JPS62216318A - Laser annealing apparatus - Google Patents

Laser annealing apparatus

Info

Publication number
JPS62216318A
JPS62216318A JP6028786A JP6028786A JPS62216318A JP S62216318 A JPS62216318 A JP S62216318A JP 6028786 A JP6028786 A JP 6028786A JP 6028786 A JP6028786 A JP 6028786A JP S62216318 A JPS62216318 A JP S62216318A
Authority
JP
Japan
Prior art keywords
laser
wafer
optical axis
oscillation
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6028786A
Other languages
Japanese (ja)
Inventor
Nobuo Sasaki
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6028786A priority Critical patent/JPS62216318A/en
Publication of JPS62216318A publication Critical patent/JPS62216318A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably and uniformly perform a laser annealing by aligning the optical axis of an oscillation tube of a gas laser unit in Y direction perpendicular to X direction reciprocating at high speed to avoid the variation in the output of the laser unit due to an impact generated by the reciprocation of X, Y stages. CONSTITUTION:Since an impact becomes perpendicular to an optical axis of a laser unit 10 when the optical axis of the laser unit 10 is directed to Y direction, it is avoided to vary the position of an oscillation mirror. In other words, the mirror is held by a spring and a micrometer mechanism to be movable in X direction, but sufficiently rigidly supported by bearings in the Y direction, thereby ignoring the variation in the position. Since a distance between the mirrors as to the laser oscillation is not varied even if the position varies, a power value does not alter.

Description

【発明の詳細な説明】 〔概 要〕 ステージの高速運動方向に対して、レーザ装置本体の光
軸方向を垂直として、衝撃によるレーザ装置への悪影響
を回避したレーザアニール装置。
[Detailed Description of the Invention] [Summary] A laser annealing device in which the optical axis direction of the laser device main body is perpendicular to the direction of high-speed movement of the stage to avoid adverse effects on the laser device due to impact.

〔産業上の利用分野〕[Industrial application field]

本発明は、レーザアニールによりウェーハ上の多結晶シ
リコンを単結晶にする装置に関する。
The present invention relates to an apparatus for converting polycrystalline silicon on a wafer into a single crystal by laser annealing.

〔従来の技術〕[Conventional technology]

レーザ再結晶法は、S OI  (Silicon O
n In5ul−ator)構造のMOS F[!Tを
製造するのに有力な方法である。SOI構造のMOSF
ETを利用すると5OI−ICや3次元ICのような高
速かつ高集積度のIC(集積回路)を作ることができる
ので、レーザ再結晶法には近年多くの研究開発が進めら
れている。
The laser recrystallization method uses SOI (Silicon O
n In5ul-ator) structure MOS F[! This is an effective method for producing T. MOSF with SOI structure
Since ET can be used to produce high-speed, highly integrated ICs (integrated circuits) such as 5OI-ICs and three-dimensional ICs, much research and development has been carried out on laser recrystallization methods in recent years.

レーザ再結晶装置は概略第1図に示す構成を有する。1
0はガスレーザ装置、12,14.16はミラー、18
はフォーカシングレンズ、20はシリコンウェー八で加
熱装置(ホントチャック)22により保持される。26
はXステージ(X方向移動機構)で、この上にYステー
ジ(Y方向移動機構)24が取付けられ、加熱装置22
はYステージに乗る。
The laser recrystallization apparatus has a configuration schematically shown in FIG. 1
0 is a gas laser device, 12, 14.16 is a mirror, 18
20 is a focusing lens, and 20 is a silicon wafer which is held by a heating device (actual chuck) 22. 26
is an X stage (X direction moving mechanism), on which a Y stage (Y direction moving mechanism) 24 is attached, and a heating device 22
rides the Y stage.

ウェーハ20は第3図(a)に示すように例えば400
μmの厚さのシリコン基板S I %その表面を熱酸化
して形成させた1、0μm程度の厚さの二酸化シリコン
SiO2、その上にCVD法により形成した多結晶シリ
コンpoli−3tからなる。レーザ装置10はアルゴ
ンガスレーザで、第3図(blに示すように発振管10
aと、その両端の発振用ミラー10b、10cを備える
The wafer 20 is, for example, 400 wafers as shown in FIG. 3(a).
It consists of silicon dioxide SiO2 with a thickness of about 1.0 μm, which is formed by thermally oxidizing the surface of the silicon substrate S I % with a thickness of μm, and polycrystalline silicon poli-3t formed thereon by the CVD method. The laser device 10 is an argon gas laser, and as shown in FIG.
a, and oscillation mirrors 10b and 10c at both ends thereof.

