JPS6089915A - Preparation of semiconductor thin film - Google Patents

Preparation of semiconductor thin film

Info

Publication number
JPS6089915A
JPS6089915A JP19724183A JP19724183A JPS6089915A JP S6089915 A JPS6089915 A JP S6089915A JP 19724183 A JP19724183 A JP 19724183A JP 19724183 A JP19724183 A JP 19724183A JP S6089915 A JPS6089915 A JP S6089915A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
beams
lenses
bimodal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19724183A
Other languages
Japanese (ja)
Inventor
Setsuo Usui
碓井 節夫
Yasuo Kano
狩野 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19724183A priority Critical patent/JPS6089915A/en
Publication of JPS6089915A publication Critical patent/JPS6089915A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To vary the ratio of maximum and minimum between the beams for obtaining desired intensity distribution, by superposing two convex lenses having the same curvature radius on the same plane and by radiating two-peak beams with the use of a system consisting of these lenses or of the region commonly possessed by these lenses onto a semiconductor thin film. CONSTITUTION:A semiconductor thin film formed on a substrate is recrystallized with energy beams to produce a semiconductor thin film. In this production of semiconductor thin films, two lenses L1 and L2 which are superposed on the same plane are utilized in order to obtain a similar effect as obtained by a composite lens L. Laser beams 2 are radiated in parallel relation against the composite lens L, and the beams 2 incident on each of the lenses L1 and L2 are collected to the focuses F1 and F2, respectively. Further, two laser beams 2 whose optical axes are deflected from each other by a distance (d) are formed, so that the ratio of maximum and minimum between these two-peak beams can be varied. Thus a desired distribution of intensity can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板に形成した半導体薄膜にレーザ・ビーム
を照射して再結晶化させる半導体薄膜の製造方法に関す
る・ 背景技術とその問題点 絶縁基板に形成した多結晶シリコンの薄膜を単結晶シリ
コンの薄膜に再結晶化させ、この単結晶シリコン薄膜を
用いて半導体装置を製作することが行なわれている(所
i1@80I技術)。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor thin film formed on a substrate by irradiating a laser beam to recrystallize it. The formed polycrystalline silicon thin film is recrystallized into a single-crystal silicon thin film, and a semiconductor device is manufactured using this single-crystal silicon thin film (I1@80I technology).

この再結晶化のためにレーザ・ビームを使用して双峰性
ビームを作り、この双峰性ビームを多結晶シリコン薄膜
に照射することにより再結晶化させる方法がある。例え
ば、第1図に示す再結晶化方法は、Arレーデ(1)内
の共振用ミラーの形状を変えて、通常のTEMooモー
ド(第1図C参照)、即ちガウス分布の強度を持つビー
ムからTEMo、及び16M1oモードの組合わせ(第
1図C参照)を作ることにより、被照射面に双峰性強度
分布を持たせるように構成したものである。alは、鏡
である。
For this recrystallization, there is a method in which a laser beam is used to create a bimodal beam, and the polycrystalline silicon thin film is irradiated with this bimodal beam to effect recrystallization. For example, the recrystallization method shown in Fig. 1 changes the shape of the resonant mirror in the Ar radar (1) to convert the beam from the normal TEMoo mode (see Fig. 1C), that is, the beam having a Gaussian distribution intensity. By creating a combination of TEMo and 16M1o modes (see FIG. 1C), the irradiated surface is configured to have a bimodal intensity distribution. al is a mirror.

