the tangential direction, that is, rays in the vertical direction, and rays in the sagittal direction, that is, rays in the horizontal direction. The astigmatic effect causes imaging aberrations because the rays in the meridional direction and the rays in the sagittal direction are focused at different positions. Referring to FIG. 2A, FIG. 2A is a schematic diagram of an astigmatic effect according to some embodiments of the present disclosure. For example, as shown in FIG. 2A, the optical system includes an optical lens Op, which has a different focal length in the meridional direction (X direction) and the sagittal direction (Y direction). When the point source S emits a light beam, the light beam may include the light Lt in the meridional plane (XZ plane) and the light Ls in the sagittal plane (YZ plane). Since the refractive power of the optical lens Op on the sagittal plane is different from the refractive power in the meridional plane, the focusing effect of the light Lt on the meridional plane and the light Ls on the sagittal plane are affected. The focusing effect is different, resulting in that the imaging focus of the light ray Lt on the meridional plane is different from the imaging focus of the light ray Ls on the sagittal plane, thus producing a blurred image, which is called astigmatic effect.

如第2A圖所示,於光學透鏡Op中,當點光源S發射光束時,此光束於子午平面(XZ平面)上之光線Lt會聚焦於子午平面的焦點Fv,在弧矢平面(YZ平面)上之光線Ls會聚焦於弧矢平面平面的焦點Fp,焦點Fv與焦點Fp係不同的(亦即,兩者係分離不重合的),因而產生像散,亦即焦點Fv與焦點Fp之間的成像會變模糊,點光源S之成像會變形(例如:由圓形轉變為橢圓形)。 As shown in Fig. 2A, in the optical lens Op, when the point source S emits a beam, the beam Lt of the beam on the meridional plane (XZ plane) is focused on the focal plane Fv of the meridional plane, in the sagittal plane (YZ plane) The upper light ray Ls is focused on the focal point Fp of the sagittal plane, and the focal point Fv is different from the focal point Fp (that is, the two are not separated), thus generating astigmatism, that is, the focus Fv and the focus Fp. The imaging between them will be blurred, and the imaging of the point source S will be deformed (for example, from a circle to an ellipse).

此外,當點光源S與光學透鏡Op的相對位置改變時,在一固定的成像平面上,點光源S之成像會產生不同程度的像散。同時參照第2A圖與第2B圖。第2B圖為依據本揭露之部分實施方式之點光源S相對於光學透鏡Op之不同軸向(Z方向)位置時的成像形狀示意圖。舉例而言,如第2A圖所示,當點光源S係位於光學透鏡Op之點P1時,點光源S之成像在點Fc之成像平面上可得到在X及Y方向上大小相等的像,而可呈現圓形的成像I1(如第2B圖所示)。當點光源S係位於位置P2(亦即,比點P1更遠離光學透鏡Op的位置)時,點光源S在點Fc之成像平面上的成像由圓形變為橢圓形的成像I2(如第2B圖所示)。當點光源S更遠離光學透鏡Op之點P1時,舉例而言,點光源S係位於光學透鏡Op之位置P3(亦即,比位置P2更遠離光學透鏡Op的位置)上,則點光源S受到光學透鏡Op之像散效應的影響程度便改變,而呈現一比成像I2更為扁平之橢圓成像I3(如第2B圖所示)。換句話說,參照第2B圖,成像I1係點光源S於點P1時的成像形狀。成像I2係點光源S於位置P2時的成像形狀。成像I3係點光源S於位置P3時的成像形狀。由此可知,當點光源S係位於相對於光學透鏡Op之軸向(Z方向)不同位置時,點光源S之成像形狀亦會跟著改變。因此,可藉由像散效應所造成的成像形狀變化,判斷點光源S與光學透鏡Op在軸向(Z方向)上的相對位置。 Further, when the relative position of the point source S and the optical lens Op changes, the imaging of the point source S produces a different degree of astigmatism on a fixed imaging plane. Refer to both Figures 2A and 2B. FIG. 2B is a schematic view showing the imaging shape of the point light source S according to a part of the embodiment of the present disclosure with respect to the axial direction (Z direction) of the optical lens Op. For example, as shown in FIG. 2A, when the point source S is located at the point P1 of the optical lens Op, the imaging of the point source S can obtain images of equal magnitude in the X and Y directions on the imaging plane of the point Fc. A circular imaging I1 can be presented (as shown in Figure 2B). When the point source S is located at the position P2 (ie, a position farther from the optical lens Op than the point P1), the imaging of the point source S on the imaging plane of the point Fc is changed from a circular shape to an elliptical imaging I2 (eg, Figure 2B shows). When the point source S is further away from the point P1 of the optical lens Op, for example, the point source S is located at the position P3 of the optical lens Op (that is, a position farther from the optical lens Op than the position P2), then the point source S The degree of influence by the astigmatic effect of the optical lens Op changes, and an elliptical imaging I3 (as shown in Fig. 2B) which is flatter than the imaging I2 is presented. In other words, referring to Fig. 2B, the imaging shape of the point light source S at the point P1 is imaged. The imaging shape of the I2 line point source S at the position P2 is imaged. The image shape of the I3 line point source S at the position P3 is imaged. From this, it can be seen that when the point light source S is located at a different position from the axial direction (Z direction) of the optical lens Op, the image shape of the point light source S also changes. Therefore, the relative position of the point light source S and the optical lens Op in the axial direction (Z direction) can be judged by the change in the imaging shape caused by the astigmatic effect.

承上所述,本揭露之部分實施方式即是藉由此像散的差異,來分析粒子所發射之螢光光束F的成像,進一步地得到粒子與成像透鏡組200的相對位置,從而定位粒子的軸向 (Z方向)位置。然而,當像散效應過甚時,粒子於成像透鏡組200之不同位置的成像會太模糊,無法準確判斷位於不同位置之粒子的成像差異,便無法準確定位粒子與成像透鏡組200的相對位置。或是,當像散效應過小時,粒子於成像透鏡組200之不同位置的成像會太相似,無法準確判斷位於不同位置之粒子的成像差異,便無法準確定位粒子與成像透鏡組200的相對位置。因此,下文之實施方式提供一成像透鏡組200,其可產生適當的像散效應,而有效利用像散效應來定位與追蹤粒子。 As described above, some embodiments of the present disclosure analyze the imaging of the fluorescent light beam F emitted by the particles by the difference of the astigmatism, and further obtain the relative position of the particles and the imaging lens group 200, thereby positioning the particles. Axial (Z direction) position. However, when the astigmatic effect is excessive, the imaging of the particles at different positions of the imaging lens group 200 may be too blurred, and the imaging difference of the particles located at different positions cannot be accurately determined, and the relative position of the particles and the imaging lens group 200 cannot be accurately located. Or, when the astigmatic effect is too small, the imaging of the particles at different positions of the imaging lens group 200 may be too similar to accurately determine the imaging difference of the particles at different positions, and the relative position of the particles to the imaging lens group 200 cannot be accurately located. . Accordingly, the embodiments below provide an imaging lens set 200 that can generate appropriate astigmatism effects while effectively utilizing astigmatic effects to locate and track particles.

具體而言,本揭露之實施方式係藉由成像透鏡組200產生較適當的像散效應,而建立一較準確的粒子之成像隨著軸向(Z方向)距離變化的校正曲線。第3圖為依據本揭露之部分實施方式之粒子三維定位與追蹤裝置10之成像透鏡組200的示意圖。如第3圖所示,成像透鏡組200係光學耦合於待測物110與光偵測模組300之間,使得來自待測物110的光線可通過成像透鏡組200抵達光偵測模組300。進一步來說,此成像透鏡組200包含第一柱面透鏡210、第二柱面透鏡220以及成像透鏡230。第一柱面透鏡210、第二柱面透鏡220與成像透鏡230係光學耦合於待測物110與光偵測模組300之間。舉例來說,於部分實施方式中,第一柱面透鏡210、第二柱面透鏡220與成像透鏡230係沿著螢光光束F的行進方向依序排列的,使得來自待測物110的螢光光束F可依序通過第一柱面透鏡210、第二柱面透鏡220與成像透鏡230而往光偵測模組300行進。或者,於部分實施方式中,成像透鏡230、第一柱面透鏡210與第二柱面透鏡220係沿著螢光光束F的方向依序排列的,使得 來自待測物110的螢光光束F可依序通過成像透鏡230、第一柱面透鏡210與第二柱面透鏡220而往光偵測模組300行進,但本揭露不以此為限。可注意的是,如第3圖所示,第一柱面透鏡210於X方向與Y方向下的聚焦能力係不同的。相似地,第二柱面透鏡220於X方向與Y方向下的聚焦能力係不同的。第一柱面透鏡210之第一焦距f1>0,且第二柱面透鏡220之第二焦距f2<0。換句話說,第一柱面透鏡210具有聚焦能力,第二柱面透鏡220具有發散能力。因此,可藉由組合第一柱面透鏡210與第二柱面透鏡220,調整成像透鏡組200之聚焦與發散的能力,使得通過成像透鏡組200之螢光光束F的成像具有較適當的像散(亦即,受到程度較適當的像散效應影響),而利於建立較準確的粒子之成像隨著軸向(Z方向)距離變化的校正曲線。 In particular, the embodiment of the present disclosure establishes a more accurate astigmatism effect by the imaging lens group 200, and establishes a calibration curve of the imaging of the more accurate particles along the axial (Z-direction) distance. 3 is a schematic diagram of an imaging lens assembly 200 of a particle three-dimensional positioning and tracking device 10 in accordance with some embodiments of the present disclosure. As shown in FIG. 3 , the imaging lens set 200 is optically coupled between the object to be tested 110 and the light detecting module 300 , so that light from the object to be tested 110 can reach the light detecting module 300 through the imaging lens set 200 . . Further, the imaging lens group 200 includes a first cylindrical lens 210, a second cylindrical lens 220, and an imaging lens 230. The first cylindrical lens 210 and the second cylindrical lens 220 are optically coupled to the imaging lens 230 between the object to be tested 110 and the light detecting module 300. For example, in some embodiments, the first cylindrical lens 210, the second cylindrical lens 220, and the imaging lens 230 are sequentially arranged along the traveling direction of the fluorescent light beam F, so that the fluorescent light from the object to be tested 110 The light beam F can sequentially travel through the first cylindrical lens 210, the second cylindrical lens 220, and the imaging lens 230 to the light detecting module 300. Alternatively, in some embodiments, the imaging lens 230, the first cylindrical lens 210, and the second cylindrical lens 220 are sequentially arranged along the direction of the fluorescent light beam F, such that The fluorescent light beam F from the object to be tested 110 can be sequentially passed through the imaging lens 230, the first cylindrical lens 210 and the second cylindrical lens 220 to the light detecting module 300, but the disclosure is not limited thereto. It can be noted that, as shown in FIG. 3, the focusing ability of the first cylindrical lens 210 in the X direction and the Y direction is different. Similarly, the second cylindrical lens 220 is different in focusing ability in the X direction and the Y direction. The first focal length f1>0 of the first cylindrical lens 210 and the second focal length f2<0 of the second cylindrical lens 220. In other words, the first cylindrical lens 210 has a focusing ability, and the second cylindrical lens 220 has a diverging ability. Therefore, the ability of focusing and diverging the imaging lens group 200 can be adjusted by combining the first cylindrical lens 210 and the second cylindrical lens 220, so that the imaging of the fluorescent light beam F passing through the imaging lens group 200 has a more appropriate image. Dispersion (that is, affected by a more appropriate degree of astigmatism), and facilitates the establishment of a calibration curve of the imaging of the more accurate particles along the axial (Z-direction) distance.