レーザ装置10より出たレーザ光30は径2fl程度で
、ミラー12,14.16により図示の如く導かれ、レ
ンズ18で径20〜100μmに絞られ、ウェーハ20
に投射される。ウェーハにレーザ光が投射されると、加
熱装置22により既に500℃程度に加熱されているウ
ェーハの最上層の多結晶シリコンは直ちに溶融し、X、
Yステージ26.24によるX、 Y方向移動で多結晶
シリコン層は第3図(C1に示すように全面的に溶融、
凝固が行なわれ、これにより単結晶化される。この第3
図(C1で1.2.・・・・・・は1回目、2回目、・
・・・・・のX方向移動で溶融、凝固される領域を示し
く但しこれは説明上のもの)、これらはレーザ光の径に
は一゛等しい幅を持つ細幅帯状領域である。全面塗りつ
ぶし的な処理であるからこれらの帯状領域は若干型なら
せである。矢印は移動方向を示す。
The laser beam 30 emitted from the laser device 10 has a diameter of about 2 fl, is guided by the mirrors 12, 14, and 16 as shown in the figure, is focused by the lens 18 to a diameter of 20 to 100 μm, and is directed onto the wafer 20.
is projected on. When the laser beam is projected onto the wafer, the polycrystalline silicon in the top layer of the wafer, which has already been heated to about 500°C by the heating device 22, immediately melts, causing
As the Y stage 26 and 24 move in the X and Y directions, the polycrystalline silicon layer melts completely as shown in Figure 3 (C1).
Solidification takes place, resulting in single crystallization. This third
Figure (1.2 in C1... is the first time, second time, etc.
. . . shows the regions melted and solidified by movement in the X direction (although this is for illustration purposes only), these are narrow band-shaped regions having a width equal to the diameter of the laser beam. Since this is a full-surface filling process, these band-shaped areas are slightly irregular in shape. Arrows indicate the direction of movement.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

レーザアニールでは20μmという様な細いレーザ光を
照射しく照射位置は固定)、ウェーハをX方向に移動し
、次に微小長Y方向に移動したのち同じX方向ではある
が逆方向に移動し、か−るジグザグ状移動でウェーハを
全面的に熔融、凝固して行く。上記Y方向微小長は熔融
凝固帯が重なるようにするので本例では20μm以下で
あり、これでウェーハ全面を熔融、凝固するには移動速
度を高速にしないと処理に長時間を要することになる。
In laser annealing, the wafer is irradiated with a narrow laser beam of 20 μm (the irradiation position is fixed), then the wafer is moved in the X direction, then moved in the Y direction by a minute length, and then moved in the same X direction but in the opposite direction. The wafer is melted and solidified over its entire surface by moving in a zigzag pattern. The above-mentioned micro length in the Y direction is 20 μm or less in this example because the melting and solidifying zones are overlapped, and in order to melt and solidify the entire wafer, the processing will require a long time unless the moving speed is high. .

そこでスループット向上のため走査速度は30Qw/s
程度の値が採用されており、往復運動であるので加速度
は1〜Ion/s2  になる。ところで、ウェーハ自
体は軽量であり、高速、高加速度に何ら支障はないが、
加熱装置22が重量物で、高加速に難がある。加熱装置
22は第3図(d) (elに示すようにウェーハを真
空吸着するための吸排気機構、加熱するためのヒーター
、X、Yステージを加熱しないための水冷機構からなり
、6“ φウェーハ用で18Kg以上になる。このよう
な重量物が高速運動を行なうと、例えば加速度を5m/
s2としてもX、Yステージの加速度運動中の衝撃は2
0Kg・5m/52=10 ONとなり、レーザ装置の
ミラーや光学系の位置ずれを生じたり、振動を与えたり
して、精密な位置決めや、長期間の安定したレーザ照射
を困難にする。
Therefore, to improve throughput, the scanning speed was set to 30Qw/s.
Since it is a reciprocating motion, the acceleration is 1 to Ion/s2. By the way, the wafer itself is lightweight and has no problem with high speed and high acceleration.
The heating device 22 is heavy and has difficulty in high acceleration. As shown in FIG. 3(d) (el), the heating device 22 consists of an intake/exhaust mechanism for vacuum suctioning the wafer, a heater for heating, and a water cooling mechanism for not heating the X and Y stages, and has a diameter of 6" φ. For wafers, it weighs more than 18 kg.When such a heavy object moves at high speed, the acceleration is, for example, 5 m/
As s2, the impact during the accelerated movement of the X and Y stages is 2.
0Kg・5m/52=10 It becomes ON, causing misalignment or vibration of the mirror and optical system of the laser device, making precise positioning and long-term stable laser irradiation difficult.