この再結晶化方法によるレーザ・ビーム(2) ヲ第5
図人及びBに示すように、ガラス基板(4)に形成した
約0.5μ厚の多結晶シリコン薄膜(5)上に走査させ
ると、第6図A及びB(双峰性ビームの強度分布を示す
)に示すように、レーザ・ビーム(2)に溶融された多
結晶シリコン薄膜(5)は、走査幅の中心部から両端部
に向って冷却固化するため、中心部に良好な単結晶シリ
コン領域(6)が広がる。(7)は多結晶シリコン薄膜
(5)に照射された双峰性ビーム、2は双峰性ビームの
走査方向、(8)は多結晶シリコン領域、(8)は再結
晶化後の多結晶シリコン領域である。第2図に示す再結
晶化方法は、レーザ・ビーム(2)の径ヲ先スビーム・
エキスフ4ンダであるアップコリメータ(9)で広げた
後、中心対称な2個の孔01が形成された光遮蔽板0]
)(第2図B参照)を通して2本のビーム(2)に分割
し、次にこのビーム(2)をコリメータC1埠で再び細
いビームにすることによシ、第2図Cに示すように被照
射面に双峰性強度分布を持たせるように構成したもので
ある。この方法によれば、第1図に示す方法と比べて、
双峰の間の間隔を光遮蔽板αυの孔a1の間隔によシ調
節できること、双峰性ビームの谷の部分の窪みを大きく
とれることなどの利点がある。第3図に示す再結晶化方
法は、レーザ・ビーム(2)を鏡α1に当てると共に、
この鏡α1をスキャナ駆動回路を有する正弦波発生器α
Φで振動させることにより、第3図Bに示すように被照
射面に双峰性強度分布を持たせるように構成したもので
ある。この方法による場合、鏡(11の振動数は約50
 kHzが望ましい。
Laser beam by this recrystallization method (2) Part 5
As shown in Figures 6A and 6B, when the polycrystalline silicon thin film (5) with a thickness of about 0.5μ formed on a glass substrate (4) is scanned, As shown in ), the polycrystalline silicon thin film (5) melted by the laser beam (2) cools and solidifies from the center of the scanning width toward both ends, so that a good single crystal is formed in the center. The silicon region (6) expands. (7) is the bimodal beam irradiated on the polycrystalline silicon thin film (5), 2 is the scanning direction of the bimodal beam, (8) is the polycrystalline silicon region, and (8) is the polycrystalline silicon after recrystallization. This is the silicon area. The recrystallization method shown in FIG.
After being expanded with an up-collimator (9) that is an expander, the light shielding plate 0 has two centrally symmetrical holes 01 formed therein.]
) (see Figure 2B) into two beams (2), and then this beam (2) is made into a narrow beam again by collimator C1, as shown in Figure 2C. It is constructed so that the irradiated surface has a bimodal intensity distribution. According to this method, compared to the method shown in FIG.
There are advantages that the distance between the two peaks can be adjusted by adjusting the distance between the holes a1 of the light shielding plate αυ, and that the valley of the bimodal beam can be made large. The recrystallization method shown in FIG. 3 applies the laser beam (2) to the mirror α1, and
This mirror α1 is connected to a sine wave generator α having a scanner drive circuit.
By vibrating at Φ, the irradiated surface has a bimodal intensity distribution as shown in FIG. 3B. When using this method, the frequency of the mirror (11) is approximately 50
kHz is preferred.

そして、多結晶シリコン薄膜(5)が形成された基板(
4)を鏡03の振動方向に対して直角方向に1〜20c
rn/aecの速度で移動させて、再結晶化した単結晶
シリコン薄膜を得ることができる。第4図に示す再結晶
化方法は、Arレーザ(1)からのレーザ・ビーム(2
)を鏡01を介して複屈折板(ロ)に入射させ、この複
屈折板αりの厚さを変えることにより、いろいろな形の
双峰性ビームを得るように構成したものである。上記第
3図及び第4図の方法による場合、双峰性ビームの中心
部の強度の窪みを大きくすることが難しいという問題が
ある。
Then, a substrate (
4) from 1 to 20c in the direction perpendicular to the vibration direction of mirror 03.
By moving at a speed of rn/aec, a recrystallized single crystal silicon thin film can be obtained. The recrystallization method shown in FIG. 4 uses a laser beam (2) from an Ar laser (1).
) is incident on a birefringent plate (b) through a mirror 01, and by changing the thickness of this birefringent plate α, bimodal beams of various shapes can be obtained. When using the methods shown in FIGS. 3 and 4 above, there is a problem in that it is difficult to enlarge the depression in the intensity at the center of the bimodal beam.

発明の目的 本発明は、上記従来の再結晶化方法に対して、双峰性の
レーザ・ビームをよシ簡単に得ることができ、また双峰
性レーザ・ビームの強度分布を容易に論節することがで
きる半導体薄膜の製造方法を提供するものである。
OBJECTS OF THE INVENTION The present invention enables a bimodal laser beam to be obtained more easily than the above-mentioned conventional recrystallization method, and the intensity distribution of the bimodal laser beam can be easily determined. The present invention provides a method for manufacturing a semiconductor thin film that can be used.