具體而言,於部分實施方式中,如第3圖所示,第一柱面透鏡210在兩個垂直方向上的焦距是不同的。如此一來,第一柱面透鏡210對螢光光束F所提供於垂直面(XZ平面)下的聚焦效果與在水平面(YZ平面)下的聚焦效果係不同的。因此,當螢光光束F通過第一柱面透鏡210後,螢光光束F在水平面上之光線的成像焦點與螢光光束F在垂直面上之光線的成像焦點亦係不同的。又由於第一柱面透鏡210之第一焦距f1>0,係一聚焦的透鏡,故通過第一柱面透鏡210之螢光光束F會收斂。相似地,於部分實施方式中,第二柱面透鏡220在兩個垂直方向上的焦距係不同的。如此一來,第二柱面透鏡220對螢光光束F所提供於垂直面(XZ平面)下的發散效果與在水平面(YZ平面)下的發散效果係不同的。因此,當螢光光束F通 過第二柱面透鏡220後,螢光光束F在水平面上之光線的成像焦點與螢光光束F在垂直面上之光線的成像焦點亦係不同的。又由於第二柱面透鏡220之第二焦距f2<0,係一發散的透鏡,故通過第二柱面透鏡220之螢光光束F會發散。因此,可藉由第一柱面透鏡210對光的收斂能力與第二柱面透鏡220對光的發散能力,調整螢光光束F之成像聚集與發散的程度,且可調整螢光光束F經過成像透鏡230成像後於水平面的成像焦點與垂直面的成像焦點,使得通過成像透鏡組200之螢光光束F之成像受到較適當程度的像散效應影響。 Specifically, in some embodiments, as shown in FIG. 3, the focal lengths of the first cylindrical lens 210 in two perpendicular directions are different. As a result, the focusing effect of the first cylindrical lens 210 on the vertical plane (XZ plane) provided by the fluorescent light beam F is different from that in the horizontal plane (YZ plane). Therefore, when the fluorescent light beam F passes through the first cylindrical lens 210, the imaging focus of the light beam of the fluorescent light beam F on the horizontal plane is different from the imaging focus of the light of the fluorescent light beam F on the vertical plane. Moreover, since the first focal length f1>0 of the first cylindrical lens 210 is a focused lens, the fluorescent light beam F passing through the first cylindrical lens 210 converges. Similarly, in some embodiments, the focal length of the second cylindrical lens 220 in the two perpendicular directions is different. As a result, the diverging effect of the second cylindrical lens 220 on the vertical plane (XZ plane) provided by the fluorescent light beam F is different from the diverging effect in the horizontal plane (YZ plane). Therefore, when the fluorescent beam F passes After passing through the second cylindrical lens 220, the imaging focus of the light beam of the fluorescent light beam F on the horizontal plane is different from the imaging focus of the light of the fluorescent light beam F on the vertical plane. Further, since the second focal length f2 < 0 of the second cylindrical lens 220 is a diverging lens, the fluorescent light beam F passing through the second cylindrical lens 220 is diverged. Therefore, the degree of convergence and divergence of the fluorescent light beam F can be adjusted by the ability of the first cylindrical lens 210 to converge light and the ability of the second cylindrical lens 220 to diverge light, and the fluorescent light beam F can be adjusted. The imaging focus of the imaging lens 230 after imaging on the horizontal plane and the imaging focus of the vertical plane are such that imaging of the fluorescent light beam F through the imaging lens group 200 is affected by a more appropriate degree of astigmatism.

換句話說,成像透鏡組200係藉由組合第一柱面透鏡210、第二柱面透鏡220與成像透鏡230,其中第一柱面透鏡210之第一焦距f1>0,且第二柱面透鏡220之第二焦距f2<0,使得第一柱面透鏡210之像散效應的程度與第二柱面透鏡220之像散效應的程度可互相抵銷或增加,從而調整成像透鏡組200之像散效應的程度。如此一來,通過成像透鏡組200之螢光光束F的成像可受到較適當程度的散像效應影響,而建立一較精確的粒子校正曲線,俾利於粒子三維定位與追蹤的準確性。 In other words, the imaging lens set 200 is formed by combining the first cylindrical lens 210, the second cylindrical lens 220 and the imaging lens 230, wherein the first focal length f1>0 of the first cylindrical lens 210, and the second cylindrical surface The second focal length f2<0 of the lens 220 is such that the degree of astigmatism of the first cylindrical lens 210 and the degree of astigmatic effect of the second cylindrical lens 220 can cancel or increase each other, thereby adjusting the imaging lens group 200. The extent of the astigmatic effect. In this way, the imaging of the fluorescent light beam F through the imaging lens group 200 can be affected by a more appropriate degree of image scattering effect, and a more accurate particle calibration curve is established, which is advantageous for the accuracy of particle three-dimensional positioning and tracking.

換句話說,於部分實施方式中,如第3圖所示,螢光光束F通過第一柱面透鏡210時,在水平面(YZ平面)的屈光度與在垂直面(XZ平面)的屈光度係不同的。通過第一柱面透鏡210之螢光光束F於水平面之成像焦點與垂直面之成像焦點亦係不同的。相似地,螢光光束F通過第二柱面透鏡220時,在水平面的屈光度(可小於0)與在垂直面的屈光度(可小於0) 係不同的。通過第二柱面透鏡220之螢光光束F於水平面之成像焦點與垂直面之成像焦點係不同的。藉由正焦距之第一柱面透鏡210與負焦距之第二柱面透鏡220,可調整螢光光束F通過成像透鏡組200之水平面的成像焦距與垂直面之成像焦距。舉例而言,於部分實施方式中,藉由第一柱面透鏡210聚集螢光光束F,且藉由第二柱面透鏡220發散螢光光束F,第一柱面透鏡210與第二柱面透鏡220可互相抵銷像散效應的程度,而減少螢光光束F之像散。 In other words, in some embodiments, as shown in FIG. 3, when the fluorescent light beam F passes through the first cylindrical lens 210, the diopter in the horizontal plane (YZ plane) is different from the diopter in the vertical plane (XZ plane). of. The imaging focus of the fluorescent beam F passing through the first cylindrical lens 210 in the horizontal plane is also different from the imaging focus of the vertical plane. Similarly, when the fluorescent beam F passes through the second cylindrical lens 220, the diopter in the horizontal plane (which may be less than 0) and the diopter in the vertical plane (which may be less than 0) Different. The imaging focus of the fluorescent beam F passing through the second cylindrical lens 220 in the horizontal plane is different from the imaging focus of the vertical plane. By the first cylindrical lens 210 with a positive focal length and the second cylindrical lens 220 with a negative focal length, the imaging focal length of the fluorescent light beam F passing through the horizontal plane of the imaging lens group 200 and the imaging focal length of the vertical surface can be adjusted. For example, in some embodiments, the fluorescent beam F is concentrated by the first cylindrical lens 210, and the fluorescent beam F is diverged by the second cylindrical lens 220, the first cylindrical lens 210 and the second cylindrical surface. The lens 220 can offset the degree of astigmatic effect and reduce the astigmatism of the fluorescent beam F.

舉例而言,於部分實施方式中,如第3圖所示,在XZ平面上,第一柱面透鏡210之中央部具有中央厚度t1,而第一柱面透鏡210之圍繞著中央部的邊緣部具有邊緣厚度t2。第一柱面透鏡210之中央厚度t1與第一柱面透鏡210之邊緣厚度t2係不同的,且中央厚度t1大於邊緣厚度t2,使得第一柱面透鏡210為聚焦的透鏡。此外,第一柱面透鏡210於YZ平面上的厚度係實質上相等。相似地,在XZ平面上,第二柱面透鏡220之中央部具有中央厚度t3,而第二柱面透鏡220之圍繞著中央部的邊緣部具有邊緣厚度t4。第二柱面透鏡220之中央厚度t3與第二柱面透鏡220之邊緣厚度t4係不同的,且中央厚度t3小於邊緣厚度t4,使得第二柱面透鏡220為發散的透鏡。此外,第二柱面透鏡220於YZ平面上的厚度係實質上相等。。第一柱面透鏡210的光軸與第二柱面透鏡220的光軸重合。藉由這樣的第一柱面透鏡210與第二柱面透鏡220,可調整螢光光束F所通過之兩透鏡的中央厚度總和(意即t1+t3),及調整螢光光束F所通過之兩透鏡的邊緣厚度總和(意即t2+t4),以調整螢 光光束F之成像焦點,而改變螢光光束F之成像的像散。 For example, in some embodiments, as shown in FIG. 3, in the XZ plane, the central portion of the first cylindrical lens 210 has a central thickness t1, and the first cylindrical lens 210 surrounds the edge of the central portion. The portion has an edge thickness t2. The central thickness t1 of the first cylindrical lens 210 is different from the edge thickness t2 of the first cylindrical lens 210, and the central thickness t1 is greater than the edge thickness t2 such that the first cylindrical lens 210 is a focused lens. Moreover, the thickness of the first cylindrical lens 210 on the YZ plane is substantially equal. Similarly, in the XZ plane, the central portion of the second cylindrical lens 220 has a central thickness t3, and the edge portion of the second cylindrical lens 220 surrounding the central portion has an edge thickness t4. The central thickness t3 of the second cylindrical lens 220 is different from the edge thickness t4 of the second cylindrical lens 220, and the central thickness t3 is smaller than the edge thickness t4 such that the second cylindrical lens 220 is a diverging lens. Moreover, the thickness of the second cylindrical lens 220 on the YZ plane is substantially equal. . The optical axis of the first cylindrical lens 210 coincides with the optical axis of the second cylindrical lens 220. With the first cylindrical lens 210 and the second cylindrical lens 220, the sum of the central thicknesses of the two lenses through which the fluorescent light beam F passes (ie, t1+t3) can be adjusted, and the fluorescent light beam F can be adjusted. The sum of the edge thicknesses of the two lenses (ie t2+t4) to adjust the firefly The imaging focus of the light beam F changes the astigmatism of the imaging of the fluorescent beam F.

