JPS62216321A - Laser annealing apparatus - Google Patents

Laser annealing apparatus

Info

Publication number
JPS62216321A
JPS62216321A JP6029086A JP6029086A JPS62216321A JP S62216321 A JPS62216321 A JP S62216321A JP 6029086 A JP6029086 A JP 6029086A JP 6029086 A JP6029086 A JP 6029086A JP S62216321 A JPS62216321 A JP S62216321A
Authority
JP
Japan
Prior art keywords
stage
laser
high speed
optical axis
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6029086A
Other languages
Japanese (ja)
Inventor
Nobuo Sasaki
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6029086A priority Critical patent/JPS62216321A/en
Publication of JPS62216321A publication Critical patent/JPS62216321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an optical axis from varying and the output of a laser from decreasing disposing an X stage directly under a heater, and disposing a Y stage under the X stage and a rotating unit in the lowermost position to reduce an impact due to the acceleration or deceleration of the high speed stage. CONSTITUTION:An X stage 26 is placed directly under a heater 22, a Y stage is disposed under the stage 26, and a rotating unit is disposed in the lowermost stage. Thus, the load of the high speed stage 26 is reduced to decrease an impact due to acceleration or deceleration, thereby reducing an influence to a laser unit and an optical system. That is, when the high speed stage is placed at an upper position, the load of the high speed stage is reduced, and a mechanical strength may be reduced, but since the accurate stage placed at a lower position is increased at its load, it must be rigid and increased in size to increase the weight as a whole, but the load of the high speed X stage is only the heater to reduce the acceleration between back and forth reciprocations. When the rotating unit 28 is disposed at the lowermost stage, a wafer 20 can be rotated at the optical axis as a center by matching the rotating center to the optical axis of a lens 18 to rotate the wafer 20 at the optical axis as a center, thereby facilitating the operation such as matching of the side and the scanning direction of a region to be processed.

Description

【発明の詳細な説明】 〔概 要〕 レーザ装置の光軸のずれ、劣化などの防止のため、高速
ステージを精密ステージの上に置いたレーザアニール装
置。
[Detailed Description of the Invention] [Summary] A laser annealing device in which a high-speed stage is placed on a precision stage in order to prevent optical axis deviation and deterioration of the laser device.

〔産業上の利用分野〕[Industrial application field]

本発明は、レーザアニールにまりウェーハ上の多結晶シ
リコンを単結晶にする装置に関する。
The present invention relates to an apparatus for turning polycrystalline silicon on a wafer into a single crystal using laser annealing.

〔従来の技術〕[Conventional technology]

レーザ再結晶法は、S OI  (Silicon O
n In5u−1ator )構造のMOS  FET
を製造するのに有力な方法である。So■構造のMOS
  FETを利用すると5OI−ICや3次元ICのよ
うな高速かつ高集積度のIC(集積回路)を作ることが
できるので、レーザ再結晶法には近年多くの研究開発が
進められている。
The laser recrystallization method uses SOI (Silicon O
nIn5u-1ator) structure MOS FET
It is an effective method for manufacturing. MOS with So■ structure
Since FETs can be used to create high-speed, highly integrated ICs (integrated circuits) such as 5OI-ICs and three-dimensional ICs, much research and development has been carried out on laser recrystallization in recent years.

レーザ再結晶装置は楯略第2図に示す構成を有する。1
0はガスレーザ装置、12,14.16はミラー、18
はフォーカシングレンズ、2oはシリコンウェーハで加
熱装置(ホットチャック)22により保持される。26
は高速往復運動をするXステージ(X方向移動機構)で
、この上にXステージ(Y方向移動機構)24が取付け
られ、その上に回転装置28が置かれ、加熱装置22は
回転装置28の上に乗る。つまりXステージが最下段で
、これは架台32に取付けられる。
The laser recrystallization apparatus has the configuration shown in FIG. 1
0 is a gas laser device, 12, 14.16 is a mirror, 18
2o is a focusing lens, and 2o is a silicon wafer, which is held by a heating device (hot chuck) 22. 26
is an X-stage (X-direction moving mechanism) that performs high-speed reciprocating motion, on which an X-stage (Y-direction moving mechanism) 24 is attached, a rotating device 28 is placed on top of it, and the heating device 22 is connected to the rotating device 28. Get on top. In other words, the X stage is the lowest stage and is attached to the pedestal 32.