発明の概要 本発明は、基板に形成された半導体薄膜をレーザ・ビー
ムによシ再結晶化させる半導体薄膜の製造方法において
、同一の曲率半径を有する2個の凸レンズを同一平面上
で重ね合わせた場合における両レンズ部分又は両レンズ
の共有部分よりなるレンズを使用して半導体薄膜に双峰
性ビームを照射することを特徴とする半導体薄膜の製造
方法である。
Summary of the Invention The present invention is a semiconductor thin film manufacturing method in which a semiconductor thin film formed on a substrate is recrystallized by a laser beam, in which two convex lenses having the same radius of curvature are superimposed on the same plane. This method of manufacturing a semiconductor thin film is characterized in that the semiconductor thin film is irradiated with a bimodal beam using a lens consisting of both lens portions or a shared portion of both lenses.

上記本発明により、所望の双峰性レーデ・ビームを容易
に得ることができる。
According to the present invention, a desired bimodal Radhe beam can be easily obtained.

実施例□ 本発明の実施例を献7図に示す。2の実施例は、同一の
一率□半径を有する2個の凸レンズを同一平面上で重□
ね合わせた場合における両レンズの共有部分よ)な゛る
合成レンズを使用したもめに相当しく実線で囲まれた部
分)、図示jるように、1枚の凸レンズの中心部を幅d
だけ削除した1対のレンズ片り、 I L2を用意し、
このり、とL2を透明接着剤等で合体することによシ作
ることができる。
Example □ An example of the present invention is shown in Figure 7. In the second embodiment, two convex lenses having the same ratio □ radius are overlapped on the same plane.
As shown in the figure, the central part of one convex lens has a width d.
Prepare a pair of lens pieces, I L2, by removing only
It can be made by combining this glue and L2 with a transparent adhesive or the like.

この合成レンズLに対してレーザ・ビーム(2)を照射
すると、L、に入射した平行レーザ・ビーム(2)はF
、に集光し、L2に入射した平行レーザ・ビーム(2ン
はF2に集光する。即ち、この合成レンズLKよ(5) つて、光軸がお互いにdだけずれた2本のレーデ・ビー
ム(2)を作ることができる。合成レンズLに入射する
前のレーザ・ビーム(2)は、中心にピークを有するガ
ウス型の強度分布を持っている( TEMo。
When this composite lens L is irradiated with a laser beam (2), the parallel laser beam (2) incident on L becomes F.
, and the parallel laser beam incident on L2 is focused on F2. In other words, this composite lens LK (5) is composed of two laser beams whose optical axes are shifted by d from each other. The laser beam (2) before entering the combining lens L has a Gaussian intensity distribution with a peak at the center (TEMo).

モード)ので□、この合成レンズLを通過した後、F 
−F の位置の前後で強度分布の異なる双峰性ビームが
できる。例えば、F、−F2より前のA−A′の位置で
は、中心部の方にり、及びL2に入射゛したビームの端
部が入るので、第7図Bに示すように中心部の窪みの小
さい双峰性ビームが得られる−また、F、 −F2よシ
後のB −B’の位置では、中心部の強度が小さくなっ
て、第7図Cに示すように、゛中心部の窪みが大きい双
峰性ビームが得られる。
mode), so □, after passing through this composite lens L, F
A bimodal beam with different intensity distributions is created before and after the -F position. For example, at the position A-A' before F and -F2, the end of the beam that is incident on the center and L2 enters, so the depression in the center as shown in FIG. A bimodal beam with a small value of A bimodal beam with a large depression is obtained.

従って、レーザ・ビームが照射される基板(4)の位置
を調節することにより、被照射面に任意の双−゛性強度
分布を持たせることができる。
Therefore, by adjusting the position of the substrate (4) to which the laser beam is irradiated, the irradiated surface can have any bidirectional intensity distribution.

本発明の他の実施例を第8図に示す。この実施例は、同
一の曲率半径を有する2個の凸レンズを同一平面上で重
ね合わせた場合における両レンズ部分よりなる合成レン
ズを使用したものに相当しく6) (実線で囲まれた部分)、図示するように、凸レンズの
中心からd/2の距離まで削除した1対のレンズ片L1
 r L2を用意し、このLlとL2を合体することに
よシ作ることができる。この合成レンズL′を使用する
と、上記実施例の合成レンズLと比べて、レンズ片L1
及びL2がそれぞれレンズの中心部を含むため、Fl−
F2面において、比較的球面収差の少いシャープな集光
ができる。
Another embodiment of the invention is shown in FIG. This example corresponds to the case where two convex lenses having the same radius of curvature are superimposed on the same plane and uses a composite lens consisting of both lens parts6) (portion surrounded by a solid line), As shown in the figure, a pair of lens pieces L1 are removed to a distance of d/2 from the center of the convex lens.
It can be made by preparing r L2 and combining this Ll and L2. When this composite lens L' is used, compared to the composite lens L of the above embodiment, the lens piece L1
and L2 each include the center of the lens, so Fl-
At the F2 plane, sharp light can be focused with relatively little spherical aberration.