於部分實施方式中,第一柱面透鏡210與第二柱面透鏡220係可旋轉的,用以調整成像透鏡組200之像散效應,幫助通過成像透鏡組200之螢光光束F之成像產生適當的像散。具體而言,於部分實施方式中,如第3圖所示,成像透鏡組200更包含第一旋轉支撐架212與第二旋轉支撐架222。第一柱面透鏡210可位於第一旋轉支撐架212上,且第一旋轉支撐架212係電性連接或機械性連接旋轉致動器214,而可受旋轉致動器214的致動而旋轉,故可藉由調整第一旋轉支撐架212而旋轉第一柱面透鏡210。舉例而言,於部分實施方式中,如第3圖所示,可藉由調整第一旋轉支撐架212,使得第一柱面透鏡210沿著XY平面並以Z方向為軸地旋轉,從而改變螢光光束F通過第一柱面透鏡210的位置,以調整螢光光束F在第一柱面透鏡210之通過位置的曲率半徑。換句話說,第一柱面透鏡210可以第一柱面透鏡210及第二柱面透鏡220的排列方向為軸旋轉。相似地,第二柱面透鏡220可位於第二旋轉支撐架222上,且第二旋轉支撐架222係電性連接或機械性連接旋轉致動器224,而可受旋轉致動器224的致動而旋轉,故可藉由調整第二旋轉支撐架222而旋轉第二柱面透鏡220。舉例而言,於部分實施方式中,可藉由調整第二旋轉支撐架222,使得第二柱面透鏡220沿著XY平面並以Z方向為軸旋轉,從而改變螢光光束F通過第二柱面透鏡220的位置,以調整螢光光束F在第二柱面透鏡220之通過位置的曲率半徑。 In some embodiments, the first cylindrical lens 210 and the second cylindrical lens 220 are rotatable for adjusting the astigmatic effect of the imaging lens group 200 to help image generation of the fluorescent light beam F through the imaging lens group 200. Proper astigmatism. Specifically, in some embodiments, as shown in FIG. 3 , the imaging lens set 200 further includes a first rotating support frame 212 and a second rotating support frame 222 . The first cylindrical lens 210 can be located on the first rotating support frame 212, and the first rotating support frame 212 is electrically connected or mechanically coupled to the rotary actuator 214, and can be rotated by the actuation of the rotary actuator 214. Therefore, the first cylindrical lens 210 can be rotated by adjusting the first rotating support frame 212. For example, in some embodiments, as shown in FIG. 3, the first cylindrical lens 210 can be rotated along the XY plane and rotated in the Z direction by adjusting the first rotating support frame 212, thereby changing The fluorescent light beam F passes through the position of the first cylindrical lens 210 to adjust the radius of curvature of the fluorescent light beam F at the passing position of the first cylindrical lens 210. In other words, the first cylindrical lens 210 can be rotated about the direction in which the first cylindrical lens 210 and the second cylindrical lens 220 are arranged. Similarly, the second cylindrical lens 220 can be located on the second rotating support frame 222, and the second rotating support frame 222 is electrically connected or mechanically coupled to the rotary actuator 224, and can be subjected to the rotary actuator 224 The second cylindrical lens 220 can be rotated by adjusting the second rotating support frame 222. For example, in some embodiments, the second cylindrical lens 220 can be rotated along the XY plane and rotated in the Z direction by adjusting the second rotating support 222, thereby changing the fluorescent beam F through the second column. The position of the face lens 220 is to adjust the radius of curvature of the fluorescent beam F at the passing position of the second cylindrical lens 220.

於部分實施方式中,第一柱面透鏡210係可旋轉 的而第二柱面透鏡220係不可旋轉的。於部分實施方式中,第二柱面透鏡220係可旋轉的而第一柱面透鏡210係不可旋轉的。於部分實施方式中,第一柱面透鏡210與第二柱面透鏡220均係可旋轉的。藉由旋轉第一柱面透鏡210、第二柱面透鏡220或兩者,可改變成像透鏡組200提供給螢光光束F之在水平面上的聚焦能力與在垂直面上的聚焦能力,使得通過成像透鏡組200之螢光光束F的成像形狀改變,利於通過成像透鏡組200之螢光光束F之成像受到適當的像散效應影響。 In some embodiments, the first cylindrical lens 210 is rotatable The second cylindrical lens 220 is non-rotatable. In some embodiments, the second cylindrical lens 220 is rotatable and the first cylindrical lens 210 is non-rotatable. In some embodiments, the first cylindrical lens 210 and the second cylindrical lens 220 are both rotatable. By rotating the first cylindrical lens 210, the second cylindrical lens 220, or both, the focusing ability of the imaging lens group 200 provided on the horizontal plane of the fluorescent light beam F and the focusing ability in the vertical plane can be changed, so that The imaging shape of the fluorescent light beam F of the imaging lens group 200 is changed, and the imaging of the fluorescent light beam F through the imaging lens group 200 is affected by an appropriate astigmatic effect.

參照第4A圖,第4A圖為依據本揭露之部分實施方式之不同螢光光束F之成像形狀的示意圖。其中,縱軸代表在第一柱面透鏡210與第二柱面透鏡220的相對旋轉角度(例如:第一旋轉角度、第二旋轉角度與第三旋轉角度),橫軸代表發出螢光光束F之粒子的深度(亦即,Z方向上的位置Z1~Z5)。同時參照第3圖與第4A圖,當第一柱面透鏡210與第二柱面透鏡220相對旋轉時(例如:第一柱面透鏡210、第二柱面透鏡220、或兩者旋轉),由於螢光光束F通過第一柱面透鏡210與第二柱面透鏡220時,螢光光束F所通過的第一柱面透鏡210之表面、第二柱面透鏡220之表面、或兩者的曲率半徑會隨著旋轉角度不同而改變,故螢光光束F所受到在水平面上之聚焦能力與在垂直面上之聚焦能力也會跟著改變,故旋轉第一柱面透鏡210、第二柱面透鏡220、或兩者可改變螢光光束F之成像圖案。舉例而言,如第4A圖所示,藉由使第一柱面透鏡210與第二柱面透鏡220相對旋轉,可使螢光光束F之成像在成像I、成像II及成像III之間轉變。 Referring to FIG. 4A, FIG. 4A is a schematic diagram showing the imaging shape of different fluorescent light beams F according to some embodiments of the present disclosure. Wherein, the vertical axis represents the relative rotation angles of the first cylindrical lens 210 and the second cylindrical lens 220 (for example, the first rotation angle, the second rotation angle, and the third rotation angle), and the horizontal axis represents the emitted fluorescent light beam F. The depth of the particles (i.e., the positions Z1 to Z5 in the Z direction). Referring to FIGS. 3 and 4A simultaneously, when the first cylindrical lens 210 and the second cylindrical lens 220 are relatively rotated (for example, the first cylindrical lens 210, the second cylindrical lens 220, or both), Since the fluorescent light beam F passes through the first cylindrical lens 210 and the second cylindrical lens 220, the surface of the first cylindrical lens 210 through which the fluorescent light beam F passes, the surface of the second cylindrical lens 220, or both The radius of curvature changes with the angle of rotation, so the focusing power of the fluorescent beam F on the horizontal plane and the focusing ability on the vertical plane also change, so the first cylindrical lens 210 and the second cylinder are rotated. The lens 220, or both, can change the imaging pattern of the fluorescent beam F. For example, as shown in FIG. 4A, by rotating the first cylindrical lens 210 and the second cylindrical lens 220, the imaging of the fluorescent light beam F can be converted between imaging I, imaging II, and imaging III. .

值得注意的是,參照第4A圖之成像III,當第一柱面透鏡210與第二柱面透鏡220在特定的相對旋轉角度下時,螢光光束F之成像可為圓形、垂直橢圓或水平橢圓,而非斜向橢圓。當成像III並非斜向橢圓時,可免於進一步地將斜向橢圓轉換為垂直之橢圓與水平之橢圓,而利於分析校正曲線的方便性,且幫助建立一較精確之粒子校正曲線。因此,於部分實施方式中,可藉由控制第一柱面透鏡210的旋轉角度與第二柱面透鏡220的旋轉角度,來建立較精確的粒子校正曲線。可瞭解到,非斜向橢圓代表此橢圓的長軸係垂直或平行於第一柱面透鏡210或第二柱面透鏡220尚未旋轉時的長度方向,亦即第3圖所示之Y方向。於部分實施方式中,如第3圖所示,第一柱面透鏡210與第二柱面透鏡220係以以Z方向為軸旋轉並以X方向作為旋轉參考基準0度方向,當第一柱面透鏡210的旋轉角度為49.0度,且第二柱面透鏡220的旋轉角度為48.5度時,可產生非斜向橢圓形狀的成像III;當第一柱面透鏡210的旋轉角度為46.0度,且第二柱面透鏡220的旋轉角度為45.0度時,亦可產生非斜向橢圓形狀的成像III;當第一柱面透鏡210的旋轉角度為46.5度,且第二柱面透鏡220的旋轉角度為45.0度時,亦可產生非斜向橢圓形狀的成像III;當第一柱面透鏡210的旋轉角度為47.0度,且第二柱面透鏡220的旋轉角度為45.0度時,亦可產生非斜向橢圓形狀的成像III;當第一柱面透鏡210的旋轉角度為47.5度,且第二柱面透鏡220的旋轉角度為45.0度時,亦可產生非斜向橢圓形狀的成像III。值得注意的是,雖然上述羅列之旋轉角度均可產生非橢圓形狀的成 像,但其成像的像散程度不同,因此可同時得到非斜向橢圓形狀的成像並經由調整得到最佳的像散程度。另值得注意的是,上述旋轉角度僅為例示性的,而非用以限制本發明。 It should be noted that, referring to the imaging III of FIG. 4A, when the first cylindrical lens 210 and the second cylindrical lens 220 are at a specific relative rotation angle, the imaging of the fluorescent light beam F may be circular, vertical elliptical or Horizontal ellipse, not oblique ellipse. When the imaging III is not an oblique ellipse, the oblique ellipse can be further converted into a vertical ellipse and a horizontal ellipse, which facilitates the convenience of analyzing the calibration curve and helps to establish a more accurate particle calibration curve. Therefore, in some embodiments, a more accurate particle correction curve can be established by controlling the rotation angle of the first cylindrical lens 210 and the rotation angle of the second cylindrical lens 220. It can be understood that the non-oblique ellipse represents that the long axis of the ellipse is perpendicular or parallel to the length direction when the first cylindrical lens 210 or the second cylindrical lens 220 has not been rotated, that is, the Y direction shown in FIG. In some embodiments, as shown in FIG. 3, the first cylindrical lens 210 and the second cylindrical lens 220 are rotated in the Z direction and the X direction is used as the rotation reference 0 degree direction, when the first column When the rotation angle of the surface lens 210 is 49.0 degrees, and the rotation angle of the second cylindrical lens 220 is 48.5 degrees, the imaging III of the non-oblique elliptical shape can be generated; when the rotation angle of the first cylindrical lens 210 is 46.0 degrees, When the rotation angle of the second cylindrical lens 220 is 45.0 degrees, the imaging III of the non-oblique elliptical shape may also be generated; when the rotation angle of the first cylindrical lens 210 is 46.5 degrees, and the rotation of the second cylindrical lens 220 When the angle is 45.0 degrees, the imaging III of the non-oblique elliptical shape may also be generated; when the rotation angle of the first cylindrical lens 210 is 47.0 degrees, and the rotation angle of the second cylindrical lens 220 is 45.0 degrees, it may also be generated. The imaging III of the non-oblique elliptical shape; when the rotation angle of the first cylindrical lens 210 is 47.5 degrees, and the rotation angle of the second cylindrical lens 220 is 45.0 degrees, the imaging III of the non-oblique elliptical shape may also be generated. It is worth noting that although the above-mentioned rotation angles can produce non-elliptical shapes Image, but the degree of astigmatism of the image is different, so that the image of the non-oblique elliptical shape can be obtained at the same time and the optimal degree of astigmatism can be obtained through adjustment. It is also noted that the above rotation angles are merely illustrative and are not intended to limit the invention.

