JPS60257511A - Heat treatment and apparatus therefor - Google Patents
Heat treatment and apparatus thereforInfo
- Publication number
- JPS60257511A JPS60257511A JP59114306A JP11430684A JPS60257511A JP S60257511 A JPS60257511 A JP S60257511A JP 59114306 A JP59114306 A JP 59114306A JP 11430684 A JP11430684 A JP 11430684A JP S60257511 A JPS60257511 A JP S60257511A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- density distribution
- energy density
- split
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 claims abstract description 12
- 230000003287 optical effect Effects 0.000 claims description 9
- 239000013078 crystal Substances 0.000 abstract description 11
- 239000010408 film Substances 0.000 abstract description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 8
- 239000010409 thin film Substances 0.000 abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 239000010703 silicon Substances 0.000 abstract description 7
- 238000002425 crystallisation Methods 0.000 abstract description 2
- 230000008025 crystallization Effects 0.000 abstract description 2
- 230000002902 bimodal effect Effects 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H5/00—Feeding articles separated from piles; Feeding articles to machines
- B65H5/06—Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
- B65H5/062—Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers between rollers or balls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D43/00—Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
- B21D43/02—Advancing work in relation to the stroke of the die or tool
- B21D43/04—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
- B21D43/08—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by rollers
- B21D43/09—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by rollers by one or more pairs of rollers for feeding sheet or strip material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/20—Location in space
- B65H2511/22—Distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/20—Location in space
- B65H2511/22—Distance
- B65H2511/224—Nip between rollers, between belts or between rollers and belts
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Advancing Webs (AREA)
- Recrystallisation Techniques (AREA)
- Delivering By Means Of Belts And Rollers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、例えば絶縁物上にシリコン結晶薄膜を形成す
る所謂Sol技術(Silicon on In5ul
atar)等に使用される熱処理方法及びその熱処理装
置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the so-called Sol technology (Silicon on Insulator), which forms a silicon crystal thin film on an insulator, for example.
The present invention relates to a heat treatment method and a heat treatment apparatus used for the heat treatment.
背景技術とその問題点
近時、半導体装置の製造に応用される半導体技術として
SOI技術の開発が進められている。この絶縁物上の結
晶成長法として、絶縁膜(又は基板)上に多結晶シリコ
ン薄膜を形成し、これを加熱溶融して再結晶化する方法
があり、その再結晶化の際の熱処理として例えばレーザ
ビームが用いられる。BACKGROUND TECHNOLOGY AND PROBLEMS Recently, SOI technology has been developed as a semiconductor technology applied to the manufacture of semiconductor devices. As a crystal growth method on this insulator, there is a method of forming a polycrystalline silicon thin film on an insulating film (or substrate) and recrystallizing it by heating and melting it. A laser beam is used.
ところで、例えば島状にパターニングした多結晶シリコ
ン薄膜をArレーザビームによって再結晶化する場合、
通常のガウス型エネルギー密度分布のレーザビームでも
パターン形成によっては良好な結晶(又は単結晶)が得
られるが、より広い面積で再現性よく結晶薄膜を得るに
は、島状の多結晶シリコン薄膜に照射されるレーザビー
ムとして均一エネルギー密度分布の線状レーザビームが
良いと考えられる。即ち、均一エネルギー密度分布の線
状レーザビームを用いれば、固液相界面がビーム走査方
向と垂直になってレーザビーム走査に伴って進むために
、良い再結晶膜が得られる。By the way, for example, when recrystallizing a polycrystalline silicon thin film patterned into an island shape using an Ar laser beam,
A good crystal (or single crystal) can be obtained by pattern formation using a normal laser beam with a Gaussian energy density distribution, but in order to obtain a crystal thin film over a wider area with good reproducibility, an island-shaped polycrystalline silicon thin film is required. It is considered that a linear laser beam with a uniform energy density distribution is preferable as the laser beam to be irradiated. That is, if a linear laser beam with a uniform energy density distribution is used, a good recrystallized film can be obtained because the solid-liquid phase interface is perpendicular to the beam scanning direction and advances with the laser beam scanning.
線状レーザビームを得る方法としては楕円レンズを使用
する方法、半円筒レンズを2個使用する方法等があるが
、これらはレーザビームの長手方向でみたエネルギー分
布がガウス分布となっている。Methods for obtaining a linear laser beam include a method using an elliptical lens and a method using two semi-cylindrical lenses, but in these methods, the energy distribution in the longitudinal direction of the laser beam is a Gaussian distribution.