第9図に上記光学系を使用したレーザ照射装置0Qの概
略を示す。このレーデ照射装置部では、Arレーザ(1
)から放射された直径約1n+mのレーザ・ビーム(2
)をアップコリメータ(9)でその径を大きくした後、
本発明に係る合成レンズL′に入射させることによυ多
結晶シリコン薄膜(5)上に双峰性ビーム(2)が照射
されるように構成したものである。ここで、ガラス片L
1とL2の光軸間隔dは、通常約100μとするので、
この場合第5図に示すようなレーザ・ビーム(2)の照
射後、石英ガラス基板(4)上には100μ×500μ
程度の単結晶シリコン領域(6)が形成される。
FIG. 9 schematically shows a laser irradiation device 0Q using the above optical system. This radar irradiation device section uses an Ar laser (1
) is emitted from a laser beam with a diameter of approximately 1n+m (2
) after increasing its diameter with an up-collimator (9),
It is constructed so that the bimodal beam (2) is irradiated onto the υ polycrystalline silicon thin film (5) by making it incident on the composite lens L' according to the present invention. Here, glass piece L
Since the optical axis distance d between 1 and L2 is usually about 100μ,
In this case, after irradiation with the laser beam (2) as shown in Figure 5, a 100μ x 500μ
A monocrystalline silicon region (6) of about 100 mL is formed.

発明の効果 本発明によれば、双峰性レーザ・ビームを作るための光
学系には機械的な運動を含まず、構成が簡単である。ま
た、本発明により、設計の時点で双峰性強度分布におけ
る2つのピークの間の間隔を任意に変えることができる
。更に、双峰性強度分布における2つのピークの間の最
大と最小との比を任意に変えることができるため、所望
の強度分布を得ることが容易である。
Effects of the Invention According to the present invention, the optical system for creating a bimodal laser beam does not include mechanical movement and has a simple configuration. Further, according to the present invention, the interval between two peaks in the bimodal intensity distribution can be arbitrarily changed at the time of design. Furthermore, since the ratio between the maximum and the minimum between the two peaks in the bimodal intensity distribution can be arbitrarily changed, it is easy to obtain a desired intensity distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は従来の再結晶化方法の説明に供する図
、第5図はレーザ・ビームの走査方法を示す図、第6図
はシリコンの再結晶化状態を示す図、第7図及び第8図
は本発明の実施例を示す図、第9図は本発明に係る光学
系を使用したレーザ照射装置の概略図である。 (1)はArレーザ、(2ンはレーザ・ビーム、(4)
はガラス基板、(5)は多結晶シリコン薄膜、L、L’
は合成レンズである。 < = 第8図 / \ 第9図 」 手続補正書 (特許庁審判長 hlり) ■、事件の表示 昭和!$8年特許願第197241 号2、発明の名称
 牛導体薄膜の製造方法3、補正をする者 事件との関係 特許出願人 住所 東京部品用区北品用6丁目7番35号名称(21
B) ソニー株式会社 代表取締役 大 賀 興 雄 5、補正命令の日付 昭和 年 月 日6、補正により
増加する発明の数 8、補正の内容 (1)特許請求の範囲を別紙の通り補正する。 (2) 明細書中、第1頁14行「ビームを照射して」
を1ビーム等のエネルギービームを照射して」と補正す
る。 (3)同、第3頁19行「約5QkI−1z Jを「約
59kI−fz以上」と補正する。 以 上 特許請求の範囲 基板に形成された半導体薄膜な王一本−〃イニー4二み
により再結晶化させる半導体薄膜の製造方法において、
同一の曲率半径を有する2個の凸レンズを同一平面上で
重ね合わせた場合における両レンズ部分又は両レンズの
共有部分よりなるレンズを使用して半導体薄膜に双峰性
ビームを照射することを特徴とする半導体薄膜の製造方
法。 77
Figures 1 to 4 are diagrams for explaining the conventional recrystallization method, Figure 5 is a diagram showing the laser beam scanning method, Figure 6 is a diagram showing the state of recrystallization of silicon, and Figure 7 8 and 8 are diagrams showing an embodiment of the present invention, and FIG. 9 is a schematic diagram of a laser irradiation device using the optical system according to the present invention. (1) is an Ar laser, (2 is a laser beam, (4)
is a glass substrate, (5) is a polycrystalline silicon thin film, L, L'
is a composite lens. < = Figure 8/ \ Figure 9'' Procedural Amendment (Chief Examiner of the Japan Patent Office HL) ■, Display of the case Showa! $8 Patent Application No. 197241 2, Title of the invention Method for manufacturing a conductor thin film 3, Relationship with the case of the person making the amendment Patent applicant address 6-7-35, Kitashina, Tokyo Parts Co., Ltd. Name (21
B) Oga Oga, Representative Director of Sony Corporation 5, Date of amendment order: 6, Showa, Number of inventions increased by 8, Contents of amendment (1) The scope of claims will be amended as shown in the attached sheet. (2) In the specification, page 1, line 14: “Irradiate the beam.”
1 beam or other energy beam.'' (3) Same, page 3, line 19: "About 5QkI-1z J is corrected to "about 59kI-fz or more." Claims A method for manufacturing a semiconductor thin film formed on a substrate and recrystallized by recrystallization,
A semiconductor thin film is irradiated with a bimodal beam using a lens consisting of a portion of both lenses or a shared portion of two convex lenses having the same radius of curvature superimposed on the same plane. A method for manufacturing a semiconductor thin film. 77