值得一提的是,相較於調整單一透鏡而言,採用具有第一柱面透鏡210與第二柱面透鏡220的成像透鏡組200,可降低第一柱面透鏡210與第二柱面透鏡220旋轉時,螢光光束F通過成像透鏡組200後的成像焦平面的偏移量。也就是說,螢光光束F之成像焦平面不會產生過度地偏移,舉例來說,當第一柱面透鏡210與第二柱面透鏡220旋轉時,螢光光束F的成像焦平面之偏移量小於0.1毫米,這樣的小偏移量並不會影響光偵測模組300的偵測功能。如此一來,可免於進一步地調整光偵測模組300之位置,而可增加粒子三維定位與追蹤裝置使用時的方便性。 It is worth mentioning that the first cylindrical lens 210 and the second cylindrical lens can be reduced by using the imaging lens group 200 having the first cylindrical lens 210 and the second cylindrical lens 220 compared to adjusting a single lens. When the 220 is rotated, the fluorescent light beam F passes through the offset of the imaging focal plane after the imaging lens group 200. That is, the imaging focal plane of the fluorescent light beam F does not excessively shift, for example, when the first cylindrical lens 210 and the second cylindrical lens 220 rotate, the imaging focal plane of the fluorescent light beam F The offset is less than 0.1 mm, and such a small offset does not affect the detection function of the light detecting module 300. In this way, the position of the light detecting module 300 can be further adjusted, and the convenience of using the particle three-dimensional positioning and tracking device can be increased.

此外,於部分實施方式中,第一焦距f1之絕對值與第二焦距f2之絕對值係實質上相等。當第一柱面透鏡210與第二柱面透鏡220未相對旋轉時(亦即,第一柱面透鏡210與第二柱面透鏡220皆未旋轉、或當第一柱面透鏡210與第二柱面透鏡220旋轉相同角度時),第一柱面透鏡210的像散效應與第二柱面透鏡220之像散效應可互相抵銷。參照第4B圖,第4B圖為依據本揭露之部分實施方式之焦距絕對值相等的第一柱面透鏡210與第二柱面透鏡220未相對旋轉時之螢光光束F的成像形狀示意圖。如第4B圖所示,當第一柱面透鏡210與第二柱面透鏡220未相對旋轉時,且第一焦距f1之絕對值與第二焦距f2之絕對值係實質上相等時,不同深度(Z1~Z5)之粒子所發 射之螢光光束F通過成像透鏡組200之成像並不會受到像散效應的影響,而是維持圓形的成像形狀。由此可知,可藉由組合焦距之絕對值相等之正焦距的第一柱面透鏡210與負焦距的第二柱面透鏡220以消除像散效應,從而防止螢光光束F之成像受到像散效應的影響。亦或是,可藉由旋轉第一柱面透鏡210、第二柱面透鏡220或以上兩者,調整成像透鏡組200之像散效應,使得螢光光束F之成像受到適當程度的像散效應影響,俾利於建立一較精確的粒子校正曲線。關於本文中所使用之用語「約」或「實質上」,係用以修飾任何可些微變化的誤差,但這種些微變化並不會改變其本質。 Moreover, in some embodiments, the absolute value of the first focal length f1 is substantially equal to the absolute value of the second focal length f2. When the first cylindrical lens 210 and the second cylindrical lens 220 are not relatively rotated (that is, neither the first cylindrical lens 210 nor the second cylindrical lens 220 is rotated, or when the first cylindrical lens 210 and the second When the cylindrical lens 220 rotates at the same angle), the astigmatic effect of the first cylindrical lens 210 and the astigmatic effect of the second cylindrical lens 220 can cancel each other out. Referring to FIG. 4B, FIG. 4B is a schematic diagram showing the imaging shape of the fluorescent light beam F when the first cylindrical lens 210 and the second cylindrical lens 220 are not rotated relative to each other according to the embodiment of the present disclosure. As shown in FIG. 4B, when the first cylindrical lens 210 and the second cylindrical lens 220 are not relatively rotated, and the absolute values of the first focal length f1 and the absolute value of the second focal length f2 are substantially equal, different depths (Z1~Z5) particles The imaging of the incident fluorescent light beam F through the imaging lens group 200 is not affected by the astigmatic effect, but maintains a circular imaging shape. It can be seen that the astigmatic effect can be eliminated by combining the first cylindrical lens 210 with the positive focal length of the absolute focal length and the second cylindrical lens 220 with the negative focal length, thereby preventing the imaging of the fluorescent light beam F from being astigmatized. The effect of the effect. Alternatively, the astigmatic effect of the imaging lens group 200 can be adjusted by rotating the first cylindrical lens 210, the second cylindrical lens 220, or both, so that the imaging of the fluorescent light beam F is subjected to an appropriate degree of astigmatism. The effect is to create a more accurate particle calibration curve. The term "about" or "substantially" as used herein is used to modify any error that may vary slightly, but such minor changes do not alter its nature.

於部分實施方式中,如第3圖所示,光源模組100更包含載台120。待測物110係位於載台120上,且待測物110包含粒子112。粒子112係位於載台120之上。載台120係可沿著Z方向移動,而靠近或遠離成像透鏡組200。成像透鏡組200係光學耦合於粒子112與光偵測模組300之間。進一步來說,成像透鏡組200係位於載台120與光偵測模組300之間。成像透鏡組200之第一柱面透鏡210與第二柱面透鏡220係可旋轉的,使得成像透鏡組200可產生較適當的像散效應。隨後,固定成像透鏡組200,且移動載台120,使得粒子112與成像透鏡組200相對位移,藉此改變粒子112與成像透鏡組200之相對位置。舉例而言,於部分實施方式中,載台120的移動頻率可為200Hz,但本揭露不以此為限制。當載台120移動後,光偵測模組300可偵測通過成像透鏡組200之粒子112的螢光光束F,擷取螢光光束F的成像,且經由後續影像處理,建立粒子112 所發射之螢光光束F之成像隨著深度Z變化的校正曲線圖。 In some embodiments, as shown in FIG. 3 , the light source module 100 further includes a stage 120 . The object to be tested 110 is located on the stage 120, and the object to be tested 110 contains particles 112. The particles 112 are located above the stage 120. The stage 120 is movable in the Z direction while being close to or away from the imaging lens group 200. The imaging lens set 200 is optically coupled between the particles 112 and the light detecting module 300. Further, the imaging lens set 200 is located between the stage 120 and the light detecting module 300. The first cylindrical lens 210 and the second cylindrical lens 220 of the imaging lens group 200 are rotatable such that the imaging lens group 200 can produce a more appropriate astigmatic effect. Subsequently, the imaging lens group 200 is fixed, and the stage 120 is moved such that the particles 112 are relatively displaced with the imaging lens group 200, thereby changing the relative position of the particles 112 and the imaging lens group 200. For example, in some embodiments, the moving frequency of the stage 120 may be 200 Hz, but the disclosure is not limited thereto. After the stage 120 is moved, the light detecting module 300 can detect the fluorescent light beam F passing through the particles 112 of the imaging lens group 200, capture the imaging of the fluorescent light beam F, and establish the particles 112 through subsequent image processing. A calibration plot of the imaging of the emitted fluorescent beam F as a function of depth Z.

參照第5圖,第5圖為依據本揭露之部分實施方式之粒子三維定位與追蹤裝置10之粒子定位軸向位置的校正曲線圖。如第5圖所示,X曲線代表粒子所發射之螢光光束F之水平分量成像的寬度隨著粒子之深度Z變化的曲線,Y曲線代表粒子所發射之螢光光束F之垂直分量成像的寬度隨著粒子之深度Z變化的曲線。藉由移動載台120,使得粒子112係位於不同深度Z,粒子112於不同深度Z所發射的螢光光束F的成像形狀係不同的。舉例而言,於部分實施方式中,如第5圖所示,基於成像透鏡組200之像散效應,當粒子112係位於深度Z1時,粒子112之螢光光束F之成像係為垂直的橢圓。相似地,當粒子112係位於深度Z2時,粒子112之螢光光束F的成像係圓形。相似地,當粒子112係位於深度Z3時,粒子112之螢光光束F的成像係水平的橢圓。因此,可藉由光偵測模組300擷取粒子112位於不同深度Z之下的螢光光束F之成像,從而獲得粒子112隨著深度Z變化的成像寬度變化值,且分別記錄粒子112於不同深度Z之下的水平分量成像的寬度與粒子112於不同深度Z之下的垂直分量成像的寬度,從而獲得粒子三維定位與追蹤裝置10之粒子校正曲線圖。 Referring to FIG. 5, FIG. 5 is a calibration graph of the axial position of the particle positioning of the particle three-dimensional positioning and tracking device 10 according to some embodiments of the present disclosure. As shown in Fig. 5, the X curve represents the curve of the width of the horizontal component of the fluorescent beam F emitted by the particle as a function of the depth Z of the particle, and the Y curve represents the vertical component of the fluorescent beam F emitted by the particle. The curve of the width as a function of the depth Z of the particle. By moving the stage 120, the particles 112 are located at different depths Z, and the imaging shapes of the fluorescent beams F emitted by the particles 112 at different depths Z are different. For example, in some embodiments, as shown in FIG. 5, based on the astigmatic effect of the imaging lens group 200, when the particle 112 is located at the depth Z1, the imaging system of the fluorescent beam F of the particle 112 is a vertical ellipse. . Similarly, when the particle 112 is at depth Z2, the imaging of the fluorescent beam F of the particle 112 is circular. Similarly, when the particle 112 is at depth Z3, the imaging of the fluorescent beam F of the particle 112 is a horizontal ellipse. Therefore, the imaging of the fluorescent light beam F of the particles 112 under different depths Z can be captured by the light detecting module 300, thereby obtaining the imaging width variation value of the particle 112 as a function of the depth Z, and the particles 112 are respectively recorded. The width of the horizontal component imaging below the different depths Z is the width of the vertical component imaging of the particles 112 below the different depths Z, thereby obtaining a particle calibration curve of the particle three-dimensional positioning and tracking device 10.