レーザ装置10は第3図(b)に示したように発振チュ
ーブの両端に発振用のミラー10b、10cが置かれ、
ミラーはバネで抑え、反対側からマイクロメータで押し
て所望位置にセントする構成になっているので、光軸方
向に可動である。そこで上記衝撃がレーザ装置の光軸方
向に加わるとミラー位置が変動し、パワー値が変る。
As shown in FIG. 3(b), the laser device 10 includes mirrors 10b and 10c for oscillation placed at both ends of an oscillation tube.
The mirror is held down by a spring and pushed from the opposite side with a micrometer to center it at a desired position, so it can be moved in the direction of the optical axis. Therefore, when the above-mentioned impact is applied in the optical axis direction of the laser device, the mirror position changes and the power value changes.

往復動型のレーザ走査をする限り衝撃発生は避けられな
いが、衝撃によるレーザ装置の出力低下などがあって均
一なレーザアニールが出来ないのは問題である。そこで
本発明はこの衝撃を可及的に無害化しようとするもので
ある。
As long as reciprocating laser scanning is used, the occurrence of impact is unavoidable, but the problem is that the impact reduces the output of the laser device, making uniform laser annealing impossible. Therefore, the present invention aims to make this impact as harmless as possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ガスレーザ装置(10)と、X、Yステージ
(26,24)にのせられウェーハ(20)を保持、加
熱する装置(22)と、ガスレーザ装置からのレーザ光
をウェーハに投射する光学系(12,14゜16、18
)を備え、レーザ光を投射しながらかつX。
The present invention includes a gas laser device (10), a device (22) placed on an X, Y stage (26, 24) for holding and heating a wafer (20), and an optical system for projecting laser light from the gas laser device onto the wafer. System (12,14°16,18
), while projecting a laser beam and X.

YステージによりウェーハをX方向に高速往復動させな
がらY方向に進めて、ウェーハ表面の多結晶シリコン層
を単結晶化する半導体製造装置において、ガスレーザ装
置の発振管の光軸を、前記高速往復動するX方向とは直
交するY方向に整列させたことを特徴とするものである
In a semiconductor manufacturing apparatus in which a Y stage reciprocates a wafer at high speed in the X direction while advancing it in the Y direction to monocrystallize a polycrystalline silicon layer on the wafer surface, the optical axis of the oscillation tube of a gas laser device is It is characterized by being aligned in the Y direction, which is orthogonal to the X direction.

〔作用〕[Effect]

レーザアニールでは、レーザビーム位置は固定とし、X
、 YステージによりウェーハをX方向に高速往復動、
Y方向に微小長ステップさせ、このためX方向に強い衝
撃力が発生する。そこで第2図に示すように、レーザ装
置10の光軸(発振チューブの光軸)をY方向にすると
、衝撃は光軸と直交方向になるので前記発振用ミラーが
位置変動を生じることは回避される。即ち発振用ミラー
はバネ、マイクロメータ機構により保持されてX方向に
は可動であるが、Y方向には軸受等により充分強固に支
持され、位置変動は無視できる。またたとえ位置変動が
あったとしても、レーザ発振に関与するミラー間距離に
変化はない(ミラー間距離はこの場合Y方向のそれ、位
置変動はX方向のそれで、互いに無関係)から、パワー
値変動などは生じない。
In laser annealing, the laser beam position is fixed and
, High-speed reciprocation of the wafer in the X direction by the Y stage,
A small step is made in the Y direction, which generates a strong impact force in the X direction. Therefore, as shown in FIG. 2, if the optical axis of the laser device 10 (the optical axis of the oscillation tube) is set in the Y direction, the impact will be in a direction perpendicular to the optical axis, thereby avoiding positional fluctuations of the oscillation mirror. be done. That is, the oscillation mirror is held by a spring and a micrometer mechanism and is movable in the X direction, but is supported sufficiently firmly in the Y direction by bearings, etc., so that positional fluctuations can be ignored. Furthermore, even if there is a positional change, there is no change in the distance between the mirrors involved in laser oscillation (in this case, the distance between the mirrors is that in the Y direction, and the positional change is in the X direction, so they are unrelated to each other), so power value fluctuations etc. will not occur.