Claims (1)

【特許請求の範囲】[Claims] 基板に形成された半導体薄膜をレーザ・ビームにより再
結晶化させる半導体薄膜の製造方法において、同一の曲
率半径を有する2個の凸レンズを同一平面上で重ね合わ
せた場合における両レンズ部分又は両レンズの共有部分
よりなるレンズを使用して半導体薄膜に双峰性ビームを
照射することを特徴とする半導体薄膜の製造方法。
In a semiconductor thin film manufacturing method in which a semiconductor thin film formed on a substrate is recrystallized by a laser beam, both lens parts or both lenses when two convex lenses having the same radius of curvature are overlapped on the same plane. A method for producing a semiconductor thin film, comprising irradiating the semiconductor thin film with a bimodal beam using a lens consisting of a shared portion.
JP19724183A 1983-10-21 1983-10-21 Preparation of semiconductor thin film Pending JPS6089915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19724183A JPS6089915A (en) 1983-10-21 1983-10-21 Preparation of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19724183A JPS6089915A (en) 1983-10-21 1983-10-21 Preparation of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS6089915A true JPS6089915A (en) 1985-05-20

Family

ID=16371191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19724183A Pending JPS6089915A (en) 1983-10-21 1983-10-21 Preparation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS6089915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247115A (en) * 1985-08-26 1987-02-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS62216318A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Laser annealing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247115A (en) * 1985-08-26 1987-02-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS62216318A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Laser annealing apparatus

Similar Documents

Publication Publication Date Title
TW469539B (en) Optical system for laser heat treatment, laser heat treating apparatus, and method for producing semiconductor devices by using the same
JP4175636B2 (en) Glass cutting method
US7486444B2 (en) Beam homogenizer and laser irradiation apparatus
JPS583478B2 (en) Laser heating method and device
JP2866267B2 (en) Optical drawing apparatus and optical drawing method for wafer substrate
US20060054606A1 (en) Laser-machining method, laser-machining device, and electronic apparatus
JPS60257511A (en) Heat treatment and apparatus therefor
JP3305206B2 (en) Laser processing equipment
JPS6089915A (en) Preparation of semiconductor thin film
JPS58154484A (en) Method for converting laser beam
JP2005109359A (en) Laser device, and manufacturing method of liquid crystal display
JP4442537B2 (en) Laser process equipment
JP2003287703A (en) Optical system for uniformly irradiating laser beam
JPH0722685A (en) Focus composition method of beam and its focus composition device
JP2800006B2 (en) Laser device
JP2005311340A5 (en)
JP2009063887A (en) Variable curvature mirror, and optical device using the same
JPS5984423A (en) Energy radiation equipment
JPS60126840A (en) Laser beam irradiation device
JPS59121913A (en) Manufacture of semiconductor device
JP2884075B2 (en) Laser beam focusing and irradiation equipment
JP3762773B2 (en) Laser beam uniform irradiation optical system
JPS60153023A (en) Beam splitter device for high output laser
JPH01261820A (en) Laser irradiation apparatus
JPH01214011A (en) Apparatus for manufacturing semiconductor thin film