又、この再結晶化に際して、双峰型エネルギー密度分布
のレーザビームを使用する場合にも結晶性の良いシリコ
ン結晶薄膜が得られる。Furthermore, a silicon crystal thin film with good crystallinity can be obtained even when a laser beam with a bimodal energy density distribution is used during this recrystallization.
発明の目的
本発明は、上述の点に鑑み、簡単な光学系により均一エ
ネルギー密度分布の線状尋ネルギービーム又は双峰型エ
ネルギー密度分布のエネルギービーム等を得て被処理体
を良好に熱処理できるようにした熱処理方法及びその熱
処理装置を提供するものである。Purpose of the Invention In view of the above-mentioned points, the present invention provides a method for obtaining a linear energy beam with a uniform energy density distribution or an energy beam with a bimodal energy density distribution using a simple optical system to successfully heat-treat an object to be processed. The present invention provides a heat treatment method and a heat treatment apparatus for the same.
発明の概要
本発明は、ガウス型エネルギー密度分布を有するエネル
ギービームを夫々長軸方向が互いに直交する分割半円筒
レンズと半円筒レンズによって成・r 形したエネルギ
ービームを用いて被処理体を熱処理する熱処理方法であ
る。Summary of the Invention The present invention heat-treats an object by using an energy beam having a Gaussian energy density distribution formed by a split semi-cylindrical lens and a semi-cylindrical lens whose major axes are orthogonal to each other. This is a heat treatment method.
又、本発明は、ガウス型エネルギー密度分布を有するエ
ネルギービーム発生手段と、夫々の長軸方向が互いに直
交する分割半円筒レンズ及び半円筒レンズを含む光学系
とを有し、エネルギービームをこの光学系によって成形
して被処理体に照射するようにして成る熱処理装置であ
る。Further, the present invention includes an energy beam generating means having a Gaussian energy density distribution, and an optical system including a split semi-cylindrical lens and a semi-cylindrical lens whose long axis directions are orthogonal to each other, and the energy beam is generated by the optical system. This is a heat treatment apparatus that is formed by a system and irradiates the object to be treated.
この発明では、簡単な光学系により均一エネルギー密度
分布の線状エネルギービーム又は双峰型エネルギー密度
分布のエネルギービーム等が得られ、これらのエネルギ
ービームによる良好な熱処理が可能となる。従って例え
ばSOI技術での熱処理に適用した場合、良好な結晶成
長が行える。In this invention, a linear energy beam with a uniform energy density distribution or an energy beam with a bimodal energy density distribution can be obtained using a simple optical system, and it is possible to perform good heat treatment using these energy beams. Therefore, when applied to heat treatment in SOI technology, for example, good crystal growth can be achieved.
実施例 以下、図面を参照して本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail with reference to the drawings.
本発明においては、第1図及び第3図に示すように、ガ
ウス型エネルギー密度分布を有するエネルギービーム例
えばArレーザビームを発生させるレーザビーム発生器
(1)と、これよりのレーザビJ−B oの径を拡大す
るビームエキスパンダ(2)、レーザビームBoを実質
的に2分割する分割半円筒レンズ(3)及び半円筒レン
ズ(4)を有してなる光学系(5)とから成る熱処理装
置(6)を設ける。この場合、分割半円筒レンズ(3)
と半円筒レンズ(4)はレンズの焦点距離を異にし、且
つ互いに長軸方向が直交するように配置する。ここで、
分割半円筒レンズ(3)とは、第6図に示すように、同
・−の曲率半径を有する2個の半円筒レンズ(7)及び
(8)を同一平面上で重ね合わせた場合における両レン
ズの共有部分よりなる合成レンズLを使用したものに相
当しく実線で囲まれた部分)、例えば第7図Aに示すよ
うに、1枚の半円筒レンズの中心部を幅dだけ削除して
1対のレンズ片L1.L2を設け、このレンズ片L1と
F2を第7図Bに示すように透明接着剤等で合体するこ
とにより作ることができる。この合成レンズLに対して
レーザビームBoを照射すると、レンズ片L1に入射し
た平行レーザビームBoはFlに集光し、レンズ片L2
に入射した平行レーザビームBoはF2に集光し、2本
に分割したレーザビームを作ることができる。In the present invention, as shown in FIGS. 1 and 3, a laser beam generator (1) that generates an energy beam, such as an Ar laser beam, having a Gaussian energy density distribution, and a laser beam generator (1) that generates an energy beam having a Gaussian energy density distribution, A heat treatment comprising a beam expander (2) that expands the diameter of the laser beam Bo, a split semi-cylindrical lens (3) that substantially divides the laser beam Bo into two, and an optical system (5) having the semi-cylindrical lens (4). A device (6) is provided. In this case, the split semi-cylindrical lens (3)
and the semi-cylindrical lens (4) have different focal lengths and are arranged so that their long axes are perpendicular to each other. here,
As shown in Fig. 6, a split semi-cylindrical lens (3) refers to two semi-cylindrical lenses (7) and (8) having the same radius of curvature when they are superimposed on the same plane. For example, as shown in Fig. 7A, the central part of one semi-cylindrical lens is removed by a width d. A pair of lens pieces L1. It can be made by providing lens pieces L2 and combining the lens pieces L1 and F2 with a transparent adhesive or the like as shown in FIG. 7B. When this composite lens L is irradiated with a laser beam Bo, the parallel laser beam Bo incident on lens piece L1 is focused on Fl, and lens piece L2
The parallel laser beam Bo incident on F2 can be focused on F2 to create two divided laser beams.
