JPS6167914A - Linear energy beam irradiating device - Google Patents

Linear energy beam irradiating device

Info

Publication number
JPS6167914A
JPS6167914A JP19078084A JP19078084A JPS6167914A JP S6167914 A JPS6167914 A JP S6167914A JP 19078084 A JP19078084 A JP 19078084A JP 19078084 A JP19078084 A JP 19078084A JP S6167914 A JPS6167914 A JP S6167914A
Authority
JP
Japan
Prior art keywords
turntable
wafer
irradiation
electron beam
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19078084A
Other languages
Japanese (ja)
Inventor
Setsuo Usui
碓井 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19078084A priority Critical patent/JPS6167914A/en
Publication of JPS6167914A publication Critical patent/JPS6167914A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To perform a uniform beam irradiating process on the large diameter material to be processed maintaining the dynamic balance of a rotating stand by a method wherein a pair of X-Y shifting mechanisms are provided symmetrically against the rotating shaft of the rotary stand, and a linear beam is made to irradiate on the material to be processed by moving the X-Y shifting mechanism symmetrically against the rotating shaft. CONSTITUTION:Clutches CL1-CL4 are coupled to the movable screws 36, 37, 46 and 47 on a pair of X-Y stages 33 and 34 which are symmetrically provided on the rotating shaft 3 located on a rotary stand 2, the X-Y stages 33 and 34 are shifted symmetrically against the rotating shaft by motors 51, 52, 61 and 62, and the center of wafers 11-14 is positioned directly below the four windows 22 of a beam mask 21. The clutches CL1-CL4 are separated with each other, a turn table 2 is rotated at a constant speed, a linear beam is made to irradiate while the source of beam is being pivotally moved in such a manner that the longitudinal direction of the linear electron beam is brought in the state wherein it is in parallel with the straight line which passes the center of both wafer 1 and the turn table 2. When an irradiation is finished, the movement of the turn table 2 is stopped, the X-Y stages 33 and 34 are shifted, and the next irradiation is performed. A uniform irradiation process is performed by repeating the above-mentioned procedures.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば絶縁基板上の多結晶シリコン膜を再結
晶化して単結晶シリコン膜を形成する装置に適用して好
適な、線状エネルギービームを被処理体に照射する装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a linear energy system suitable for application to, for example, an apparatus for recrystallizing a polycrystalline silicon film on an insulating substrate to form a single-crystal silicon film. The present invention relates to a device that irradiates a target object with a beam.

〔従来の技術〕[Conventional technology]

LSIに代表されるシリコン半導体装置に対する高密度
化、高性能化の要求に応じて、絶縁基板上にシリコンの
結晶薄賎を形成するいわゆる5OI(Silicon’
on In5ula’tor)技術が開発されている。
In response to demands for higher density and higher performance for silicon semiconductor devices represented by LSI, so-called 5OI (Silicon'
On In5ula'tor) technology has been developed.

これは、石英基板又はシリコン結晶の基板(ウニーーハ
)上に絶縁層としての酸化膜を形成したものの上に多結
晶シリコン膜を被着し、この多結晶シリコン膜を例えば
線状電子ビームの照射によって短時間、局所的に融解し
、それを冷却す−ことにより再結晶化して、シリコン単
結晶膜を形成するものである。
This method involves depositing a polycrystalline silicon film on a quartz substrate or a silicon crystal substrate (uniha) on which an oxide film is formed as an insulating layer. It melts locally for a short period of time and recrystallizes by cooling it to form a silicon single crystal film.

まず、第8図乃至第10図を参照しながら、従来の線状
エネルギービーム照射装置としての、絶縁基板上の多結
晶シリコン股を再結晶化して、単結晶シリコン膜を形成
する装置の構成例について説明する。第8図及び第9図
において、(2)はターンテーブルで、多結晶シリコン
膜を被着した複数のウェーハ(1)が、このターンテー
ブル(21上に、その適宜配設された複数の開口(2a
)を覆うように載置される。ターンテーブル(2)は回
転軸(3)を介してモータ(7gによって回転せしめら
れる。(6)は線状電子ビーム(5)を発生ずる電子ビ
ーム源で、これが各ウェーハ(1)に逐次対向するよう
に配設され、ビーム源(6)を制御する制御電源(7)
にはモータ(4)に直結されたエンコーダ(8)から回
転位置情報信号が供給される。このエンコーダ(8)と
モータ(4)との間に公知の回転制御回路(9)が接続
される。
First, with reference to FIGS. 8 to 10, an example of the configuration of a conventional linear energy beam irradiation device for recrystallizing polycrystalline silicon on an insulating substrate to form a single crystal silicon film. I will explain about it. In FIGS. 8 and 9, (2) is a turntable, and a plurality of wafers (1) coated with a polycrystalline silicon film are placed on this turntable (21) through a plurality of appropriately arranged openings. (2a
) is placed so as to cover it. The turntable (2) is rotated by a motor (7g) via a rotating shaft (3). (6) is an electron beam source that generates a linear electron beam (5), which is successively opposed to each wafer (1). a control power source (7) arranged to control the beam source (6);
A rotational position information signal is supplied from an encoder (8) directly connected to the motor (4). A known rotation control circuit (9) is connected between the encoder (8) and the motor (4).

ウェーハ(1)、ターンテーブル(2)及びビーム源(
6)は全体として真空容器a〔に収容され、真空容器a
鴫にはターンテーブル(2)の各開口(2a)に対向し
て石英ガラス製の窓(11)が適宜の数だけ設けられ、
窓(11)の外側にウェーハ(1)を予熱するための赤
外線灯(12)が配設される。真空容器α〔の排気筒(
13)は図示を省略した真空ポンプに接続されている。
Wafer (1), turntable (2) and beam source (
6) is housed as a whole in vacuum container a [, and vacuum container a
A suitable number of windows (11) made of quartz glass are provided in the shim to face each opening (2a) of the turntable (2),
An infrared lamp (12) for preheating the wafer (1) is arranged outside the window (11). Vacuum vessel α [exhaust pipe (
13) is connected to a vacuum pump (not shown).