ウェーハ20は第3図(alに示すように例えば400
μmの厚さのシリコン基板Si、その表面をpj3!酸
化して形成させた1、0μm程度の厚さの二酸化シリコ
ンS) 102 、その上のCVD法により形成した多
結晶シリコンpoli−3iからなる。レーザー装置1
0はアルゴンガスレーザで、第3図(b)に示すように
発振管10aとその両端の発振用ミラー10b、IOC
を備える。
The wafer 20 is, for example, 400 wafers as shown in FIG.
A silicon substrate Si with a thickness of μm, whose surface is pj3! It consists of silicon dioxide S) 102 with a thickness of about 1.0 μm formed by oxidation, and polycrystalline silicon poli-3i formed by CVD method thereon. Laser device 1
0 is an argon gas laser, and as shown in FIG.
Equipped with.

レーザー装置10より出たレーザ光30は径2n程度で
、ミラー12.14.16により図示の如く導かれ、レ
ンズ18で径20〜100μmに絞られ、ウェーハ20
に投射される。ウェーハにレーザ光が投射されると、加
熱装置22により既に500℃程度に加熱されているウ
ェーハの最上層の多結晶シリコンは直ちに熔融し、X、
Xステージ26.24によるX、Y方向移動で多結晶シ
リコン層は第3図(C1に示すように走査されて全面的
に熔融、凝固が行なわれ、これにより単結晶化される。
The laser beam 30 emitted from the laser device 10 has a diameter of about 2n, is guided by mirrors 12, 14, and 16 as shown in the figure, is focused by a lens 18 to a diameter of 20 to 100 μm, and is directed onto the wafer 20.
is projected on. When the laser beam is projected onto the wafer, the polycrystalline silicon in the uppermost layer of the wafer, which has already been heated to about 500°C by the heating device 22, immediately melts, causing
The polycrystalline silicon layer is scanned by movement in the X and Y directions by the X stages 26 and 24, as shown in FIG. 3 (C1), and is melted and solidified over the entire surface, thereby becoming a single crystal.

この第3図(C)で1,2.・・・・・・は1回目、2
回目、・・・・・・のX方向移動で溶融、凝固される領
域を示しく但しこれは説明上のもの)、これらはレーザ
光の径には!゛等しい幅を持つ細幅帯状領域である。全
面塗りつぶし的な処理であるから、これらの帯状領域は
δだけ重ならせである。矢印は移動方向を示し、図示の
ようにX方向移動は往復動であり、方向反転の度にY方
向へ、帯状領域の幅マイナスδだけスキップする。
In this figure 3 (C), 1, 2.・・・・・・ is the first time, 2
The area that is melted and solidified by the X-direction movement of the second time is shown (however, this is for illustration purposes only), and these are within the diameter of the laser beam! ``It is a narrow band-like area with equal width. Since this is a full-surface filling process, these band-shaped areas overlap by δ. The arrow indicates the direction of movement, and as shown in the figure, the movement in the X direction is a reciprocating movement, and each time the direction is reversed, it skips in the Y direction by the width of the strip area minus δ.

加熱装置22は第3図(dlに示すように、ウェーハを
真空吸着するための吸排気機構、加熱するためのヒータ
ー、X、Xステージ等を加熱しないための水冷機構から
なる。また回転装置28はX−Xステージを回転させて
、X、 Y方向移動がウェーハ上の処理領域のX、Y方
向と整列するようにする。この場合、X−Xステージの
移動により加熱装置22の中心を回転装置28の回転軸
に一致させて、さらに、加熱装置22をXステージに固
定しているロックをはずし、加熱装置22を架台32に
対し、固定して、Xステージが回転しても、加熱装置2
2は架台32に対して回転しないようにしてから、回転
装置28の回転を行う。即ちつ工−ハ20は完全に全面
をレーザアニールするのではなく、必要部分のみレーザ
アニールする、例えばウェーハのスクライブラインなど
はレーザアニールする必要がないからこれはしない。ま
た集積回路にはバルクFETとSOI  FETを混在
させたものがあり、このような集積回路ではレーザアニ
ールするのはSOI  FET部であり、バルクFET
部はしない。つまりレーザアニールは選択的であり、こ
れを確実に行なうには第3図Ca+に示すように走査方
向を要処理部の辺に合わせ、点線X′のようであればウ
ェーハを回転させて実線Xの如くする必要がある。これ
を行なうのが回転装置28である。
The heating device 22, as shown in FIG. rotates the X-X stage so that the movement in the X and Y directions is aligned with the X and Y directions of the processing area on the wafer.In this case, the movement of the X-X stage rotates the center of the heating device 22. The heating device 22 is aligned with the rotation axis of the device 28, and the lock fixing the heating device 22 to the X stage is removed, and the heating device 22 is fixed to the pedestal 32. 2
2 rotates the rotating device 28 after preventing it from rotating with respect to the pedestal 32. In other words, the entire surface of the process 20 is not laser annealed, but only the necessary portions are laser annealed. For example, the scribe lines of the wafer are not laser annealed because they do not need to be laser annealed. Also, some integrated circuits include a mixture of bulk FETs and SOI FETs, and in such integrated circuits, laser annealing is performed on the SOI FET section, while the bulk FET section
I don't have a club. In other words, laser annealing is selective, and in order to perform this reliably, align the scanning direction with the side of the area to be processed as shown in Figure 3 Ca+, and if it looks like the dotted line X', rotate the wafer and It is necessary to do as follows. The rotating device 28 performs this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このレーザ再結晶装置は第2図に示すように最下段がX
ステージ、次がXステージ、次が回転装置、最上段が加
熱装置で、該加熱装置にウェーハが取付けられる。最上
段が加熱装置であることは当然としても、Xステージが
最下段というのは重量による。即ちXステージはX方向
の往復動を行なうものであり、極めて細い帯状領域で塗
りつぶし的処理を行なうには高速往復動が可能でなけれ
ばならず、これには大型のモータ等を使用せねばならず
、M量が大である。この点Xステージは前述の如く方向
反転毎の微小スキップを行なうだけでよいので低速、軽
量でよく、但し、高精度でなければならない。即ち第3
図(C)の細帯状領域1゜2、・・・・・・の幅は30
μm、重なり代δは小さい程処理能力は上るからδ=5
μmとすると、1μm程度の位置決め精度がなければな
らない。こうしてXステージのは高速、但し精度はそれ
程なくてもよく、そしてXステージは高精度、但し速度
は余り高くなくてもよい、という特徴がある。具体例を
挙げると、次の如くである。
As shown in Figure 2, this laser recrystallization device has an X
The stage is followed by the X stage, the next is the rotation device, and the top stage is the heating device, and the wafer is attached to the heating device. Although it is natural that the top stage is the heating device, the reason why the X stage is the lowest stage is due to its weight. In other words, the X stage performs reciprocating motion in the X direction, and in order to perform filling-in processing in an extremely narrow band-like area, it must be capable of high-speed reciprocating motion, which requires the use of a large motor, etc. First, the amount of M is large. In this respect, the X stage only needs to perform a minute skip every time the direction is reversed as described above, so it may be slow and lightweight, but it must be highly accurate. That is, the third
The width of the narrow strip area 1゜2 in Figure (C) is 30
μm, the smaller the overlap distance δ, the higher the processing capacity, so δ = 5
If it is .mu.m, then the positioning accuracy must be about 1 .mu.m. Thus, the X stage has the characteristics of high speed, but the accuracy does not need to be very high, and the X stage has high accuracy, but the speed does not need to be very high. A specific example is as follows.

表   1 加熱装置 精密Yステージ 高速Xステージ自  重 
   18Kg         2.0  Kg  
         4.0  Kg楕度 /  1μm
   20μm 速度 /   2 w/ sec  400 vn/ 
sec耐荷重荷重/      20 Kg     
100 Kg精度は、具体的には送りねじ軸のピンチで
決まり、高精度のものはピンチが小さい。駆動モータは
X、 Yステージ共パネルモータである。
Table 1 Heating device Precision Y stage High speed X stage Self weight
18Kg 2.0Kg
4.0 Kg ellipse / 1μm
20 μm speed / 2 w/ sec 400 vn/
sec load capacity / 20 Kg
100 Kg accuracy is specifically determined by the pinch of the feed screw shaft, and high precision ones have small pinches. The drive motors for both the X and Y stages are panel motors.

高速ステージは大型、大重量になるので1番下におき、
軽量、精密ステージはその上に、というのが従来装置で
あるが、このようにすると高速ステージの往と復の間の
加速度は1〜10m/s2となり、その衝撃は20Kg
X10m/52=20ONに達する。このため光学系の
ずれや、振動による光軸の変化、レーザ出力の変動など
を生じる。例えばガスレーザでは発振用ミラー10b、
10cはバネで抑え、その反対側からマイクロメータで
押して位置決めするという方法をとっており、光軸方向
に可動であるので、上記衝撃が光軸方向の成分を持って
いるとミラー位置が変動し、レーザ出力が変化すること
になる。
The high-speed stage is large and heavy, so place it at the bottom.
Conventional equipment places a lightweight, precision stage on top of that, but in this way, the acceleration during the forward and backward movement of the high-speed stage is 1 to 10 m/s2, and the impact is 20 kg.
Reach X10m/52=20ON. This causes deviations in the optical system, changes in the optical axis due to vibration, and fluctuations in laser output. For example, in the case of a gas laser, the oscillation mirror 10b,
10c is positioned by holding it down with a spring and pushing it with a micrometer from the opposite side. Since it is movable in the optical axis direction, if the above-mentioned impact has a component in the optical axis direction, the mirror position will change. , the laser output will change.

本発明はか\る点を改善し、安定、均一なレーザアニー
ルを行なえるようにしようとするものである。
The present invention aims to improve these points and enable stable and uniform laser annealing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では第1図に示すようにXステージ26を加熱装
置22の直下に置き、その下にYステージ、最下段を回
転装置にする。
In the present invention, as shown in FIG. 1, an X stage 26 is placed directly below the heating device 22, a Y stage is placed below it, and a rotating device is provided at the lowest stage.

〔作用〕[Effect]

このようにすると高速ステージ26の負荷が軽くなり、
加減速による衝撃が小になり、レーザ装置および光学系
に与える影響が小になる。
In this way, the load on the high-speed stage 26 is reduced,
The impact caused by acceleration and deceleration is reduced, and the influence on the laser device and optical system is reduced.

〔実施例〕〔Example〕

高速ステージを上に置くと、高速ステージの負荷は小に
なり、機械的強度も低くて済むが、下に置かれる精密ス
テージは負荷が大きくなるので堅牢化、大型化が必要に
なる。次に数値例を挙げる。
If the high-speed stage is placed on top, the load on the high-speed stage will be small and its mechanical strength will be low, but the precision stage placed below will have a heavy load, so it will need to be more robust and larger. Next, a numerical example is given.

表   2 加熱装置 高速Xステージ 精密Yステージ自  重 
   18Kg        4.0  Kg   
       4.0  Kg楕度 720μm1μm 速度 /   400B/s  2寵/S耐荷重  /
     100Kg     100Kgこのように
装置全体としては重量が増すが、高速Xステージの負荷
は加熱装置のみの18Kgとなり、往と復の間の加速度
を10m/s2としてその衝撃は18KgX10=18
ONとなり、従来装置より10%低減する。
Table 2 Heating device High speed X stage Precision Y stage Self weight
18Kg 4.0Kg
4.0 Kg Ellipticity 720μm1μm Speed / 400B/s 2cm/S Load Capacity /
100Kg 100KgThe overall weight of the device increases in this way, but the load on the high-speed X stage is 18Kg only for the heating device, and assuming the acceleration between forward and backward movements is 10m/s2, the impact is 18KgX10=18
It turns on and reduces the energy consumption by 10% compared to the conventional device.

また回転装置28が最下段にあると、この回転中心をレ
ンズ18の光軸に合わせておくことにより、ウェーハ2
0を該光軸を中心に回転させることができ、第3図(a
lの処理領域の辺と走査方向を合わせる等の操作を容易
に行なうことができる。
Furthermore, when the rotation device 28 is at the lowest stage, by aligning the rotation center with the optical axis of the lens 18, the wafer 2
0 can be rotated around the optical axis, as shown in Fig. 3(a).
It is possible to easily perform operations such as aligning the scanning direction with the side of the processing area of l.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば高速ステージの加減
速に伴なう衝撃を小にすることができ、光軸変化の改善
、レーザ出力の安定化等にを効である。
As explained above, according to the present invention, it is possible to reduce the impact caused by acceleration and deceleration of the high-speed stage, which is effective in improving optical axis changes, stabilizing laser output, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の説明図、 第2図は従来装置の説明図、 第3図は各部の説明図である。 第1図で30はレーザ光、20はウェーハ、22は加熱
装置、26はχステージ、24はYステージ、28は回
転装置である。
FIG. 1 is an explanatory diagram of the device of the present invention, FIG. 2 is an explanatory diagram of the conventional device, and FIG. 3 is an explanatory diagram of each part. In FIG. 1, 30 is a laser beam, 20 is a wafer, 22 is a heating device, 26 is a χ stage, 24 is a Y stage, and 28 is a rotation device.

Claims (1)

【特許請求の範囲】 レーザ光(30)を投射されるウェーハ(20)を支持
、加熱する装置(22)と、該加熱装置をX方向に高速
往復動させるXステージ(26)、該X方向と直交する
Y方向に精密移動させるYステージ(24)、および回
転させる回転装置(28)を備えて、該レーザ光の投射
でウェーハ表面の多結晶シリコンを単結晶化させるレー
ザアニール装置において、 該Xステージを加熱装置の直下に配置し、その下にYス
テージ、最下部に回転装置を配置したことを特徴とする
レーザアニール装置。
[Claims] A device (22) for supporting and heating a wafer (20) onto which a laser beam (30) is projected, an X stage (26) for reciprocating the heating device at high speed in the X direction, and A laser annealing apparatus that is equipped with a Y stage (24) that moves precisely in the Y direction orthogonal to the Y-direction, and a rotation device (28) that rotates the laser annealing apparatus, which single-crystallizes polycrystalline silicon on the wafer surface by projecting the laser beam. A laser annealing device characterized in that an X stage is placed directly below a heating device, a Y stage is placed below that, and a rotation device is placed at the bottom.
JP6029086A 1986-03-18 1986-03-18 Laser annealing apparatus Pending JPS62216321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6029086A JPS62216321A (en) 1986-03-18 1986-03-18 Laser annealing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6029086A JPS62216321A (en) 1986-03-18 1986-03-18 Laser annealing apparatus

Publications (1)

Publication Number Publication Date
JPS62216321A true JPS62216321A (en) 1987-09-22

Family

ID=13137877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6029086A Pending JPS62216321A (en) 1986-03-18 1986-03-18 Laser annealing apparatus

Country Status (1)

Country Link
JP (1) JPS62216321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314360B2 (en) * 2005-09-26 2012-11-20 Ultratech, Inc. Apparatuses and methods for irradiating a substrate to avoid substrate edge damage
JP2020145362A (en) * 2019-03-08 2020-09-10 株式会社日本製鋼所 Laser processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153326A (en) * 1979-05-18 1980-11-29 Nec Corp Locally heating laser device
JPS59165419A (en) * 1983-03-11 1984-09-18 Hitachi Ltd Original drawing position aligning apparatus
JPS6167914A (en) * 1984-09-12 1986-04-08 Sony Corp Linear energy beam irradiating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153326A (en) * 1979-05-18 1980-11-29 Nec Corp Locally heating laser device
JPS59165419A (en) * 1983-03-11 1984-09-18 Hitachi Ltd Original drawing position aligning apparatus
JPS6167914A (en) * 1984-09-12 1986-04-08 Sony Corp Linear energy beam irradiating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314360B2 (en) * 2005-09-26 2012-11-20 Ultratech, Inc. Apparatuses and methods for irradiating a substrate to avoid substrate edge damage
JP2020145362A (en) * 2019-03-08 2020-09-10 株式会社日本製鋼所 Laser processing apparatus

Similar Documents

Publication Publication Date Title
JPS62216320A (en) Laser annealing apparatus
JPH07254555A (en) Aligner
KR20100024344A (en) Laser machining apparatus
JPH05235077A (en) Polar coordinate motion bonding head for bonding semiconductor device
JPH10173028A (en) Aligner, manufacturing device, stage apparatus and origin setting method
JPS62216321A (en) Laser annealing apparatus
KR20040046422A (en) Laser system for 1064/532 nm wave length and chip scale marker having thereof
JPS62216318A (en) Laser annealing apparatus
JPH01169939A (en) Centering equipment for semiconductor wafer
TW200919617A (en) Stage device
JP2001135561A (en) Stage system, aligner and method of fabrication for device
JPS6318621A (en) Laser annealing apparatus
JPH10149974A (en) Stage device, aligner, and manufacture of device
JPS62216319A (en) Laser annealing apparatus
JP2844409B2 (en) Semiconductor positioning method
JPH01100938A (en) Chuck mechanism of square glass plate for ic mask
JPH0536582A (en) Positioning stage apparatus
US20240087901A1 (en) Processing method of bonded wafer and processing apparatus
JP2020171961A (en) Laser processing device
JP2815025B2 (en) Laser annealing equipment
JP3648824B2 (en) Surface grinding apparatus and surface grinding method
KR20240046026A (en) Processing method of laminated wafer and processing apparatus of laminated wafer
JP2000357655A (en) Stage apparatus and scanning type exposure apparatus
JPS6167914A (en) Linear energy beam irradiating device
JPH0797554B2 (en) Beam annealing device