因此,於本揭露之部分實施方式中,基於成像透鏡組200之較適當的像散效應,可建立一準確的三維粒子定位與追蹤裝置10之粒子校正曲線圖。如此一來,當實際應用於粒子定位與追蹤時,可將實際待測物擺放至粒子三維定位與追蹤裝置10,而可比對此實際待測物之特定粒子所發射之螢光光束 之成像與前文所述的粒子校正曲線,而獲得特定粒子之軸向(Z方向)位置。具體而言,於部分實施方式中,可比對實際待測物之特定粒子所發射之螢光光束之水平分量之成像寬度與粒子校正曲線之X曲線,並比對實際待測物之特定粒子所發射之螢光光束之垂直分量之成像寬度與粒子校正曲線之Y曲線,從而獲得特定粒子所位於的軸向(Z方向)位置。 Therefore, in some embodiments of the present disclosure, based on the appropriate astigmatism effect of the imaging lens group 200, an accurate particle calibration curve of the three-dimensional particle localization and tracking device 10 can be established. In this way, when actually applied to particle positioning and tracking, the actual object to be tested can be placed on the particle three-dimensional positioning and tracking device 10, and the fluorescent beam emitted by the specific particles of the actual object to be tested can be compared. The imaging is compared to the particle calibration curve described above to obtain the axial (Z-direction) position of the particular particle. Specifically, in some embodiments, the imaging width of the horizontal component of the fluorescent beam emitted by the specific particle of the actual analyte and the X curve of the particle calibration curve may be compared and compared with the specific particle of the actual analyte. The imaging width of the vertical component of the emitted fluorescent beam is plotted against the Y curve of the particle calibration curve to obtain the axial (Z-direction) position at which the particular particle is located.

於本揭露之部分實施方式中,參照第1圖,光源模組100可提供光束L,且此光束L之強度、偏振角度、波長、頻率及色散補償已由光源模組100之元件所調整。經由光源模組100調整後的光束L可提供足夠的能量激發待測物110。也就是說,待測物110之特定的粒子112可吸收光束L之能量,使得粒子112中的電子躍遷至激發態,而後電子由激發態回到基態,而釋放螢光光束F。隨後,基於成像透鏡組200之像散效應,傳導至光偵測模組300之螢光光束F之成像形狀會改變,光偵測模組300藉由比對粒子112之成像形狀與上述的粒子校正曲線,而獲得螢光光束F之軸向(Z方向)位置。進一步地,藉由擬合螢光光束F之光強度為一二維橢圓高斯函數,可獲得粒子112之平面位置(XY)。值得注意的是,此處光的橢圓高斯分布係指光於空間中的強度分布,而此橢圓高斯函數分布的中心點即為粒子112之平面位置(XY)。如此一來,本揭露之粒子三維定位與追蹤裝置,可基於粒子112所發射之螢光光束F之成像的像散與螢光光束F之光強度的橢圓高斯分布,來判斷粒子112於待測物110中的三維位置(XYZ),進而定位與追蹤粒子112的三維移動軌跡。 In some embodiments of the present disclosure, referring to FIG. 1 , the light source module 100 can provide a light beam L, and the intensity, polarization angle, wavelength, frequency, and dispersion compensation of the light beam L have been adjusted by components of the light source module 100. The light beam L adjusted by the light source module 100 can provide sufficient energy to excite the object to be tested 110. That is, the specific particles 112 of the analyte 110 can absorb the energy of the light beam L such that the electrons in the particle 112 transition to the excited state, and then the electrons return from the excited state to the ground state, releasing the fluorescent light beam F. Then, based on the astigmatic effect of the imaging lens group 200, the imaging shape of the fluorescent light beam F transmitted to the light detecting module 300 is changed, and the light detecting module 300 is corrected by the imaging shape of the matching particles 112 and the above-mentioned particle. The curve is obtained to obtain the axial (Z direction) position of the fluorescent light beam F. Further, the plane position (XY) of the particles 112 can be obtained by fitting the light intensity of the fluorescent beam F to a two-dimensional elliptical Gaussian function. It is worth noting that the elliptical Gaussian distribution of light here refers to the intensity distribution of light in space, and the center point of the distribution of the elliptical Gaussian function is the plane position (XY) of the particle 112. In this way, the particle three-dimensional positioning and tracking device of the present disclosure can determine the particle 112 to be tested based on the ellipsoidal distribution of the imaged astigmatism of the fluorescent beam F emitted by the particle 112 and the light intensity of the fluorescent beam F. The three-dimensional position (XYZ) in the object 110, in turn, locates and tracks the three-dimensional movement trajectory of the particles 112.

舉例而言,於本揭露之部分實施方式中,如第1圖所示,光源模組100所發射之光束L聚焦至待測物110之聚焦範圍係一非點狀區域,使得產生螢光光束之範圍在待測物110之一切層上涵蓋著一二維區域,其中切層係垂直於第一柱面透鏡210及第二柱面透鏡220之一排列方向(即為第3圖之Z方向)。換句話說,由於多光子螢光激發機制需要較強的激發能量,才可達成僅在焦平面激發螢光,故激發螢光區域為軸向(Z方向)切層的二維區域。亦即,光束L聚焦至待測物110係一廣域區域,而非一點。如此一來,待測物110被光束L激發而產生螢光光束F的範圍係待測物110之軸向方向(Z方向)切層的二維區域。舉例而言,待測物110之二維平面中可具有至少兩個特定的粒子112,故光束L可激發兩個相同或不同吸收頻譜之粒子112,而放出相同或不同波長之螢光光束F。換句話說,粒子112可分類為第一粒子1122與第二粒子1124。舉例而言,於部分實施方式中,待測物110包含複數個第一粒子1122,每一第一粒子1122係位於待測物110之不同位置(亦即不同XYZ座標),每一第一粒子1122皆可吸收光束L之第一頻譜之光,而產生螢光光束F。抑或是,於部分實施方式中,待測物110包含第一粒子1122與第二粒子1124,第一粒子1122可吸收光束L之第一頻譜之光,第二粒子1124可吸收光束L之第二頻譜之光,而產生不同頻譜之螢光光束F。由於光源模組100之光束L聚焦至待測物110為非點狀區域,故粒子三維定位與追蹤裝置可同時偵測待測物110之至少兩個粒子112(例如:複數個第一粒子1122或複數個第一粒子與第二粒子),藉此同 時追蹤至少兩個粒子112之相對位置。 For example, in some embodiments of the present disclosure, as shown in FIG. 1 , the light beam L emitted by the light source module 100 is focused to a focus range of the object 110 to be a non-dot region, so that a fluorescent beam is generated. The range covers a two-dimensional area on all layers of the object to be tested 110, wherein the slice layer is perpendicular to the arrangement direction of one of the first cylindrical lens 210 and the second cylindrical lens 220 (ie, the Z direction of FIG. 3) ). In other words, since the multiphoton fluorescence excitation mechanism requires a strong excitation energy, it is possible to achieve a two-dimensional region in which the excitation fluorescence region is an axial (Z-direction) slice by exciting the fluorescence only in the focal plane. That is, the light beam L is focused to a wide area of the object to be tested 110, not a point. As a result, the range in which the object to be tested 110 is excited by the light beam L to generate the fluorescent light beam F is a two-dimensional region of the slice in the axial direction (Z direction) of the object to be tested 110. For example, the two-dimensional plane of the object to be tested 110 may have at least two specific particles 112, so that the light beam L can excite two particles 112 of the same or different absorption spectrum, and emit fluorescent beams F of the same or different wavelengths. . In other words, the particles 112 can be classified into a first particle 1122 and a second particle 1124. For example, in some embodiments, the object to be tested 110 includes a plurality of first particles 1122, and each of the first particles 1122 is located at different positions of the object to be tested 110 (ie, different XYZ coordinates), and each of the first particles 1122 can absorb the light of the first spectrum of the light beam L to generate the fluorescent light beam F. Or, in some embodiments, the object to be tested 110 includes first particles 1122 and second particles 1124, the first particles 1122 can absorb light of the first spectrum of the light beam L, and the second particles 1124 can absorb the second light beam L The light of the spectrum produces a fluorescent beam F of a different spectrum. Since the light beam L of the light source module 100 is focused to the non-point region of the object to be tested 110, the particle three-dimensional positioning and tracking device can simultaneously detect at least two particles 112 of the object to be tested 110 (for example, a plurality of first particles 1122) Or a plurality of first particles and second particles) The relative position of at least two particles 112 is tracked.

舉例而言,於本揭露之部分實施方式中,光源模組100之待測物110被激發後可產生螢光光束F。其中,螢光光束F可分類為第一螢光光束F1與第二螢光光束F2。也就是說,光源模組100發射光束L至待測物110,使得待測物110之第一粒子1122與第二粒子1124被激發,而發射第一螢光光束F1與第二螢光光束F2。由於光束L可激發兩個不同吸收頻譜之第一粒子1122與第二粒子1124,故可放出不同波長之螢光光束F。舉例而言,第一粒子1122可吸收光束L之第一頻譜之光,而發出第一螢光光束F1。第二粒子1124可吸收光束L之第二頻譜之光,而放出第二螢光光束F2。於本揭露之部分實施方式中,由於第一粒子1122與第二粒子1124之吸收頻譜不同,故這兩者所分別發射之第一螢光光束F1之波長與第二螢光光束F2之波長係不同的。 For example, in some embodiments of the present disclosure, the object 110 of the light source module 100 is excited to generate a fluorescent beam F. The fluorescent light beam F can be classified into a first fluorescent light beam F1 and a second fluorescent light beam F2. That is, the light source module 100 emits the light beam L to the object to be tested 110, so that the first particles 1122 and the second particles 1124 of the object to be tested 110 are excited, and the first fluorescent beam F1 and the second fluorescent beam F2 are emitted. . Since the light beam L can excite the first particles 1122 and the second particles 1124 of two different absorption spectra, the fluorescent light beams F of different wavelengths can be emitted. For example, the first particle 1122 can absorb the light of the first spectrum of the light beam L and emit the first fluorescent light beam F1. The second particle 1124 can absorb the light of the second spectrum of the light beam L and emit the second fluorescent light beam F2. In some embodiments of the present disclosure, since the absorption spectra of the first particles 1122 and the second particles 1124 are different, the wavelengths of the first fluorescent beam F1 and the wavelength of the second fluorescent beam F2 respectively emitted by the two are respectively different.