なお、赤外線灯(12)は電子ビーム源(6)と対向し
ないように配設される。
Note that the infrared lamp (12) is arranged so as not to face the electron beam source (6).

従来の線状ビーム照射装置の動作は次のとおりである。The operation of a conventional linear beam irradiation device is as follows.

ターンテーブル(2)の開口(2a)上のウェーハ(1
)は窓(11)を通して赤外線灯(12)によって予熱
される。ウェーハ(1)が所定温度に達すると、赤外線
灯(12)が消勢され、ターンテーブル(2)はモータ
(4)によって駆%Jされて、例えば500〜1100
0rp程度で回転する。ターンテーブル(2)が所定速
度に達すると、制御電源(7)が、エンコーダ(8)か
ら供給された回転位置情報信号にタイミイグ制御されて
、第1O図に示すようにターンテーブル(2)が角度2
θだけ回転する期間、線状電子ビーム源(6)から電子
ビーム(5)が発射される。かくして、第10図に示す
ように、ウェーハ(1)上に(ip) 、  (lq)
 、  (lr)で代表されるSolパターンは(5a
) 、  (5b) 。
The wafer (1) is placed on the opening (2a) of the turntable (2).
) is preheated by an infrared lamp (12) through a window (11). When the wafer (1) reaches a predetermined temperature, the infrared lamp (12) is turned off and the turntable (2) is driven by the motor (4) to a temperature of, for example, 500-1100.
Rotates at about 0 rpm. When the turntable (2) reaches a predetermined speed, the control power source (7) is timed by the rotational position information signal supplied from the encoder (8), and the turntable (2) moves as shown in Figure 1O. angle 2
An electron beam (5) is emitted from a linear electron beam source (6) during a period of rotation by θ. Thus, as shown in FIG.
, (lr) is represented by (5a
), (5b).

(5c)で代表される刻々の電子ビーム(5)による照
射線に走査されて、多結晶シリコン膜の融解が行われ、
その後の冷却により再結晶化が行われて、単結晶シリコ
ン膜が形成される。
The polycrystalline silicon film is melted by being scanned by the irradiation rays of the electron beam (5) represented by (5c).
Recrystallization is performed by subsequent cooling, and a single crystal silicon film is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来の線状ビーム照射装置に
あっては、ビーム(5)の長さによって処理tiJ能な
ウェーハ(1)の寸法が制限され、大口径つ工−ハを処
理することができないという欠点があつた。
However, in such conventional linear beam irradiation equipment, the size of the wafer (1) that can be processed is limited by the length of the beam (5), and it is difficult to process large diameter wafers. The drawback was that I couldn't do it.

この欠点を解消するために、ウェーハを移動させること
が考えられるが、ウェーハを車に移動させようとすると
、ダイナミックバランスが崩れてターンテーブル(2)
の回転がスムースでなくなるという問題が生ずる。
In order to solve this problem, it is possible to move the wafer, but if you try to move the wafer to the car, the dynamic balance will be disrupted and the turntable (2) will be moved.
A problem arises in that the rotation is not smooth.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、被処理体(1)が載置される回転台(2)と
、この回転台(2)の半径方向に配設された線状エネル
キーヒーム源(6)とを有し、この線状エネルギービー
ム源(6)からの線状エネルギービームを被処理体(1
1に照射する線状エネルギービーム照射装置において、
回転台(2)上に少なくとも1対のXY移動機構(30
) 、  (40)を回転台(2)の回転軸(3)に対
称に配設すると共に、XY移動機構(30) 、  (
40)のそれぞれを回転軸(3)に関して対称に移動さ
せるようにしたものである。
The present invention includes a rotary table (2) on which the object to be processed (1) is placed, and a linear energy beam source (6) arranged in the radial direction of the rotary table (2), The linear energy beam from this linear energy beam source (6) is applied to the object to be processed (1).
In a linear energy beam irradiation device that irradiates 1,
At least one pair of XY movement mechanisms (30
), (40) are arranged symmetrically to the rotation axis (3) of the rotary table (2), and the XY movement mechanism (30), (
40) are moved symmetrically with respect to the rotation axis (3).

〔作用〕[Effect]

かかる本発明によれば、回転台(2)を回転させながら
、照射領域規制手段(21)を通して線条エネルギービ
ームを被処理体(11に照射した後、回転台(2)を停
止させ、xy移動機構(30)及び(40)をlrl転
台(2)の回転軸(3)に関して対称にX方向、Y方向
に所定距離移動させる。以下、回転台(2)の回転、照
射領域規制手段(21)を通した線状エネルギービーム
の照射、照射領域移動機構の移動を繰返し、被処理体(
1)の全面に線状エネルギービームへ(照射される。
According to the present invention, the object to be processed (11) is irradiated with the linear energy beam through the irradiation area regulating means (21) while rotating the turntable (2), and then the turntable (2) is stopped and the xy The moving mechanisms (30) and (40) are moved a predetermined distance in the X direction and the Y direction symmetrically with respect to the rotation axis (3) of the lrl turntable (2).Hereinafter, the rotation of the turntable (2) and the irradiation area regulating means (21) Irradiation of the linear energy beam and movement of the irradiation area moving mechanism are repeated, and the object to be processed (
1) The entire surface of the area is irradiated with a linear energy beam.

〔実施例〕〔Example〕

以下、第1図〜第4図を参照しながら、本発明による線
状エネルギービーム照射装置の一実施例について説明す
る。第1図及び第2図において第8図及び第9図に対応
する部分には同一の符号を付して重複説明を省略する。
Hereinafter, one embodiment of the linear energy beam irradiation device according to the present invention will be described with reference to FIGS. 1 to 4. In FIGS. 1 and 2, parts corresponding to those in FIGS. 8 and 9 are designated by the same reference numerals, and redundant explanation will be omitted.