〔実施例〕〔Example〕

本発明では第1図のレーザアニール装置において、レー
ザ装置10の光軸を横方向とすれば、Yステージの移動
方向を該レーザ装置の光軸方向と一致する横方向とし、
Xステージの移動方向はこれと直交する紙面垂直方向と
する。これにより、発振用ミラーの位置変動が回避され
る。
In the present invention, in the laser annealing apparatus shown in FIG. 1, if the optical axis of the laser device 10 is in the horizontal direction, the moving direction of the Y stage is in the horizontal direction that coincides with the optical axis direction of the laser device,
The direction of movement of the X stage is the direction perpendicular to the plane of the paper, which is perpendicular to this direction. This avoids positional fluctuations of the oscillation mirror.

高速往復動するX方向と直交する方向にはZ方向もある
から、第1図でレーザ装置10を縦方向に置く、即ち架
台2日に垂直に立てて設置することも考えられる。しか
しレーザアニール用のガスレーザ装置では発振管は全長
2mで2重管になっており、内管が真空(アルゴンガス
入り)、外管と内管の間が冷却用の水の通路になってい
て、プラズマを縮めるためのマグネットを含めた重量は
65Kgである。このようなものを垂直にすることは厄
介で、その例を見ない。せいぜい、スペース節減を目的
として斜め配置にした例がある程度である。
Since there is also a Z direction in the direction orthogonal to the X direction in which it reciprocates at high speed, it is conceivable to place the laser device 10 vertically in FIG. However, in a gas laser device for laser annealing, the oscillation tube has a total length of 2 m and is a double tube, with the inner tube being a vacuum (filled with argon gas) and the space between the outer tube and the inner tube being a passage for cooling water. , the weight including the magnet for shrinking the plasma is 65 kg. Making something like this vertical is tricky and I don't see any examples of that. At most, there are some examples of diagonal arrangement for the purpose of saving space.

レーザ装置10はその脚部10d、10eを、架台28
の止め金具に嵌合させて固定される。
The laser device 10 has legs 10d and 10e mounted on a pedestal 28.
It is fixed by fitting it into the stopper.

レーザアニールにおけるX、Y走査のうちの一方は回転
又は振動ミラーなどによるレーザ光それ自身の移動で行
なうことも考えられ、特に高速往復動をレーザ光の偏向
で行なえば上記衝撃の発生はないが、レーザ光の移動は
厄介な問題を含んでいる。即ち第1図のウェーハへのレ
ーザ光投射部分は第4図の如くなっており、ミラー16
はアルゴンレーザ光のみを反射するグイクロイックミラ
ーであり、これには光源、ハーフミラ−の系で普通光が
投射され、レンズ18を通してウェーハ20に投射され
た該普通光の光点を三眼鏡筒の観察窓から眺め、レンズ
18を上下して該光点の径を所望径にする。これは、ア
ルゴンレーザ光のウェーハ上の光点の調整でもある。こ
のような系が付属しており、所望径のレーザ光スポット
で僅かな重なりを持たせたX、Y走査を行ない、レーザ
アニールを行うので、レーザ光の偏向は行ないにくい。
One of the X and Y scans in laser annealing may be performed by moving the laser beam itself using a rotating or vibrating mirror, and if the high-speed reciprocating movement is performed by deflecting the laser beam, the above-mentioned impact will not occur. , the movement of laser light involves complications. That is, the portion of the laser beam projected onto the wafer in FIG. 1 is as shown in FIG.
is a gicchroic mirror that reflects only the argon laser beam, on which ordinary light is projected by a system of a light source and a half mirror, and the light point of the ordinary light projected onto the wafer 20 through the lens 18 is transmitted to the trinocular tube. View through the observation window and move the lens 18 up and down to make the diameter of the light spot a desired diameter. This also adjusts the light spot of the argon laser light on the wafer. Since such a system is attached and laser annealing is performed by performing X and Y scanning with a laser beam spot of a desired diameter with slight overlap, it is difficult to deflect the laser beam.

なおミラー16でレーザ光を偏向すると、レンズ18に
対するレーザ光の入射角が変り、レンズを大型化しなけ
ればならない、焦点位置がずれる等の問題がある。この
点についてはミラー16の動きに応じて焦点位置が常に
ウェーハ面上にあるようにレンズ18を動かせばよいが
、ミラー16はウェーハ20上のレーザ光スポット位置
の関節のための回転機構がついており、上記動作は実行
しにくい。
Note that when the laser beam is deflected by the mirror 16, the angle of incidence of the laser beam on the lens 18 changes, causing problems such as the need to increase the size of the lens and shift of the focal position. Regarding this point, the lens 18 can be moved according to the movement of the mirror 16 so that the focal position is always on the wafer surface, but the mirror 16 is equipped with a rotation mechanism for articulating the laser beam spot position on the wafer 20. Therefore, the above operation is difficult to perform.

レーザアニールはウェーハの全面に行なうのではなく、
スクライブ線、各チップのボンディングバンド部などは
行なわない。Y方向でレーザアニールしない部分に来る
とその部分はスキップして次に進み、処理時間の短縮を
図る。ICではバルクFETとSol PETを混在さ
せたものがあり、このようなICではシリコン基板の表
面絶縁膜に窓明けしてソース、ドレイン拡散、ゲート絶
縁膜及びゲート電極形成などを行なってバルクFETを
作り、上記表面絶縁膜上に多結晶シリコン形成、そのレ
ーザアニールによる単結晶化、該単結晶へのFET形成
を行なうので、レーザアニールを行なう部分は可成り制
限される。レーザアニールしない部分については、シャ
ッタによりレーザ光を遮断する。
Laser annealing is not performed on the entire surface of the wafer;
Scribing lines and bonding band portions of each chip are not performed. When a portion that is not to be laser annealed in the Y direction is reached, that portion is skipped and the process proceeds to the next step, thereby reducing processing time. Some ICs are a mixture of bulk FETs and Sol PETs, and in such ICs, a bulk FET is formed by opening a window in the surface insulating film of the silicon substrate, diffusing the source and drain, and forming a gate insulating film and gate electrode. Since polycrystalline silicon is formed on the surface insulating film, the single crystal is made into a single crystal by laser annealing, and an FET is formed on the single crystal, the area to be subjected to laser annealing is considerably limited. For portions that are not to be laser annealed, the laser light is blocked by a shutter.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によればX、Yステージによ
る往復動で発生する衝撃によるレーザ装置の出力変動を
回避し、安定した、均一なレーザアニールを行なうこと
ができ、甚だ有効である。
As explained above, according to the present invention, it is possible to avoid fluctuations in the output of the laser device due to the impact caused by the reciprocating motion of the X and Y stages, and to perform stable and uniform laser annealing, which is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザアニール装置の説明図、第2図は本発明
の原理説明図、 第3図および第4図は各部の詳細説明図である。 第1図で10はガスレーザ装置、22は加熱装置、20
はウェーハ、12,14,16.18は光学系である。
FIG. 1 is an explanatory diagram of a laser annealing apparatus, FIG. 2 is an explanatory diagram of the principle of the present invention, and FIGS. 3 and 4 are detailed explanatory diagrams of each part. In FIG. 1, 10 is a gas laser device, 22 is a heating device, 20
is a wafer, and 12, 14, 16.18 is an optical system.

Claims (1)

【特許請求の範囲】[Claims] ガスレーザ装置(10)と、X、Yステージ(26、2
4)にのせられウェーハ(20)を保持、加熱する装置
(22)と、ガスレーザ装置からのレーザ光をウェーハ
に投射する光学系(12、14、16、18)を備え、
レーザ光を投射しながらかつX、Yステージによりウェ
ーハをX方向に高速往復動させながらY方向に進めて、
ウェーハ表面の多結晶シリコン層を単結晶化するレーザ
アニール装置において、ガスレーザ装置の発振管の光軸
を、前記高速往復動するX方向とは直交するY方向に整
列させたことを特徴とするレーザアニール装置。
Gas laser device (10) and X, Y stage (26, 2
4) includes a device (22) for holding and heating the wafer (20) placed on the wafer, and an optical system (12, 14, 16, 18) for projecting laser light from the gas laser device onto the wafer;
While projecting a laser beam, the wafer is advanced in the Y direction while being reciprocated at high speed in the X direction using the X and Y stages.
A laser annealing device for single-crystallizing a polycrystalline silicon layer on a wafer surface, characterized in that the optical axis of the oscillation tube of the gas laser device is aligned in the Y direction that is orthogonal to the X direction in which the high speed reciprocation occurs. Annealing equipment.
JP6028786A 1986-03-18 1986-03-18 Laser annealing apparatus Pending JPS62216318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6028786A JPS62216318A (en) 1986-03-18 1986-03-18 Laser annealing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6028786A JPS62216318A (en) 1986-03-18 1986-03-18 Laser annealing apparatus

Publications (1)

Publication Number Publication Date
JPS62216318A true JPS62216318A (en) 1987-09-22

Family

ID=13137787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6028786A Pending JPS62216318A (en) 1986-03-18 1986-03-18 Laser annealing apparatus

Country Status (1)

Country Link
JP (1) JPS62216318A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146319A (en) * 1987-12-02 1989-06-08 Tokyo Electron Ltd Laser heat treatment device
US6520189B1 (en) 1986-09-09 2003-02-18 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
US6919533B2 (en) 1995-05-31 2005-07-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device including irradiating overlapping regions
JP2006156916A (en) * 2004-12-01 2006-06-15 Ultratech Inc Chuck for laser heat treatment having heat compensation heater module
JP2006156915A (en) * 2004-12-01 2006-06-15 Ultratech Inc Heating chuck for laser heat treatment
JP2007103961A (en) * 2001-11-16 2007-04-19 Semiconductor Energy Lab Co Ltd Laser irradiator and irradiation method, and process for fabricating semiconductor device
JP2013149924A (en) * 2012-01-23 2013-08-01 Japan Display Central Co Ltd Laser annealing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128024A (en) * 1981-01-30 1982-08-09 Fujitsu Ltd Single crystallization for non-single crystalline semiconductor layer
JPS6089915A (en) * 1983-10-21 1985-05-20 Sony Corp Preparation of semiconductor thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128024A (en) * 1981-01-30 1982-08-09 Fujitsu Ltd Single crystallization for non-single crystalline semiconductor layer
JPS6089915A (en) * 1983-10-21 1985-05-20 Sony Corp Preparation of semiconductor thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6520189B1 (en) 1986-09-09 2003-02-18 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
JPH01146319A (en) * 1987-12-02 1989-06-08 Tokyo Electron Ltd Laser heat treatment device
US6919533B2 (en) 1995-05-31 2005-07-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device including irradiating overlapping regions
US6982396B2 (en) * 1995-05-31 2006-01-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device including irradiating overlapping regions
US7223938B2 (en) 1995-05-31 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device including irradiating overlapping regions
US8835801B2 (en) 1995-05-31 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Laser processing method
JP2007103961A (en) * 2001-11-16 2007-04-19 Semiconductor Energy Lab Co Ltd Laser irradiator and irradiation method, and process for fabricating semiconductor device
JP2006156916A (en) * 2004-12-01 2006-06-15 Ultratech Inc Chuck for laser heat treatment having heat compensation heater module
JP2006156915A (en) * 2004-12-01 2006-06-15 Ultratech Inc Heating chuck for laser heat treatment
JP4651372B2 (en) * 2004-12-01 2011-03-16 ウルトラテック インク Laser heat treatment chuck with heat compensation heater module
JP2013149924A (en) * 2012-01-23 2013-08-01 Japan Display Central Co Ltd Laser annealing apparatus

Similar Documents

Publication Publication Date Title
JPS62216320A (en) Laser annealing apparatus
JPH0639572A (en) Wafer cutting device
JP2004311906A (en) Laser processing device and laser processing method
JP2919145B2 (en) Laser light irradiation device
JPS62216318A (en) Laser annealing apparatus
JP6050002B2 (en) Laser processing method
US7387922B2 (en) Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system
JPH09260310A (en) Electronic circuit device manufacturing method
JPH0795538B2 (en) Laser annealing device
JPH04118190A (en) Method for dividing wafer
KR100664573B1 (en) Laser Processing Apparatus and Method thereof
JP2012240107A (en) Laser processing method
KR101006373B1 (en) Laser crystallization device using one to one mask
JP2003218027A (en) Method of growing crystal and laser annealing apparatus
JP2815025B2 (en) Laser annealing equipment
JPS6318621A (en) Laser annealing apparatus
JPH04142030A (en) Manufacture of semiconductor film
JPS62216321A (en) Laser annealing apparatus
JPH02143517A (en) Manufacture of semiconductor device
JP4969024B2 (en) Method for manufacturing semiconductor device
JPS62216319A (en) Laser annealing apparatus
JPS61266387A (en) Method for recrystallizing semiconductor thin film with laser
TWI406106B (en) System and method for manufacturing multi-chip silicon pattern by laser
JP4429587B2 (en) Method for manufacturing semiconductor device
JPH02248041A (en) Laser beam irradiation device