於部分實施方式中,如第1圖所示,光偵測模組300更包含第一光偵測器310、第二光偵測器320以及第一分色鏡330。第一分色鏡330係光學耦合第一光偵測器310與第二光偵測器320。進一步來說,第一分色鏡330係設置於第一光偵測器310與第二光偵測器320之前方。第一分色鏡330係藉由第一螢光光束F1之波長與第二螢光光束F2之波長的差異,使得通過第一分色鏡330之第一螢光光束F1之光路與通過第一分色鏡330之第二螢光光束F2之光路分離。第一光偵測器310係設置於通過第一分色鏡330之第一螢光光束F1的光路上。第一光偵測器310係用以偵測且分析第一螢光光束F1。相似地,第 二光偵測器320係設置於通過第一分色鏡330之第二螢光光束F2的光路上。第二光偵測器320係用以偵測且分析第二螢光光束F2。於本揭露之部分實施方式中,第一螢光光束F1之光路與第二螢光光束F2之光路可相差90度,但本揭露不應以此為限制。於部分實施方式中,光偵測模組300更包含第一螢光濾片3102與第二螢光濾片3202。第一螢光濾片3102係光學耦合於第一光偵測器310與分色鏡330之間。第一螢光濾片3102係用以限制抵達第一光偵測310的光束,僅使得第一螢光光束F1通過。相似地,第二螢光濾片3202係光學耦合於第二光偵測器320與分色鏡330之間。第二螢光濾片3102係用以限制抵達第二光偵測320的光束,僅使得第二螢光光束F2通過。 In some embodiments, as shown in FIG. 1 , the light detecting module 300 further includes a first photodetector 310 , a second photodetector 320 , and a first dichroic mirror 330 . The first dichroic mirror 330 optically couples the first photodetector 310 and the second photodetector 320. Further, the first dichroic mirror 330 is disposed in front of the first photodetector 310 and the second photodetector 320. The first dichroic mirror 330 is caused by the difference between the wavelength of the first fluorescent beam F1 and the wavelength of the second fluorescent beam F2, so that the optical path of the first fluorescent beam F1 passing through the first dichroic mirror 330 passes through the first The optical path of the second fluorescent beam F2 of the dichroic mirror 330 is separated. The first photodetector 310 is disposed on the optical path of the first fluorescent beam F1 passing through the first dichroic mirror 330. The first photodetector 310 is configured to detect and analyze the first fluorescent beam F1. Similarly, the first The two photodetectors 320 are disposed on the optical path of the second fluorescent beam F2 passing through the first dichroic mirror 330. The second photodetector 320 is configured to detect and analyze the second fluorescent light beam F2. In some embodiments of the present disclosure, the optical path of the first fluorescent beam F1 and the optical path of the second fluorescent beam F2 may be different by 90 degrees, but the disclosure should not be limited thereto. In some embodiments, the photodetection module 300 further includes a first fluorescent filter 3102 and a second fluorescent filter 3202. The first fluorescent filter 3102 is optically coupled between the first photodetector 310 and the dichroic mirror 330. The first fluorescent filter 3102 is for limiting the light beam reaching the first light detecting 310, and only passes the first fluorescent light beam F1. Similarly, the second fluorescent filter 3202 is optically coupled between the second photodetector 320 and the dichroic mirror 330. The second fluorescent filter 3102 is for limiting the light beam reaching the second light detecting 320, and only passes the second fluorescent light beam F2.

於部分實施方式中,第一光偵測器310與第二光偵測器320係實質上同步偵測的。換句話說,第一光偵測器310偵測且擷取第一螢光光束F1通過成像透鏡組200之成像,同時地,第二光偵測器320偵測且擷取第二螢光光束F2通過成像透鏡組200之成像。因此,在第一光偵測器310擷取第一螢光光束F1之成像與第二光偵測器320擷取第二螢光光束F2之成像之間並不存在時間差。如此一來,藉由第一光偵測器310與第二光偵測器320的實質上同步偵測,粒子三維定位與追蹤裝置10可同時追蹤兩個粒子之間的互動關係。 In some embodiments, the first photodetector 310 and the second photodetector 320 are substantially simultaneously detected. In other words, the first photodetector 310 detects and captures the imaging of the first fluorescent beam F1 through the imaging lens group 200, and at the same time, the second photodetector 320 detects and captures the second fluorescent beam. F2 is imaged by the imaging lens group 200. Therefore, there is no time difference between the imaging of the first photodetector 310 capturing the first fluorescent beam F1 and the imaging of the second photodetector 320 capturing the second fluorescent beam F2. In this way, by substantially synchronous detection of the first photodetector 310 and the second photodetector 320, the particle three-dimensional positioning and tracking device 10 can simultaneously track the interaction between the two particles.

於本揭露之部分實施方式中,如第1圖所示,光源模組100包含光源130、偏極鏡組142、快門144、複數反射鏡151、152、153及154、光柵160、第一透鏡組170、第二分色鏡180與物鏡組190。光源130係用以發射光束L。偏極鏡組 142與快門144係光學耦合於光源130,而可接收來自光源130的光束L並可調整光束L之強度。反射鏡151係光學耦合於快門144,而可接收來自快門144的光束L並調整光束L之光路。反射鏡152係光學耦合於反射鏡151,並可接收來自反射鏡151的光束L並調整光束L之光路。光柵160係光學耦合於反射鏡152而可接收來自反射鏡152的光束L並分光,使得光束L之不同波長的光路係分離的。反射鏡153係光學耦合於光柵160,並可接收來自光柵160的光束L並調整光束L之光路。第一透鏡組170組係光學耦合於反射鏡153,並可接收來自反射鏡153之光束L並調整光束L的焦距。反射鏡154係光學耦合於第一透鏡組170,並可接收來自第一透鏡組170的光束L並調整光束L之光路。第二分色鏡180係光學耦合於反射鏡154與物鏡組190,並可接收來自反射鏡154的光束L與後續來自待測物110的螢光光束F,並分隔光束L之光路與螢光光束F之光路。物鏡組190係光學耦合於第二分色鏡180,並可接收來自第二分色鏡180的光束L並調整光束L,使得通過物鏡組190之光束L聚焦且照射至待測物110。藉由以上敘述,使得光源模組100可提供具有適當的強度、角度、焦距、照射區域與頻譜之光束L至待測物110,從而激發待測物110。 In some embodiments of the present disclosure, as shown in FIG. 1 , the light source module 100 includes a light source 130 , a polarizing mirror group 142 , a shutter 144 , a plurality of mirrors 151 , 152 , 153 , and 154 , a grating 160 , and a first lens The group 170, the second dichroic mirror 180 and the objective lens group 190. Light source 130 is used to emit light beam L. Polar mirror The 142 and the shutter 144 are optically coupled to the light source 130 to receive the light beam L from the light source 130 and to adjust the intensity of the light beam L. The mirror 151 is optically coupled to the shutter 144 to receive the light beam L from the shutter 144 and adjust the optical path of the light beam L. The mirror 152 is optically coupled to the mirror 151 and is capable of receiving the light beam L from the mirror 151 and adjusting the optical path of the light beam L. The grating 160 is optically coupled to the mirror 152 to receive the light beam L from the mirror 152 and to split the light so that the optical paths of the different wavelengths of the light beam L are separated. Mirror 153 is optically coupled to grating 160 and is capable of receiving beam L from grating 160 and adjusting the optical path of beam L. The first lens group 170 is optically coupled to the mirror 153 and can receive the light beam L from the mirror 153 and adjust the focal length of the light beam L. The mirror 154 is optically coupled to the first lens group 170 and is capable of receiving the light beam L from the first lens group 170 and adjusting the optical path of the light beam L. The second dichroic mirror 180 is optically coupled to the mirror 154 and the objective lens group 190, and can receive the light beam L from the mirror 154 and the subsequent fluorescent light beam F from the object to be tested 110, and separate the light path and the fluorescent light of the light beam L. The optical path of the beam F. The objective lens group 190 is optically coupled to the second dichroic mirror 180, and can receive the light beam L from the second dichroic mirror 180 and adjust the light beam L such that the light beam L passing through the objective lens group 190 is focused and irradiated to the object to be tested 110. By the above description, the light source module 100 can provide the light beam L with the appropriate intensity, angle, focal length, illumination area and spectrum to the object to be tested 110, thereby exciting the object to be tested 110.

於本揭露之部分實施方式中,光源130可為雷射、或超快脈衝雷射,但本揭露不應以此為限制。舉例而言,於本揭露之部分實施方中,光源模組100可為多光子螢光激發顯微裝置。也就是說,光源模組100可發出一超快短脈衝(脈衝寬度約為80~150fs且頻率約10~100MHz)之光束L,但本揭露 不以此為限。藉由光束L之超段脈衝且提供高光子密度與通量之特性,使得待測物110之粒子112可吸收光束L所發射之至少兩個光子,使得待測物110之粒子112獲得足夠能量而躍遷。此外,以超快脈衝雷射作為光源130可更有效地使得光束L聚焦至待測物110之範圍係成一非點狀區域。值得注意的是,由於粒子112係吸收光束L之至少兩光子之能量,故粒子112所釋放之螢光光束F之一個光子的能量係大於光束L之一個光子的能量。換句話說,光束L之光子能量與螢光光束F之光子能量係不同的,故光束L之頻譜與螢光光束F1之頻譜係不同的,如此一來,可藉由分光系統有效地過濾光束L與螢光光束F,減少螢光光束F之成像的雜訊,利於較準確地偵測粒子三維移動軌跡。此外,由於光源模組100所發射之光束L的波長較長,故較長波長之光束L可抵達待測物110之較深的深度,俾利於待測物110之粒子112的偵測。 In some embodiments of the present disclosure, the light source 130 may be a laser or an ultra-fast pulsed laser, but the disclosure should not be limited thereto. For example, in some embodiments of the disclosure, the light source module 100 can be a multiphoton fluorescent excitation microscopy device. That is to say, the light source module 100 can emit a light beam L with an ultra-fast pulse (a pulse width of about 80 to 150 fs and a frequency of about 10 to 100 MHz), but the disclosure is disclosed. Not limited to this. By the super-segment of the light beam L and providing the characteristics of high photon density and flux, the particles 112 of the object to be tested 110 can absorb at least two photons emitted by the light beam L, so that the particles 112 of the object to be tested 110 obtain sufficient energy. And the transition. In addition, the ultra-fast pulse laser as the light source 130 can more effectively focus the beam L to the range of the object to be tested 110 into a non-dot region. It is worth noting that since the particles 112 absorb the energy of at least two photons of the light beam L, the energy of one photon of the fluorescent light beam F released by the particles 112 is greater than the energy of one photon of the light beam L. In other words, the photon energy of the beam L is different from the photon energy of the fluorescent beam F, so the spectrum of the beam L is different from that of the fluorescent beam F1, so that the beam can be effectively filtered by the spectroscopic system. The L and the fluorescent beam F reduce the noise of the imaging of the fluorescent beam F, which facilitates more accurate detection of the three-dimensional moving trajectory of the particles. In addition, since the wavelength of the light beam L emitted by the light source module 100 is long, the longer wavelength light beam L can reach the deeper depth of the object to be tested 110, which facilitates the detection of the particles 112 of the object to be tested 110.