第1図及び第2図において、(21)はモリブデンのよ
うな高融点金属製のビームマスクテアって、ターンテー
ブル(2)の回転軸(3)に固定される。ビームマスク
(21)には複数(図では41周)の1辺の長さがEの
正方形の窓(22)が所定の角間隔で配設され、この窓
(22)を通過する線状電子ビーム(5)によって、複
数(図では4枚)のウェーハ11)((11)〜(14
) )の所定領域が照射される。
In FIGS. 1 and 2, (21) is a beam mask tear made of a high melting point metal such as molybdenum, and is fixed to the rotating shaft (3) of the turntable (2). The beam mask (21) has a plurality (41 rounds in the figure) of square windows (22) with a side length of E arranged at predetermined angular intervals, and the linear electrons passing through the windows (22) By the beam (5), a plurality of (four in the figure) wafers 11) ((11) to (14)
) A predetermined area of ) is irradiated.

(30)及び(40)は照射領域移動手段としての1対
のXY移動機構のそれぞれを全体として示す。
(30) and (40) respectively show a pair of XY moving mechanisms as irradiation area moving means as a whole.

両XY移動機構(30)及び(40)は同一の構成であ
るので、対応する各構成要素の符号は1位の数字を同じ
くして、一方の移ivJ機構(30)について説明し、
他方の移動機構(40)についての説明は省略する。
Since both XY movement mechanisms (30) and (40) have the same configuration, the reference numeral of each corresponding component will have the same first digit, and one movement ivJ mechanism (30) will be explained.
Description of the other moving mechanism (40) will be omitted.

(31)及び(32)はウェーハ保持台、(33)はX
Yステージ、(33u )及び(331)はその上部ブ
ロック及び−ト部ブロックである。両ウェーハ保持台(
31) 、  (32)は腕(34)及び(35)によ
って上部ブロック(33u)と連結される。(36)及
び(37)はX方向移動用及びY方向移動用のネジであ
って、それぞれXYステージの上部ブロック(33u 
)及び下部ブロック(33β)と螺合する。
(31) and (32) are wafer holding tables, (33) is
The Y stage, (33u) and (331) are its upper block and bottom block. Both wafer holding stands (
31), (32) are connected to the upper block (33u) by arms (34) and (35). (36) and (37) are screws for movement in the X direction and movement in the Y direction, respectively, and are screws for the upper block (33u
) and the lower block (33β).

X移動ネジ(36)の軸方向変換機構(36c)を介し
た尖端(38)及びY移動ネジ(37)の尖端(39)
には後述のようにして駆動力が伝達される。移動ull
構(30) ハX、  Y方nQニソレソhウェーハ(
11(D直1¥と略等しい距離だけ移動可能である。
The tip (38) of the X movement screw (36) via the axial direction conversion mechanism (36c) and the tip (39) of the Y movement screw (37)
The driving force is transmitted to as described below. move ull
Structure (30) wafer (
11 (can move by a distance approximately equal to 1 yen in D straight).

自移動機構(30)及び(40)はターンテーブル(2
)上に回転軸(3)に関して対称に配設されると共に、
それぞれ対応する。Fドブロック(33u ) 、  
(43u )及び(33N) 、  (437りが回転
軸(3)に関して対称に移動するようになされて、この
移動に拘らず、ターンテーブル(2)のダイナミックバ
ランスが保たれるようになされ°ζいる。更に、ターン
テーブル(2)の回転を一層円府にするために、回転軸
(3)に対称に1対のバランサ(2b)がターンテーブ
ル(2)に配設される。
The self-moving mechanisms (30) and (40) are connected to the turntable (2
) is disposed symmetrically with respect to the rotation axis (3), and
Corresponds to each. F Do Block (33u),
(43u), (33N), (437) are moved symmetrically with respect to the rotation axis (3), so that the dynamic balance of the turntable (2) is maintained regardless of this movement. Further, in order to make the rotation of the turntable (2) more round, a pair of balancers (2b) are arranged on the turntable (2) symmetrically about the rotation axis (3).

(51)及び(52)は一方の移動機構(30)のため
のX方向移動用及びY方向移動用のモータであって、モ
ータ(51)及び(52)の駆動軸(53)及び(54
)が真空容器(14)の気密軸受(15)及び(16)
に摺動自在に支承され、駆動軸(53)及び(54)の
四端(55)及び(56)は移動機構(30)のX移動
ネジ(36)及びY移動ネジ(37)のそれぞれの尖端
(38)及び(39)と係合・分離可能なりラッチCL
l及びCl3を構成する。XYステージ(33)に対向
する位置センサ(図示を省略)のための光源(レーザダ
イオード>  (57)が上部ブロック(33u)上に
設けられる。同様に、(61)及び(62)は他方の移
動機構(40)のためのX方向移動用及びY方向移動用
のモータであって、モータ(61)及び(62)の駆動
軸(63)及び(64)が気密軸受(17)及び(18
)に摺動自在に支承され、駆動軸(63)及び(64)
の四端(65)及び(66)は移動機構(40)のX移
動ネジ(46)及びY移動ネジ(47)のそれぞれの尖
端(48)及び(49)と係合・分離可能なりラッチC
L3及びCl3を構成する。
(51) and (52) are motors for moving in the X direction and in the Y direction for one of the moving mechanisms (30), and drive shafts (53) and (54) of the motors (51) and (52).
) are the airtight bearings (15) and (16) of the vacuum container (14).
The four ends (55) and (56) of the drive shafts (53) and (54) are respectively supported by the X movement screw (36) and Y movement screw (37) of the movement mechanism (30). Latch CL that can be engaged with and separated from the tips (38) and (39)
1 and Cl3. A light source (laser diode) for a position sensor (not shown) facing the XY stage (33) is provided on the upper block (33u).Similarly, (61) and (62) are A motor for moving in the X direction and in the Y direction for the moving mechanism (40), in which the drive shafts (63) and (64) of the motors (61) and (62) are fitted with airtight bearings (17) and (18).
) is slidably supported on the drive shafts (63) and (64).
The four ends (65) and (66) of the latch C can be engaged with and separated from the tips (48) and (49) of the X movement screw (46) and Y movement screw (47) of the movement mechanism (40), respectively.
Configure L3 and Cl3.

尚、XYステージ(43)の上部ブロック(43u )
に位置センサ用の光源(67)が設けられる。
In addition, the upper block (43u) of the XY stage (43)
A light source (67) for a position sensor is provided.