而して、上述の熱処理装置(6)において、第1図及び
第3図に示すようにビームエキスパンダ(2)からの平
行レーザビームBoが分割半円筒レンズ(3)に入射さ
れると、実線図示の如く平行レーザビームBoは焦点面
faの2ケ所F1及びF2に互いに距離りだけ離れて集
光される。又、レーザビームBoが半円筒レンズ(4)
に入射されると点線図示の如くこのレーザビームは焦点
面fbで集光されることになる。In the heat treatment apparatus (6) described above, when the parallel laser beam Bo from the beam expander (2) is incident on the split semi-cylindrical lens (3) as shown in FIGS. 1 and 3, As shown by the solid line, the parallel laser beam Bo is focused at two locations F1 and F2 on the focal plane fa, separated by a distance from each other. Also, the laser beam Bo is formed by a semi-cylindrical lens (4)
When the laser beam is incident on the focal plane fb, the laser beam is focused on the focal plane fb as shown by the dotted line.
従って、レーザビームBoは第1図の各位@、 a 。Therefore, the laser beam Bo is directed to everyone @, a in FIG.
b、c、d、a、f及びgにおいて、夫々第2図A、B
、C,D、E、F及びGにポず如きビームスポット形状
を有するレーザビームBQI、 BO2゜BO31BO
4,Bo5+ Bo6及びl3ovに変化する。この結
果、焦点面fbにおいてはガウス分布をもったレーザビ
ームが中央で分割され折り返しになって重なった状態と
なって、はぼ均一なエネルギー密度分布(I)(第4図
参照)を有する第2図りの線状レーザビームBO4が得
られる。又、焦点面faにおいてはガウス型エネルギー
密度分布(II)(第5図参照)を有した2個の線状レ
ーザビームBo6が得られる。一方、焦点面faとfb
O間においては楕円ビームを切断して向合わせた形のビ
ームスポット形状、即ち双峰型エネルギー密度分布をも
つレーザビームBosが得られる。なお、均一エネルギ
ー密度分布の線状レーザビームBO4の長さは分割半円
筒レンズ(3)の、互いの光軸のずれ幅即ち第6図の幅
dと、分割半円筒レンズ(3)及び半従って、目的に応
じて位置a ” g間の任意の位置を選ぶことにより、
種々の成形されたレーザビームが得られる。b, c, d, a, f and g, Fig. 2 A, B, respectively.
, C, D, E, F and G laser beam BQI with a beam spot shape like a dot, BO2゜BO31BO
4, Bo5+ Changes to Bo6 and l3ov. As a result, at the focal plane fb, the laser beam with a Gaussian distribution is split at the center, folded back, and overlapped, resulting in a laser beam with a nearly uniform energy density distribution (I) (see Figure 4). Two linear laser beams BO4 are obtained. Furthermore, two linear laser beams Bo6 having a Gaussian energy density distribution (II) (see FIG. 5) are obtained at the focal plane fa. On the other hand, focal planes fa and fb
A laser beam Bos having a beam spot shape in which the elliptical beam is cut and faces each other, that is, a bimodal energy density distribution is obtained between the two laser beams. The length of the linear laser beam BO4 with uniform energy density distribution is determined by the deviation width of the optical axes of the split semi-cylindrical lens (3), that is, the width d in FIG. 6, and the split semi-cylindrical lens (3) and the half Therefore, by selecting an arbitrary position between positions a'' and g according to the purpose,
Various shaped laser beams are obtained.