於本揭露之部分實施方式中,粒子三維定位與追蹤裝置10提供一種粒子三維定位與追蹤的方法,包含下列步驟。激發待測物110,使得待測物110產生螢光光束F,利用一聚焦的柱面透鏡(亦即,第一柱面透鏡210)與一發散的柱面透鏡(亦即,第二柱面透鏡220)共同調整螢光光束F之成像,以及偵測通過聚焦的柱面透鏡(亦即,第一柱面透鏡210)、一發散的第二柱面透鏡(亦即,第二柱面透鏡220)與成像透鏡230之螢光光束F。具體而言,參照第1圖,光源模組100發射且調整光束L,使光束L激發待測物110,且待測物110產生螢光光束F。成像透鏡組200(亦即,聚焦的第一柱面透鏡210、發散 的第二柱面透鏡220與成像透鏡230)調整螢光光束F之成像,且光偵測模組300偵測通過成像透鏡組200之螢光光束F。隨後,基於成像透鏡組200之像散效應,傳導至光偵測模組300之螢光光束F之成像形狀會改變,光偵測模組300藉由比對粒子112之成像形狀與上述的粒子校正曲線,而獲得螢光光束F之軸向(Z方向)位置。進一步地,藉由擬合螢光光束F之光強度為一二橢圓維高斯函數,可獲得粒子112之平面位置(XY)。如此一來,粒子三維定位與追蹤裝置10可基於螢光光束F之成像的像散與螢光光束F之光強度的橢圓高斯分布,來定位粒子112位於待測物110中的三維位置,進而追蹤粒子112的三維移動軌跡。值得注意的是,成像透鏡組200包含一第一柱面透鏡210、一第二柱面透鏡220與成像透鏡230,第一柱面透鏡210係聚焦的圓柱透鏡(亦即,f1>0),且第二柱面透鏡220係發散的圓柱透鏡(亦即,f2<0)。 In some embodiments of the present disclosure, the particle three-dimensional positioning and tracking device 10 provides a method for three-dimensional positioning and tracking of particles, comprising the following steps. Exciting the object to be tested 110 such that the object to be tested 110 generates a fluorescent beam F, using a focused cylindrical lens (ie, the first cylindrical lens 210) and a diverging cylindrical lens (ie, the second cylindrical surface) The lens 220) collectively adjusts the imaging of the fluorescent beam F, and detects through the focused cylindrical lens (ie, the first cylindrical lens 210), a diverging second cylindrical lens (ie, the second cylindrical lens) 220) A fluorescent beam F with the imaging lens 230. Specifically, referring to FIG. 1 , the light source module 100 emits and adjusts the light beam L such that the light beam L excites the object to be tested 110 , and the object to be tested 110 generates the fluorescent light beam F. Imaging lens set 200 (ie, focused first cylindrical lens 210, diverging The second cylindrical lens 220 and the imaging lens 230) adjust the imaging of the fluorescent light beam F, and the light detecting module 300 detects the fluorescent light beam F passing through the imaging lens group 200. Then, based on the astigmatic effect of the imaging lens group 200, the imaging shape of the fluorescent light beam F transmitted to the light detecting module 300 is changed, and the light detecting module 300 is corrected by the imaging shape of the matching particles 112 and the above-mentioned particle. The curve is obtained to obtain the axial (Z direction) position of the fluorescent light beam F. Further, the plane position (XY) of the particles 112 can be obtained by fitting the light intensity of the fluorescent light beam F to a one-two elliptic dimensional Gaussian function. In this way, the particle three-dimensional positioning and tracking device 10 can locate the three-dimensional position of the particle 112 in the object to be tested 110 based on the elliptical Gaussian distribution of the imaged astigmatism of the fluorescent light beam F and the light intensity of the fluorescent light beam F. The three-dimensional movement trajectory of the particle 112 is tracked. It should be noted that the imaging lens assembly 200 includes a first cylindrical lens 210, a second cylindrical lens 220 and an imaging lens 230, and the first cylindrical lens 210 is a cylindrical lens that is focused (ie, f1>0). And the second cylindrical lens 220 is a cylindrical lens that is diverging (that is, f2 < 0).

第6圖為依據本揭露之另一實施方式之成像透鏡組200a的示意圖。如第6圖所示,本實施方式與前述實施方式的主要差異在於:第一柱面透鏡210a之第一焦距fa1<0,且第二柱面透鏡220a之第二焦距fa2>0。具體而言,於部分實施方式中,第一柱面透鏡210a具有第一焦距fa1,且第一焦距fa1<0。第一柱面透鏡210a在水平面(YZ平面)的屈光度(可小於0)與在垂直面(XZ平面)的屈光度(可小於0)係不同的,因此,螢光光束F於水平面之焦點與垂直面之焦點係不同的。相似地,第二柱面透鏡220a具有第二焦距fa2,且第二焦距fa2>0。第二柱面透鏡220在水平面的屈光度與在垂直面的屈 光度係不同的,因此,螢光光束F於水平面之焦點與垂直面之焦點係不同的。藉由第一焦距fa1<0之第一柱面透鏡210a與第二焦距fa2>0之第二柱面透鏡220a,可調整螢光光束F通過成像透鏡組200a之水平面之焦距與垂直面之焦距。舉例而言,於部分實施方式中,藉由第一柱面透鏡210a發散螢光光束F,且藉由第二柱面透鏡220a聚焦螢光光束F,可互相抵銷成像透鏡組200a之像散效應,而減少成像之像散程度。 Fig. 6 is a schematic view of an imaging lens group 200a according to another embodiment of the present disclosure. As shown in Fig. 6, the main difference between the present embodiment and the foregoing embodiment is that the first focal length fa1 < 0 of the first cylindrical lens 210a and the second focal length fa2 > 0 of the second cylindrical lens 220a. Specifically, in some embodiments, the first cylindrical lens 210a has a first focal length fa1 and the first focal length fa1 <0. The refracting power of the first cylindrical lens 210a in the horizontal plane (YZ plane) (which may be less than 0) is different from the diopter in the vertical plane (XZ plane) (may be less than 0), and therefore, the focus and vertical of the fluorescent light beam F in the horizontal plane The focus of the face is different. Similarly, the second cylindrical lens 220a has a second focal length fa2 and the second focal length fa2 > 0. The diopter of the second cylindrical lens 220 in the horizontal plane and the curvature in the vertical plane The luminosity is different, and therefore, the focal point of the fluorescent beam F in the horizontal plane is different from the focal point of the vertical plane. The focal length of the focal plane of the fluorescent light beam F passing through the horizontal plane of the imaging lens group 200a and the focal length of the vertical plane can be adjusted by the first cylindrical lens 210a having the first focal length fa1<0 and the second cylindrical lens 220a having the second focal length fa2>0. . For example, in some embodiments, the fluorescent beam F is diverged by the first cylindrical lens 210a, and the fluorescent beam F is focused by the second cylindrical lens 220a, thereby canceling the astigmatism of the imaging lens group 200a. Effect, while reducing the degree of astigmatism of the image.

舉例而言,於部分實施方式中,如第6圖所示,在XZ平面上,第一柱面透鏡210a之中央厚度t5與第一柱面透鏡210a之邊緣厚度t6係不同的,且中央厚度t5小於邊緣厚度t6,使得第一柱面透鏡210a為發散的透鏡。此外,第一柱面透鏡210a於YZ平面上的厚度係實質上相等。相似地,在XZ平面,第二柱面透鏡220a之中央厚度t7與第二柱面透鏡220之邊緣厚度t8係不同的,且中央厚度t7大於邊緣厚度t8,使得第二柱面透鏡220a為聚焦的透鏡。此外,第二柱面透鏡220a於YZ平面上的厚度係實質上相等。第一柱面透鏡210a的光軸與第二柱面透鏡220a的光軸重合。發散的第一柱面透鏡210a與聚焦的第二柱面透鏡220a係依序排列於載台120與光偵測模組300之間。藉由這樣的第一柱面透鏡210a與第二柱面透鏡220a,可調整螢光光束F所通過兩透鏡的中央厚度總和(亦即,t5+t7),且可調整螢光光束F所通過兩透鏡的邊緣厚度總和(亦即,t6+t8),進而調整螢光光束F之成像焦點,改變螢光光束F之成像的像散。 For example, in some embodiments, as shown in FIG. 6, in the XZ plane, the central thickness t5 of the first cylindrical lens 210a is different from the edge thickness t6 of the first cylindrical lens 210a, and the central thickness is T5 is smaller than the edge thickness t6 such that the first cylindrical lens 210a is a diverging lens. Further, the thickness of the first cylindrical lens 210a on the YZ plane is substantially equal. Similarly, in the XZ plane, the central thickness t7 of the second cylindrical lens 220a is different from the edge thickness t8 of the second cylindrical lens 220, and the central thickness t7 is greater than the edge thickness t8 such that the second cylindrical lens 220a is in focus. Lens. Further, the thickness of the second cylindrical lens 220a on the YZ plane is substantially equal. The optical axis of the first cylindrical lens 210a coincides with the optical axis of the second cylindrical lens 220a. The diverging first cylindrical lens 210a and the focused second cylindrical lens 220a are sequentially arranged between the stage 120 and the light detecting module 300. With the first cylindrical lens 210a and the second cylindrical lens 220a, the central thickness of the two lenses passing through the fluorescent light beam F can be adjusted (that is, t5+t7), and the fluorescent light beam F can be adjusted. The sum of the edge thicknesses of the two lenses (i.e., t6 + t8), thereby adjusting the imaging focus of the fluorescent beam F, changes the imaged astigmatism of the fluorescent beam F.

雖然本揭露已以實施方式揭露如上,然其並非用 以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 Although the disclosure has been disclosed above in the embodiments, it is not In order to limit the disclosure, any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of the disclosure is subject to the definition of the patent application scope. .