(71)は電子ビーム源(6)を駆動するモータであっ
て、その駆動軸(72)は真空容器(llを貫通して電
子ビーム源(6)に結合される。モータ(71)にはエ
ンコーダ(73)が直結される。(74)は比較回路で
あって、エンコーダ(8)からターンテーブル(2)の
基準回転位置情報信号が供給されると共に、エンコーダ
(73)から電子ビーム源(6)の回転位置情報信号が
供給される。。比較回路(74)の出力は駆動増幅器(
75)を介してモータ(71)に供給される。
(71) is a motor that drives the electron beam source (6), and its drive shaft (72) passes through the vacuum vessel (ll) and is coupled to the electron beam source (6). An encoder (73) is directly connected. (74) is a comparison circuit, to which a reference rotational position information signal of the turntable (2) is supplied from the encoder (8), and an electron beam source ( The rotational position information signal of 6) is supplied.The output of the comparator circuit (74) is supplied to the drive amplifier (74).
75) to the motor (71).

本実施例の動作は次のとおりである。The operation of this embodiment is as follows.

まず、電子ビームが4枚のウェーハ(IL)〜(14)
のそれぞれ同じ位置、例えば中央を照射するように、4
個の移動用モータ(51) 、  (52) 。
First, the electron beam is applied to four wafers (IL) ~ (14)
4, so as to irradiate the same position, for example, the center of each
movement motors (51), (52).

(61) 、  (62)をクラッチCL1.CL、、
CL3゜Cl3を介してXYステージ(33) 、  
(43)の移動ネジ(36) 、  (37) 、  
(46) 、  (47)に結合し、4枚のウェーハ(
11)〜(14)の各中央がそれぞれビームマスク(2
1)の4個の窓(22)の直]・に位置するように、父
Yステージ(33) 、  (43)を駆動する。クラ
ッチCLI−CL4を切離し、従来と同様に、図示を省
略した赤外線灯によってウェーハ(1)が予熱されてか
ら、ターンテーブル(2)を回転させる。回転制御回路
(9)に制御されてターンテーブル(2)が定速回転状
態に達し、電子ビーム源(6)から線状電子ビーム(5
)の発射が開始される時点において、1枚日のウェーハ
(11)は第3図に′おいて円(1a)でボされる位1
iIj“にある。このとき、線状電子ビーム源(6)の
長手方向(83a)はウェーハ(1a)の中心(81a
 )とターンテーブル(2)の中心(2c)を結ぶ直線
(82a )に平行になっている。
(61) and (62) as clutch CL1. CL...
CL3゜XY stage (33) via Cl3,
(43) moving screws (36), (37),
(46), (47), and four wafers (
The center of each of (11) to (14) is a beam mask (2).
The father Y stages (33) and (43) are driven so that they are located directly in front of the four windows (22) in 1). Clutches CLI-CL4 are disengaged, and the turntable (2) is rotated after the wafer (1) is preheated by an infrared lamp (not shown) as in the conventional case. The turntable (2) reaches a constant speed rotation state under the control of the rotation control circuit (9), and the linear electron beam (5) is emitted from the electron beam source (6).
), the 1-day wafer (11) is at the position marked by the circle (1a) in Figure 3'.
At this time, the longitudinal direction (83a) of the linear electron beam source (6) is located at the center (81a) of the wafer (1a).
) and the center (2c) of the turntable (2).

線状電子ビームの発射期間中、ターンテーブル(2)が
反時計方向に角度2θだけ回転しているので、ウェーハ
(11は、円(1b)でボされる位置を経て、円(IC
)で示される位置まで移動する。この期間に、モータ(
71)に駆動されて、電子ビーム源(6)はその回転中
心C6を中心として同じく反時計方向にターンテーブル
(2)と同一速度で回動し、第3図において、領域(6
b)で示される位置を経て、領域(6c)で示される位
置まで移動する。領域(6c)の長手方向(83c)は
ウェーハ(1c)の中心(81c)とターンテーブル(
2)の中心(2C)とを結ぶ直線 (82c)に平行に
なる。
During the emission period of the linear electron beam, the turntable (2) rotates counterclockwise by an angle of 2θ, so that the wafer (11) passes through the position where it is marked by the circle (1b), and then moves to the circle (IC).
) to the position shown. During this period, the motor (
71), the electron beam source (6) rotates counterclockwise around its rotation center C6 at the same speed as the turntable (2), and in FIG.
It moves through the position shown in b) to the position shown in area (6c). The longitudinal direction (83c) of the region (6c) is between the center (81c) of the wafer (1c) and the turntable (
It becomes parallel to the straight line (82c) connecting the center (2C) of 2).

上述のように、ターンテーブル(2)と同期して回動す
る′C11イビーム141(6)((6a) 〜(6c
) lから刻削発射される線状電子ビーム(5)による
照射線(5d) 。
As mentioned above, the 'C11 beam 141 (6) ((6a) to (6c) rotating in synchronization with the turntable (2)
) Irradiation rays (5d) by a linear electron beam (5) emitted from l.

(5a) 、  (5f)は、第4図に不丁ように、ウ
ェーハttllにおいてその中心を通るターンテーブル
(2)の111径と平行になるので、ウェーハ(1)上
の照射線密度が均一になる。
(5a) and (5f) are parallel to the 111 diameter of the turntable (2) passing through the center of the wafer (ttll) as shown in Figure 4, so the irradiation density on the wafer (1) is uniform. become.

とごろで、ビームマスク(21)がない場合は、電子ビ
ームの照射領域は、刻々の照射線(5d)〜(5「)の
築合であって、その上縁(84)及び下縁(85)は共
に、ターンテーブル(2)の中心(2c)と電子ビーム
源(6)の回転中心CGとの距1%tiRと等しい曲率
半径を有する。
If there is no beam mask (21), the irradiation area of the electron beam is the construction of the irradiation lines (5d) to (5'') every moment, and the upper edge (84) and lower edge ( 85) both have a radius of curvature equal to the distance 1%tiR between the center (2c) of the turntable (2) and the rotation center CG of the electron beam source (6).

しかし、上述の照射領域がビームマスク(21)によっ
て規制された照射規制領域はウェーハ(11上へのマス
ク(21)の窓(22)の投影(22p)と等しい。こ
の窓(22)によって、線状ビーム(5)の長手方向の
両端縁の強度むらの部分が除去され、照射規制領域内の
照射エネルギー密度は均一になる。
However, the irradiation regulation area in which the irradiation area is regulated by the beam mask (21) is equal to the projection (22p) of the window (22) of the mask (21) onto the wafer (11). The uneven intensity portions at both ends of the linear beam (5) in the longitudinal direction are removed, and the irradiation energy density within the irradiation regulation area becomes uniform.

1枚日のウェーハ(11)の中央部の照射が終っても、
ターンテーブル(2)は引続き定速回転して、2枚日の
ウェーハ(12)が、ビームマスク(21)の窓(22
)と共に、電子ビーム源(6)の下に差し掛かる。この
とき、電子ビーム源(6)は第3図において領域(6a
)で示した位置に復帰していなければならないので、本
実施例では、電子ビーム源(6)の駆動モータ(71)
として、例えばステップモータのような立上り特性の優
れたものを使用し、電子ビーム休止期間に電子ビーム源
(6)を時計方向に回動させる。
Even after the irradiation of the center of the wafer (11) on the first day is finished,
The turntable (2) continues to rotate at a constant speed, and the second-day wafer (12) is placed in the window (22) of the beam mask (21).
) and approaches below the electron beam source (6). At this time, the electron beam source (6) is in the area (6a) in FIG.
), so in this example, the drive motor (71) of the electron beam source (6)
For example, a step motor with excellent start-up characteristics is used, and the electron beam source (6) is rotated clockwise during the electron beam pause period.

なお、このような往復回動においても所要の等速回動を
行なわせるために、所要等速期間の前後に立上り期間、
立下り期間番設けることが好ましい。この場合、全回動
角は所要回動角より当然大きくなり、ウェーハの角間隔
が狭いと、この角間隔に対応する時間内に電子ビーム源
(6)がビーム発射終了位置からビーム発射開始位置ま
で復帰できなくなる。このような場合には、1枚日のウ
ェーハ(11)の照射処理後ターンテーブル(2)を1
回転させ、その間に電子ビーム源(6)をビーム発射開
始位置まで復帰させて、2枚目のウェーハ(12)の照
射処理を行なう。
In addition, in order to perform the required constant speed rotation even in such reciprocating rotation, there is a rising period before and after the required constant speed period,
It is preferable to provide a falling period number. In this case, the total rotation angle will naturally be larger than the required rotation angle, and if the angular spacing of the wafer is narrow, the electron beam source (6) will move from the beam firing end position to the beam firing starting position within the time corresponding to this angular spacing. You will not be able to return until In such a case, after the irradiation treatment of the wafer (11) on the 1st day, the turntable (2) should be
During the rotation, the electron beam source (6) is returned to the beam emission starting position, and the second wafer (12) is irradiated.

各ウェーハ(11)〜(14)に対する1回目の電子ビ
ーム照射が終ると、ターンテーブル(2)の回転を止め
、再び各クラッチCLI−CL4を係合して、移動機構
(30)及び(40)をX方向またはY方向に、ターン
テーブル(2)の回転軸(3)に関し′ζ対称に移動す
る。2回目のビーム照射規制領域を1回目のそれに隣接
させるため、移動距離はビームマスク(21)の正方形
の窓(22)の1辺の長さlに等しく設定される。以下
、クラッチCLI〜CL4の分離、ターンテーブル(2
)の回転、電子ビーム照射、ターンテーブル停止、ウェ
ーハ移動を繰返して、ウェーハ全面を一様に処理するこ
とができる。
When the first electron beam irradiation on each wafer (11) to (14) is completed, the rotation of the turntable (2) is stopped, each clutch CLI-CL4 is engaged again, and the moving mechanisms (30) and (40) are ) in the X or Y direction in a symmetrical manner with respect to the rotation axis (3) of the turntable (2). In order to make the second beam irradiation regulation area adjacent to the first beam irradiation control area, the movement distance is set equal to the length l of one side of the square window (22) of the beam mask (21). The following describes the separation of clutches CLI to CL4 and the turntable (2
), the entire surface of the wafer can be uniformly processed by repeating the rotation of the wafer, electron beam irradiation, stopping the turntable, and moving the wafer.

次に、第5図及び第6図を参照しながら、本発明の他の
実施例について説明する。
Next, other embodiments of the present invention will be described with reference to FIGS. 5 and 6.

第5図において、(110)及び(120)は照射領域
移動手段とし°この1対のXY移動機構のそれぞれを全
体としてボす。
In FIG. 5, (110) and (120) are irradiation area moving means, and each of the pair of XY moving mechanisms is shown as a whole.

一方の移動機構(110)はXステージ(111)と、
ウェーハ保持台を兼ねるYステージ(112)とを備え
、Xステージ(111)に螺合する移動用ネジ(113
)の一端にはプーリ (114)が設けられ、Yステー
ジ(112)ニは伝達軸(105)(7)一部となる移
動用ネジ(115)が螺合している。他方の移動機構(
120)も上述の移動機構(110)とl1iJ様に構
成されているので、対応する各構成要素の符号は1位の
数字を同じくして説明を省略するが、移動用ネジ(12
3) 、  (125)の刻設方向が対応する移動用ネ
ジ(113) 、  (115)と逆になっ一ζいる。
One moving mechanism (110) includes an X stage (111),
It is equipped with a Y stage (112) that also serves as a wafer holding table, and a moving screw (113) that is screwed into the X stage (111).
A pulley (114) is provided at one end of the Y stage (112), and a moving screw (115) that becomes part of the transmission shaft (105) (7) is screwed into the Y stage (112). The other moving mechanism (
120) is also constructed in the same way as the above-mentioned moving mechanism (110), so the reference numerals of the corresponding components have the same first digit and the explanation will be omitted, but the moving screw (120)
3) The engraving direction of the screws (113) and (125) is opposite to that of the corresponding movement screws (113) and (115).

再検動機構(110)及び(120)はターンテーブル
(2)トにその回転中心に関して対称に配設される。
The recalibration mechanisms (110) and (120) are arranged symmetrically on the turntable (2) with respect to its center of rotation.

伝達軸(101)の尖端(102)はX方向移動用モー
タ(5])の駆動軸(53)の四端(55)と係合・分
離口J能なりラッチCL5を構成する。軸(101の他
端にはプーリ (104)が設けられ、このブー’J(
104)と上述の移動機構(110)及び(120)の
プーリ (114)及び(124)との間にベルト(1
03)が懸装される。なお、第6図に示すように、この
ベル1−(103)にはテンションローラ(107) 
、  (108)によって所要の張力が付与される。伝
達軸(105)の尖端(106)はY方向移りりノ用モ
ータ(52)の駆動軸(54)の四端(56)と係合・
分1II6J能なりラッチCL6を構成する。
The tip (102) of the transmission shaft (101) forms a latch CL5 that engages and separates from the four ends (55) of the drive shaft (53) of the X-direction moving motor (5). A pulley (104) is provided at the other end of the shaft (101), and this boo'J (
belt (104) and the pulleys (114) and (124) of the above-mentioned moving mechanisms (110) and (120).
03) is suspended. In addition, as shown in FIG. 6, this bell 1-(103) is equipped with a tension roller (107).
, (108) provides the required tension. The tip (106) of the transmission shaft (105) engages with the four ends (56) of the drive shaft (54) of the motor (52) for moving in the Y direction.
The latch CL6 is configured with the function 1II6J.

本実施例においζは、図示を省略したビームマスクには
1対の厄方形の窓(22R)がその長辺がターンテーブ
ル(2)の半径方向に垂直になるように所定の位置に設
けられる。また、ターンテーブル(2)に関して電子ビ
ーム源(図示を省略)と同じ側にI対の赤外線灯(し1
示を省略)が電子ビーム源に対してそれぞれ90゛の角
間隔で配設される。従って、ビームマスクは電子ビーム
が通過する窓(22R)の近傍だけを遮蔽し得ればよい
。なお、一方のYステージ(122)に適宜形状の腕を
固定)  し、そこに双方のXY移動機構(110)及
び(120)に共通の位置検出用光源を設けることがで
きる。
In this embodiment, ζ is a beam mask (not shown) in which a pair of rectangular windows (22R) are provided at predetermined positions so that the long sides thereof are perpendicular to the radial direction of the turntable (2). . In addition, on the same side of the turntable (2) as the electron beam source (not shown), there is a pair of infrared lamps (one
(not shown) are arranged at an angular spacing of 90° from the electron beam source. Therefore, the beam mask only needs to cover the vicinity of the window (22R) through which the electron beam passes. Note that an appropriately shaped arm can be fixed to one Y stage (122), and a position detection light source common to both XY moving mechanisms (110) and (120) can be provided there.

本実施例の動作は次のとおりである。The operation of this embodiment is as follows.

まず、電子ビームが2枚のウェーハ(11) 。First, the electron beam hits two wafers (11).

(12)のそれぞれ同じ位置、例えば中央を照射するよ
うに、2個の移動用モータ(51) 、  (52)を
クラ・7チCL5.Cl3等を介してXY移動機構(1
10) 、  (120)の移動ネジ(113)。
The two moving motors (51) and (52) are connected to the CL5. XY movement mechanism (1
10), (120) displacement screw (113).

(115) 、  (123) 、  (125)に結
合し、2枚のウェーハ<lx)、(h)の各中央がそれ
ぞれビームマスク(21)の2個の窓(22R)の直)
に位置1− ルヨウニ、XY移動a構(110) 、 
 (120)を駆動する。クラッチCL5及びCl3を
切離し、従来と同様に、図ボを省略した赤外線灯によっ
てウェーハ(1)が予熱されてから、ターンテーブル(
2)を回転させる。回転制御回路(9)に制御されてタ
ーンテーブル(2)が定速回転状態に達し、1枚目のつ
工−ハ(1りが電子ビーム源(6)の下に差し掛がった
とき、前述の実施例と同様に、電子ビーム源(6)はタ
ーンテーブル(2)と同期して等速で同方向に回転し、
ウェーハ(11)上の電子ビームの照射線はウェーハの
中心を通るターンテーブル(2)の動径と平行になる。
(115), (123), (125), and the centers of the two wafers <lx) and (h) are directly connected to the two windows (22R) of the beam mask (21), respectively).
Position 1 - Ruyouni, XY movement a structure (110),
(120). Clutches CL5 and Cl3 are disengaged, the wafer (1) is preheated by an infrared lamp (not shown), and then the turntable (
2) Rotate. When the turntable (2) reaches a constant speed rotation state under the control of the rotation control circuit (9) and the first plate (1) approaches the bottom of the electron beam source (6). , similar to the previous embodiment, the electron beam source (6) rotates in synchronization with the turntable (2) at a constant speed and in the same direction;
The irradiation line of the electron beam on the wafer (11) is parallel to the radius vector of the turntable (2) passing through the center of the wafer.

1枚目のウェーハ(11)の中央部の照射が終って、タ
ーンテーブル(2)上に180°の角間隔に配された2
枚目のウェーハ(12)が電子ビーム源(6)の下に差
し掛かったとき、電子ビーム源(6)は1枚目のウェー
ハ(11)に対したと同じ位置関係になっ”ζいなけれ
ばならない。即ち、電子ビーム源(6)もターンテーブ
ル(2)と同じ< iso ”回動していなければなら
ない。線状ビームはその長手方向に方向性に有しないの
で、本実施例の場合、電子ビーム源(6)は前述の実施
例のように往復回動する必要がなく、連続回転させるこ
とができて、その回転制御が頗る簡単になる。この場合
、電子ビーム源(6)への給電はスリップリングを介し
て行なわれる。
After the irradiation of the central part of the first wafer (11), two wafers placed at an angular interval of 180° on the turntable (2)
When the first wafer (12) comes under the electron beam source (6), the electron beam source (6) is in the same positional relationship as it was with the first wafer (11). In other words, the electron beam source (6) must also rotate by the same angle as the turntable (2). Since the linear beam has no directionality in its longitudinal direction, in the case of this embodiment, the electron beam source (6) does not need to rotate back and forth as in the previous embodiment, and can be rotated continuously. , its rotation control becomes extremely easy. In this case, the electron beam source (6) is supplied with power via a slip ring.

なお、前述の実施例をも含めて、モータ(71)の回転
制御にマイクロコンピュータを用いることもできる。
In addition, a microcomputer can also be used to control the rotation of the motor (71), including the above-mentioned embodiments.

肉ウェーハ(11)及び(12)に対する1回目の電子
ビーム照射が終ると、ターンテーブル(2)の回転を止
め、vトびクラッチCL5及びCl3を係合しζ、移f
iJJ機構(110)及び(120)をX方向又はY方
向に、ターンテーブル(2)の回転軸(3)に関して対
称に移動する。2回目のビーム照射規制領域を1回目の
それに隣接させるため、移動距離はビームマスク(21
)の長方形の窓(22R)の長辺、短辺の長さl、wに
等しく設定される。以下、クラッチCL5.CL6の分
離、ターンテーブル(2)の回転、電子ビーム照射、タ
ーンテーブル停止、ウェーハ移動を繰返して、ウェーハ
全面を一様に処理することができる。
When the first electron beam irradiation on the meat wafers (11) and (12) is completed, the rotation of the turntable (2) is stopped, and the clutches CL5 and Cl3 are engaged.
The iJJ mechanisms (110) and (120) are moved in the X direction or the Y direction symmetrically with respect to the rotation axis (3) of the turntable (2). In order to make the second beam irradiation regulation area adjacent to the first one, the moving distance is determined by the beam mask (21
) are set equal to the lengths l and w of the long and short sides of the rectangular window (22R). Below, clutch CL5. By repeating separation of the CL6, rotation of the turntable (2), electron beam irradiation, stoppage of the turntable, and movement of the wafer, the entire surface of the wafer can be uniformly processed.

自移動機構(110)及び(120)がY方向に移動す
ると、X移動ネジ(113)及び(123)に結合され
たプーリ (114)及び(124)の間隔が変化する
が、第6図に示すように、プーリ (114)。
When the self-moving mechanisms (110) and (120) move in the Y direction, the distance between the pulleys (114) and (124) connected to the X moving screws (113) and (123) changes, but as shown in FIG. Pulley (114) as shown.

(124)の間隔の変化に対応してテンションローラ(
107) 、  (108)が変位し、ベルト(103
)の張力は一定に保たれる。
(124) The tension roller (
107) and (108) are displaced, and the belt (103
) remains constant.

ところで、被処理ウェーハ上の広幅弧状照射領域の上縁
及び下縁の曲率半径は、前述のように、ターンテーブル
及び電子ビーム源のそれぞれの回転中心間の距MRに等
しい。1回のビーム照射1期間中のターンテーブル及び
ビーム源の回転角2θが一定ごあるとき、照射領域の弧
の長さは回転中心間σ月/HMIIRが大きい稈長くな
り、照射領域が大きくな−、で、ウェーハ1枚当りの照
射回数を少なくすることができる。
Incidentally, the radius of curvature of the upper and lower edges of the wide arc-shaped irradiation area on the wafer to be processed is equal to the distance MR between the respective rotation centers of the turntable and the electron beam source, as described above. When the rotation angle 2θ of the turntable and the beam source during one period of one beam irradiation is constant, the arc length of the irradiation area becomes longer when the rotation center distance σ month/HMIIR is larger, and the irradiation area becomes larger. -, the number of irradiations per wafer can be reduced.

この様子を第7図に示す。第7図において、CGOは電
子ビーム源(6)の回転中心である。これ以外の部分は
第3図に対応するので同一の符号を付して重複説明を省
略する。
This situation is shown in FIG. In FIG. 7, CGO is the center of rotation of the electron beam source (6). Since the other parts correspond to those in FIG. 3, they are given the same reference numerals and redundant explanation will be omitted.

第7図に示したように電子ビーム源(61((6a)〜
(Cic))を回動させるためには、例えば第2図のモ
ータ(71)をターンテーブル(2)の半径方向に移動
させて、その回転軸(72)に腕部材の中央を固定し、
腕部材の両端に1対の線状電子ビーム源を、ビームの長
平方向が同一直線上にあるように取付け、この腕部材を
ターンテーブル(2)と同期し”ζ連続回転させればよ
い。
As shown in FIG.
(Cic)), for example, move the motor (71) in Fig. 2 in the radial direction of the turntable (2), fix the center of the arm member to the rotation axis (72),
A pair of linear electron beam sources may be attached to both ends of the arm member so that the elongated directions of the beams are on the same straight line, and the arm member may be continuously rotated in synchronization with the turntable (2).

なお、ターンテーブル及び電子ビーム源の回転中心間の
距離が大きくなる程、ウェーハ上の照射領域の形状は長
方形に近くなって、ビームマスクによって遮蔽される部
分を減少させることができる。
Note that as the distance between the rotation centers of the turntable and the electron beam source increases, the shape of the irradiation area on the wafer becomes closer to a rectangle, and the portion shielded by the beam mask can be reduced.

以上、本発明を電子ビームによるシリコンウェーハ処理
に適用した場合について説明したが、本発明は上述の実
施例に限定されるものではなく、線状ビームとしてはレ
ーザー光、X線、熱線、イオンビーム等を用いることが
でき、被処理体も半導体のみならず、絶縁体及び金属に
適用することができる。
Although the present invention has been described above in the case where it is applied to silicon wafer processing using an electron beam, the present invention is not limited to the above embodiments, and linear beams such as laser light, X-rays, heat rays, ion beams, etc., and the object to be processed can be applied to not only semiconductors but also insulators and metals.

〔効果〕〔effect〕

以上詳述のように、本発明によれば、少なくとも1対の
xy移動機構を回転台の回転軸に対称に配設すると共に
、XY移動機構のそれぞれを回転台の回転軸に関して対
称に移動させるようにしたので、大口径被処理体の線状
エネルギービーム照射が可能になると共に、回転台のダ
イナミックバランスが保たれて、円滑な回転が維持され
、ビーム照射が均一になる。
As described in detail above, according to the present invention, at least one pair of xy moving mechanisms are disposed symmetrically about the rotating axis of the rotating table, and each of the XY moving mechanisms is moved symmetrically about the rotating axis of the rotating table. This makes it possible to irradiate a large-diameter object with a linear energy beam, and at the same time, the dynamic balance of the rotary table is maintained, smooth rotation is maintained, and beam irradiation becomes uniform.

図面の簡j’fiな説明 第1図及び第2図は本発明による線状エネルギービーム
照射装置の一実施例を示す平面図及びブロック図、第3
図及び第4図は本発明の説明に供する路線図、第5図及
び第6図は本発明の他の実施例をン1りず平面図及び側
面図、第7図は本発明の説明に供する路線図、第8図及
び第9図は従来の線状エネルギービーム照射装置の一例
を示す平面図及びブロック図、第1O図は従来装置の説
明に供する路線図である。
Brief Explanation of the Drawings FIGS. 1 and 2 are a plan view and a block diagram showing an embodiment of the linear energy beam irradiation device according to the present invention, and FIG.
4 and 4 are route maps for explaining the present invention, FIGS. 5 and 6 are plan views and side views showing other embodiments of the present invention, and FIG. 7 is for explaining the present invention. FIGS. 8 and 9 are a plan view and a block diagram showing an example of a conventional linear energy beam irradiation device, and FIG. 1O is a route map for explaining the conventional device.

(2)はターンテーブル、(6)は線状エネルギービー
ム源、(21)はビームマスク、(30) 、  (4
0) 。
(2) is a turntable, (6) is a linear energy beam source, (21) is a beam mask, (30), (4
0).

(110) 、  (120)はXY移動機構、(51
) 。
(110) and (120) are XY movement mechanisms, (51
).

(52) 、  (61) 、  (62)は移動用モ
ータ、(71)はビーム源回転用モータである。
(52), (61), and (62) are moving motors, and (71) is a beam source rotation motor.

Claims (1)

【特許請求の範囲】[Claims]  被処理体が載置される回転台と、該回転台の半径方向
に配設された線状エネルギービーム源とを有し、該線状
エネルギービーム源からの線状エネルギービームを上記
被処理体に照射する線状エネルギービーム照射装置にお
いて、上記回転台上に少なくとも1対のXY移動機構を
上記回転台の回転軸に対称に配設すると共に、上記XY
移動機構のそれぞれを上記回転軸に関して対称に移動さ
せるようにしたことを特徴とする線状エネルギービーム
照射装置。
It has a rotary table on which the object to be processed is placed, and a linear energy beam source arranged in the radial direction of the rotary table, and the linear energy beam from the linear energy beam source is applied to the object to be processed. In the linear energy beam irradiation device for irradiating the area, at least one pair of XY moving mechanisms are disposed on the rotary table symmetrically with respect to the rotation axis of the rotary table, and the XY
A linear energy beam irradiation device characterized in that each of the moving mechanisms is moved symmetrically with respect to the rotation axis.
JP19078084A 1984-09-12 1984-09-12 Linear energy beam irradiating device Pending JPS6167914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19078084A JPS6167914A (en) 1984-09-12 1984-09-12 Linear energy beam irradiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19078084A JPS6167914A (en) 1984-09-12 1984-09-12 Linear energy beam irradiating device

Publications (1)

Publication Number Publication Date
JPS6167914A true JPS6167914A (en) 1986-04-08

Family

ID=16263607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19078084A Pending JPS6167914A (en) 1984-09-12 1984-09-12 Linear energy beam irradiating device

Country Status (1)

Country Link
JP (1) JPS6167914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216321A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Laser annealing apparatus
EP0654813A1 (en) * 1993-10-28 1995-05-24 Mitsubishi Denki Kabushiki Kaisha Electron beam drawing apparatus and method of drawing with such apparatus
WO2002017371A1 (en) * 2000-08-24 2002-02-28 Toyoda Gosei Co., Ltd. Method for reducing semiconductor resistance, device for reducing semiconductor resistance and semiconductor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216321A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Laser annealing apparatus
EP0654813A1 (en) * 1993-10-28 1995-05-24 Mitsubishi Denki Kabushiki Kaisha Electron beam drawing apparatus and method of drawing with such apparatus
WO2002017371A1 (en) * 2000-08-24 2002-02-28 Toyoda Gosei Co., Ltd. Method for reducing semiconductor resistance, device for reducing semiconductor resistance and semiconductor element
US6943128B2 (en) 2000-08-24 2005-09-13 Toyoda Gosei Co., Ltd. Method for reducing semiconductor resistance, device for reducing semiconductor resistance and semiconductor element

Similar Documents

Publication Publication Date Title
KR100370280B1 (en) Rapid thermal processing (rtp) system with gas driven rotating substrate
EP1138060B1 (en) Gas driven rotating susceptor for rapid thermal processing (rtp) system
TW200822274A (en) Substrate transfer device, substrate processing apparatus and substrate transfer method
JPS5965426A (en) Heat treatment device for semiconductor wafer
JPS6167914A (en) Linear energy beam irradiating device
JPS6167912A (en) Linear energy beam irradiating device
JPH0855785A (en) Exposure method and device manufacture method using this
JPS6167913A (en) Linear energy beam irradiating device
JP2002050583A (en) Substrate-heating method and substrate-heating device
JPS6180815A (en) Linear energy beam irradiation equipment
JPS62293622A (en) Heat treatment device for semiconductor substrate
JP2815025B2 (en) Laser annealing equipment
JPS6180814A (en) Linear energy beam irradiation equipment
JP2008211091A (en) Laser annealer, and method for laser annealing
JPS6174326A (en) Linear energy beam irradiating device
JP3259165B2 (en) Processing container with clamping mechanism for substrate to be processed
US20240063051A1 (en) Substrate support unit, and apparatus and method for depositing a layer using the same
JPS635514A (en) Beam annealing device
JPS62216318A (en) Laser annealing apparatus
JP2548961B2 (en) Laser heat treatment equipment
WO2009145542A2 (en) Laser surface treatment apparatus and method using beam section shaping and polygon mirror
JPS6174333A (en) Linear energy beam irradiating device
JP2000260687A (en) Method and apparatus for heat treatment
JPS6174325A (en) Linear energy beam irradiating device
JPH01276621A (en) Beam annealing apparatus