本例では、かかる成形されたレーザビーム例えば均一エ
ネルギー密度分布を有する線状レーザビームBO4を第
8図及び第9図に示すように、例えばガラスまたはシリ
コン結晶の基板(11)上にS 402尺(12)を介
して被着した島状にバターニングされた多結晶シリコン
膜(13)上に照射し、矢面1 印方向(14)に走査
してこの多結晶シリコン膜(13)を溶融し、単結晶化
する。In this example, such a shaped laser beam, for example, a linear laser beam BO4 having a uniform energy density distribution, is applied to a substrate (11) of glass or silicon crystal, for example, on a substrate (11) of S402 size, as shown in FIGS. 8 and 9. (12) onto the polycrystalline silicon film (13) which has been patterned into an island shape and is scanned in the arrow direction (14) to melt this polycrystalline silicon film (13). , becomes a single crystal.
この様に均一エネルギー密度分布の線状レーザビームB
O4を用いるときは、広い面積の結晶化が再現性よく得
られる。In this way, a linear laser beam B with a uniform energy density distribution
When using O4, crystallization over a wide area can be obtained with good reproducibility.
又、双峰型エネルギー密度分布のレーザビームを多結晶
シリコン膜に照射して再結晶化した場合も結晶性のよい
シリコン結晶膜が得られる。Furthermore, a silicon crystal film with good crystallinity can also be obtained when a polycrystalline silicon film is recrystallized by irradiating it with a laser beam having a bimodal energy density distribution.
面、上剥ではSol技術における半導体薄膜の再結晶化
時の熱処理に適用したが、これに限らず他の熱処理にも
適用できる。Although the present invention has been applied to heat treatment during recrystallization of a semiconductor thin film in the Sol technology for surface and top peeling, the present invention is not limited to this and can be applied to other heat treatments.
発明の効果
本発明によれば、夫々のに軸方向が互いに直交する様に
配した分割半円筒レンズ及び半円筒レンズを含む光学系
を用いてガウス型エネルギー密度分布を有するエネルギ
ービームを成形することにより、均一エネルギー密度分
布の線状エネルギービーム、双峰型エネルギー密度分布
のエネルギービーム等が簡単に得られる。そして目的に
応じてこの成形されたエネルギービームを選択して用い
被処理体を熱処理することにより良好な熱処理ができる
。Effects of the Invention According to the present invention, an energy beam having a Gaussian energy density distribution can be shaped using an optical system including split semi-cylindrical lenses and semi-cylindrical lenses arranged such that their axial directions are orthogonal to each other. Accordingly, a linear energy beam with a uniform energy density distribution, an energy beam with a bimodal energy density distribution, etc. can be easily obtained. By selecting this shaped energy beam according to the purpose and heat-treating the object to be processed, good heat treatment can be achieved.
従って例えばSOI技術においてその多結晶シリコン膜
の再結晶化の際の熱処理等に適用して好適ならしめる。Therefore, it is suitable for application to, for example, heat treatment during recrystallization of polycrystalline silicon films in SOI technology.
第1図は本発明の熱処理装置の一例を示す構成図、第2
図は第1図の各位置に対応したビームスポット形状を示
す断面図、第3図は第1図の要部を示す路線的斜視図、
第4図及び第5図は夫々エネルギー密度の分布図、第6
図及び第7図は分割半円筒レンズの説明に供する図、第
8図及び第9図は本発明の熱処理方法をシリコンの再結
晶化に適用した場合の平面図及びその断面図である。
(1)はレーザビーム発生器、(2)はビームエキスパ
ンダ、(3)は分割半円筒レンズ、(4)は半円筒レン
ズである。
第6図
7
第7図
A B
第8図
3
第9図
3FIG. 1 is a configuration diagram showing an example of the heat treatment apparatus of the present invention, and FIG.
The figure is a sectional view showing the beam spot shape corresponding to each position in Fig. 1, Fig. 3 is a line perspective view showing the main part of Fig. 1,
Figures 4 and 5 are energy density distribution diagrams, respectively.
7 and 7 are diagrams for explaining a split semi-cylindrical lens, and FIGS. 8 and 9 are a plan view and a sectional view thereof when the heat treatment method of the present invention is applied to recrystallization of silicon. (1) is a laser beam generator, (2) is a beam expander, (3) is a segmented semi-cylindrical lens, and (4) is a semi-cylindrical lens. Fig. 6 7 Fig. 7 A B Fig. 8 3 Fig. 9 3
Claims (1)
ームを夫々の長軸方向が互いに直交する分割半円筒レン
ズと半円筒レンズによって成形したエネルギービームを
用いて被処理体を熱処理することを特徴とする熱処理方
法。 2、ガウス型エネルギー密度分布を有するエネルギービ
ームの発生手段と、夫々の長軸方向が互いに直交する分
割半円筒レンズ及び半円筒レンズを含む光学系とを有し
、上記エネルギービームを上記光学系によって成形して
被処理体に照射するようにして成る熱処理装置。[Claims] 1. Heat-treating the object to be processed using an energy beam having a Gaussian energy density distribution formed by a split semi-cylindrical lens and a semi-cylindrical lens whose long axis directions are perpendicular to each other. A heat treatment method characterized by: 2. A means for generating an energy beam having a Gaussian energy density distribution, and an optical system including a split semi-cylindrical lens and a semi-cylindrical lens whose long axis directions are orthogonal to each other, and the energy beam is generated by the optical system. A heat treatment device that irradiates a molded object to be treated.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59114306A JPS60257511A (en) | 1984-06-04 | 1984-06-04 | Heat treatment and apparatus therefor |
DE19853526846 DE3526846A1 (en) | 1984-06-04 | 1985-07-26 | ROLLER FEEDING DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59114306A JPS60257511A (en) | 1984-06-04 | 1984-06-04 | Heat treatment and apparatus therefor |
JP1984114306U JPS6132150U (en) | 1984-07-27 | 1984-07-27 | Roll feed device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60257511A true JPS60257511A (en) | 1985-12-19 |
Family
ID=26453083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59114306A Pending JPS60257511A (en) | 1984-06-04 | 1984-06-04 | Heat treatment and apparatus therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS60257511A (en) |
DE (1) | DE3526846A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01246826A (en) * | 1988-03-28 | 1989-10-02 | Tokyo Electron Ltd | Beam annealing |
JPH0242717A (en) * | 1988-08-03 | 1990-02-13 | Hitachi Ltd | Method of applying energy beam |
JPH0963984A (en) * | 1995-08-18 | 1997-03-07 | Semiconductor Energy Lab Co Ltd | Laser annealing method and laser annealing device |
US5968383A (en) * | 1992-06-26 | 1999-10-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus having beam expander |
US6149988A (en) * | 1986-09-26 | 2000-11-21 | Semiconductor Energy Laboratory Co., Ltd. | Method and system of laser processing |
US6159777A (en) * | 1993-02-04 | 2000-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a TFT semiconductor device |
US6261856B1 (en) | 1987-09-16 | 2001-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Method and system of laser processing |
US6500704B1 (en) | 1995-07-03 | 2002-12-31 | Sanyo Electric Co., Ltd | Semiconductor device, display device and method of fabricating the same |
US6558991B2 (en) | 1996-02-13 | 2003-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and laser irradiation method |
US6790714B2 (en) | 1995-07-03 | 2004-09-14 | Sanyo Electric Co., Ltd. | Semiconductor device, display device and method of fabricating the same |
US6919533B2 (en) | 1995-05-31 | 2005-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a display device including irradiating overlapping regions |
WO2009015945A1 (en) * | 2007-08-02 | 2009-02-05 | Robert Bosch Gmbh | Radar sensor for motor vehicles |
US7513949B2 (en) | 1995-07-19 | 2009-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Method and apparatus for producing semiconductor device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH677328A5 (en) * | 1988-10-26 | 1991-05-15 | Bruderer Ag |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2946588A (en) * | 1958-01-03 | 1960-07-26 | Albert F Pityo | Web feeding mechanism |
JPS5867831A (en) * | 1981-10-19 | 1983-04-22 | Sumitomo Metal Ind Ltd | Method for heating steel strip in direct firing type heating furnace |
JPS5867831U (en) * | 1981-10-29 | 1983-05-09 | 株式会社三共製作所 | Roll feed device |
-
1984
- 1984-06-04 JP JP59114306A patent/JPS60257511A/en active Pending
-
1985
- 1985-07-26 DE DE19853526846 patent/DE3526846A1/en active Granted
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6149988A (en) * | 1986-09-26 | 2000-11-21 | Semiconductor Energy Laboratory Co., Ltd. | Method and system of laser processing |
US6261856B1 (en) | 1987-09-16 | 2001-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Method and system of laser processing |
JPH01246826A (en) * | 1988-03-28 | 1989-10-02 | Tokyo Electron Ltd | Beam annealing |
JPH0242717A (en) * | 1988-08-03 | 1990-02-13 | Hitachi Ltd | Method of applying energy beam |
US7985635B2 (en) | 1992-06-26 | 2011-07-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser process |
US6002101A (en) * | 1992-06-26 | 1999-12-14 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device by using a homogenized rectangular laser beam |
US5968383A (en) * | 1992-06-26 | 1999-10-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus having beam expander |
US6440785B1 (en) | 1992-06-26 | 2002-08-27 | Semiconductor Energy Laboratory Co., Ltd | Method of manufacturing a semiconductor device utilizing a laser annealing process |
US6991975B1 (en) | 1992-06-26 | 2006-01-31 | Semiconductor Energy Laboratory Co., Ltd. | Laser process |
US6159777A (en) * | 1993-02-04 | 2000-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a TFT semiconductor device |
US7223938B2 (en) | 1995-05-31 | 2007-05-29 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a display device including irradiating overlapping regions |
US8835801B2 (en) | 1995-05-31 | 2014-09-16 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing method |
US6919533B2 (en) | 1995-05-31 | 2005-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a display device including irradiating overlapping regions |
US6982396B2 (en) * | 1995-05-31 | 2006-01-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a display device including irradiating overlapping regions |
US7084052B2 (en) | 1995-07-03 | 2006-08-01 | Sanyo Electric Co., Ltd. | Semiconductor device, display device and method of fabricating the same |
US6790714B2 (en) | 1995-07-03 | 2004-09-14 | Sanyo Electric Co., Ltd. | Semiconductor device, display device and method of fabricating the same |
US6500704B1 (en) | 1995-07-03 | 2002-12-31 | Sanyo Electric Co., Ltd | Semiconductor device, display device and method of fabricating the same |
US7513949B2 (en) | 1995-07-19 | 2009-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Method and apparatus for producing semiconductor device |
JPH0963984A (en) * | 1995-08-18 | 1997-03-07 | Semiconductor Energy Lab Co Ltd | Laser annealing method and laser annealing device |
US6558991B2 (en) | 1996-02-13 | 2003-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and laser irradiation method |
WO2009015945A1 (en) * | 2007-08-02 | 2009-02-05 | Robert Bosch Gmbh | Radar sensor for motor vehicles |
US8344939B2 (en) | 2007-08-02 | 2013-01-01 | Robert Bosch Gmbh | Radar sensor for motor vehicles |
Also Published As
Publication number | Publication date |
---|---|
DE3526846A1 (en) | 1986-02-06 |
DE3526846C2 (en) | 1989-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60257511A (en) | Heat treatment and apparatus therefor | |
US6437284B1 (en) | Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same | |
JPH03286518A (en) | Manufacture of thin semiconductor crystal layer | |
US4719183A (en) | Forming single crystal silicon on insulator by irradiating a laser beam having dual peak energy distribution onto polysilicon on a dielectric substrate having steps | |
JPH01173707A (en) | Laser annealing method | |
JPS5925215A (en) | Manufacture of semiconductor device | |
JPH1110375A (en) | Cutting method | |
JPH1034363A (en) | Brittle material splitting method by band shaped heat source | |
JPH04142030A (en) | Manufacture of semiconductor film | |
JPS5984423A (en) | Energy radiation equipment | |
JPS61266387A (en) | Method for recrystallizing semiconductor thin film with laser | |
JPH03289128A (en) | Manufacture of semiconductor thin film crystal layer | |
JPS5856411A (en) | Laser annealing method | |
JPS58103140A (en) | Laser annealing | |
JPH01261820A (en) | Laser irradiation apparatus | |
JPS6233416A (en) | Device for manufacturing optical fiber single crystal | |
JPH01200615A (en) | Method of forming insulator with thin single crystal semiconductor material layer | |
JPS62216216A (en) | Crescent beam homogenizer | |
JPS6185816A (en) | Manufacture of single crystal thin film | |
JPS5952831A (en) | Beam annealing method | |
JPS5974620A (en) | Manufacture of semiconductor element | |
JPS62243314A (en) | Manufacture of semiconductor device | |
JPS59114815A (en) | Manufacture of semiconductor crystal film | |
JPS59175116A (en) | Manufacture of single crystal semiconductor thin film | |
JPS6124226A (en) | Laser annealing device |