10‧‧‧粒子三維定位與追蹤裝置 10‧‧‧Particle three-dimensional positioning and tracking device

100‧‧‧光源模組 100‧‧‧Light source module

110‧‧‧待測物 110‧‧‧Test object

112‧‧‧粒子 112‧‧‧ particles

120‧‧‧載台 120‧‧‧ stage

130‧‧‧光源 130‧‧‧Light source

142‧‧‧偏極鏡組 142‧‧‧polar mirror group

144‧‧‧快門 144‧‧ ‧Shutter

151‧‧‧反射鏡 151‧‧‧Mirror

152‧‧‧反射鏡 152‧‧‧Mirror

153‧‧‧反射鏡 153‧‧‧Mirror

154‧‧‧反射鏡 154‧‧‧Mirror

160‧‧‧光柵 160‧‧‧Raster

170‧‧‧第一透鏡組 170‧‧‧First lens group

180‧‧‧第二分色鏡 180‧‧‧Second dichroic mirror

190‧‧‧物鏡組 190‧‧‧ objective lens group

200‧‧‧成像透鏡組 200‧‧‧ imaging lens set

210‧‧‧第一柱面透鏡 210‧‧‧First cylindrical lens

220‧‧‧第二柱面透鏡 220‧‧‧second cylindrical lens

230‧‧‧成像透鏡 230‧‧‧ imaging lens

300‧‧‧光偵測模組 300‧‧‧Light detection module

310‧‧‧第一光偵測器 310‧‧‧First Light Detector

320‧‧‧第二光偵測器 320‧‧‧Second light detector

330‧‧‧第一分色鏡 330‧‧‧First dichroic mirror

1122‧‧‧第一粒子 1122‧‧‧First particle

1124‧‧‧第二粒子 1124‧‧‧Second particles

3102‧‧‧第一螢光濾片 3102‧‧‧First fluorescent filter

3202‧‧‧第二螢光濾片 3202‧‧‧Second Fluorescent Filter

L‧‧‧光束 L‧‧‧beam

F‧‧‧螢光光束 F‧‧‧Fluorescent beam

F1‧‧‧第一螢光光束 F1‧‧‧First fluorescent beam

F2‧‧‧第二螢光光束 F2‧‧‧second fluorescent beam

Claims (10)

一種粒子三維定位與追蹤裝置,包含:一光源模組,用以激發一待測物,使該待測物產生一螢光光束;一成像透鏡組,包含一第一柱面透鏡、一第二柱面透鏡以及一成像透鏡,其中該第一柱面透鏡具有一第一焦距,該第一焦距為正值,且該第二柱面透鏡具有一第二焦距,該第二焦距為負值,該第一柱面透鏡與該第二柱面透鏡係共同用以調整該螢光光束之一成像形狀;以及一光偵測模組,其中該成像透鏡係用以將該螢光光束成像於該光偵測模組,且該光偵測模組係用以偵測通過該成像透鏡組之該螢光光束。 A particle three-dimensional positioning and tracking device comprises: a light source module for exciting a sample to be tested to generate a fluorescent beam; and an imaging lens group comprising a first cylindrical lens and a second a cylindrical lens and an imaging lens, wherein the first cylindrical lens has a first focal length, the first focal length is a positive value, and the second cylindrical lens has a second focal length, the second focal length is a negative value, The first cylindrical lens cooperates with the second cylindrical lens system to adjust an imaging shape of the fluorescent light beam; and a light detecting module, wherein the imaging lens is configured to image the fluorescent light beam The light detecting module is configured to detect the fluorescent light beam passing through the imaging lens group. 如申請專利範圍第1項所述之粒子三維定位與追蹤裝置,其中該第一焦距之絕對值與該第二焦距之絕對值係實質上相等。 The particle three-dimensional positioning and tracking device of claim 1, wherein the absolute value of the first focal length is substantially equal to the absolute value of the second focal length. 如申請專利範圍第1項所述之粒子三維定位與追蹤裝置,其中該第一柱面透鏡與該第二柱面透鏡係可相對旋轉而調整該螢光光束之該成像形狀。 The particle three-dimensional positioning and tracking device of claim 1, wherein the first cylindrical lens and the second cylindrical lens are relatively rotatable to adjust the image shape of the fluorescent beam. 如申請專利範圍第3項所述之粒子三維定位與追蹤裝置,更包含:一旋轉支撐架,該第一柱面透鏡係位於該旋轉支撐架上;以及 一旋轉致動器,用以致動該第一旋轉支撐架旋轉。 The particle three-dimensional positioning and tracking device of claim 3, further comprising: a rotating support frame, the first cylindrical lens is located on the rotating support frame; A rotary actuator for actuating the rotation of the first rotary support. 如申請專利範圍第3項所述之粒子三維定位與追蹤裝置,更包含:一旋轉支撐架,該第二柱面透鏡係位於該旋轉支撐架上;以及一旋轉致動器,用以致動該旋轉支撐架旋轉。 The particle three-dimensional positioning and tracking device of claim 3, further comprising: a rotating support frame, the second cylindrical lens is located on the rotating support frame; and a rotary actuator for actuating the Rotate the support frame to rotate. 如申請專利範圍第3項所述之粒子三維定位與追蹤裝置,其中該第一柱面透鏡的旋轉角度與該第二柱面透鏡的旋轉角度係被選擇以使該螢光光束之該成像形狀為非斜向橢圓,該非斜向橢圓的長軸係垂直或平行於該第一柱面透鏡或該第二柱面透鏡尚未旋轉時的長度方向。 The particle three-dimensional positioning and tracking device of claim 3, wherein a rotation angle of the first cylindrical lens and a rotation angle of the second cylindrical lens are selected such that the imaging shape of the fluorescent beam In the case of a non-oblique ellipse, the long axis of the non-oblique ellipse is perpendicular or parallel to the length direction of the first cylindrical lens or the second cylindrical lens when it has not been rotated. 如申請專利範圍第1項所述之粒子三維定位與追蹤裝置,其中通過該光源模組之該光束聚焦至該待測物之聚焦範圍係一非點狀區域,使得產生該螢光光束之範圍在該待測物之一切層上涵蓋著一二維區域,其中該切層係垂直於該第一柱面透鏡及該第二柱面透鏡之一排列方向。 The particle three-dimensional positioning and tracking device of claim 1, wherein the focus of the light beam by the light source module is focused on a non-dot region of the object to be tested, so that the range of the fluorescent beam is generated. A two-dimensional region is covered on all layers of the object to be tested, wherein the slice layer is perpendicular to an arrangement direction of one of the first cylindrical lens and the second cylindrical lens. 如申請專利範圍第1項所述之粒子三維定位與追蹤裝置,其中該光偵測模組包含一第一光偵測器、一第二光偵測器以及一分色鏡,該分色鏡係用以將不同波長之兩該螢光光束分送至該第一光偵測器與該第二光偵測器。 The particle three-dimensional positioning and tracking device of claim 1, wherein the light detecting module comprises a first photodetector, a second photodetector, and a dichroic mirror, the dichroic mirror The method is configured to distribute two fluorescent beams of different wavelengths to the first photodetector and the second photodetector. 如申請專利範圍第8項所述之粒子三維定位與追蹤裝置,其中該第一光偵測器與該第二光偵測器係實質上同步偵測。 The particle three-dimensional positioning and tracking device of claim 8, wherein the first photodetector and the second photodetector are substantially synchronously detected. 一種粒子三維定位與追蹤方法,包含:激發一待測物,使該待測物產生一螢光光束;利用一聚焦的柱面透鏡與一發散的柱面透鏡共同調整該螢光光束之一成像形狀;以及偵測通過該聚焦的柱面透鏡與該發散的聚焦透鏡之該螢光光束。 A method for three-dimensional positioning and tracking of a particle comprises: exciting a sample to be tested to generate a fluorescent beam; and using a focused cylindrical lens to adjust an image of the fluorescent beam together with a diverging cylindrical lens Shape; and detecting the fluorescent beam passing through the focused cylindrical lens and the diverging focusing lens.
TW105114139A 2016-05-06 2016-05-06 Three dimensional particle localization and tracking device and method thereof TWI582407B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105114139A TWI582407B (en) 2016-05-06 2016-05-06 Three dimensional particle localization and tracking device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105114139A TWI582407B (en) 2016-05-06 2016-05-06 Three dimensional particle localization and tracking device and method thereof

Publications (2)

Publication Number Publication Date
TWI582407B true TWI582407B (en) 2017-05-11
TW201740099A TW201740099A (en) 2017-11-16

Family

ID=59367312

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105114139A TWI582407B (en) 2016-05-06 2016-05-06 Three dimensional particle localization and tracking device and method thereof

Country Status (1)

Country Link
TW (1) TWI582407B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323397A (en) * 2018-12-14 2020-06-23 深圳华大生命科学研究院 Optical imaging system, imaging detection system and method and gene sequencing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200819731A (en) * 2006-10-31 2008-05-01 Academia Sinica Controlling pulses in optical microscopy
US20080308730A1 (en) * 2005-01-27 2008-12-18 Vizi Szilveszter E Real-Time, 3D, Non-Linear Microscope Measuring System and Method for Application of the Same
US20110037846A1 (en) * 2007-09-26 2011-02-17 Massachusetts Institute Of Technology High-resolution 3d imaging of single semiconductor nanocrystals
TW201505602A (en) * 2013-08-06 2015-02-16 Univ Minghsin Sci & Tech 4D multi-wavelength full-color image skin tester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080308730A1 (en) * 2005-01-27 2008-12-18 Vizi Szilveszter E Real-Time, 3D, Non-Linear Microscope Measuring System and Method for Application of the Same
TW200819731A (en) * 2006-10-31 2008-05-01 Academia Sinica Controlling pulses in optical microscopy
US20110037846A1 (en) * 2007-09-26 2011-02-17 Massachusetts Institute Of Technology High-resolution 3d imaging of single semiconductor nanocrystals
TW201505602A (en) * 2013-08-06 2015-02-16 Univ Minghsin Sci & Tech 4D multi-wavelength full-color image skin tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323397A (en) * 2018-12-14 2020-06-23 深圳华大生命科学研究院 Optical imaging system, imaging detection system and method and gene sequencing method

Also Published As

Publication number Publication date
TW201740099A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
US10088656B2 (en) STED super-resolution microscope and adjusting method based on a first-order Bessel beam
WO2015137004A1 (en) Laser dicing device and dicing method
KR102077064B1 (en) Auto focus control apparatus, semiconductor inspecting apparatus and microscope
US9766442B2 (en) Confocal scanner and confocal microscope
TWI829504B (en) Particle detection system and apparatus
KR20160098173A (en) Extreme ultraviolet (euv) substrate inspection system with simplified optics and method of manufacturing thereof
US20130100461A1 (en) Methods and apparatuses for position and force detection
KR102357638B1 (en) Dark Field Wafer Nano Defect Inspection System Using Single Beam
US9964749B2 (en) Total internal reflection fluorescence microscope (TIRFM)
KR102242926B1 (en) Lens array-based illumination for wafer inspection
TWI582407B (en) Three dimensional particle localization and tracking device and method thereof
JP2009540346A (en) Interference confocal microscope
CN107490566B (en) Airy beam light sheet illumination microscopic imaging device based on binary optical element
RU2579640C1 (en) Confocal image spectrum analyser
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
CN111913293B (en) Fluorescence excitation spectrum super-resolution microscopy system and method
WO2021199340A1 (en) Defect inspection device and defect inspection method
WO2021082120A1 (en) High-speed stereoscopic three-dimensional multi-modal imaging system and method
JP2003149154A (en) Fluorescence spectrophotometer
JP2018045148A (en) Light sheet microscope device
KR101710570B1 (en) Nano-hole array substrate for an extraordinary optical transmission and super resolution imaging system using of the same
KR101864984B1 (en) Fluorescence microscopy using the sw-sted
WO2022091992A1 (en) Terahertz light source, fluid detector, and terahertz wave generating method
KR102066129B1 (en) Apparatus and method for 3d information using dot array
KR102019673B1 (en) Structured illumination microscopy and photographing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees