JPS6247114A - Manufacture of semiconductor single crystal film - Google Patents

Manufacture of semiconductor single crystal film

Info

Publication number
JPS6247114A
JPS6247114A JP18787785A JP18787785A JPS6247114A JP S6247114 A JPS6247114 A JP S6247114A JP 18787785 A JP18787785 A JP 18787785A JP 18787785 A JP18787785 A JP 18787785A JP S6247114 A JPS6247114 A JP S6247114A
Authority
JP
Japan
Prior art keywords
laser beam
lens
light
single crystal
crystal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18787785A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sugahara
和之 須賀原
Tadashi Nishimura
正 西村
Shigeru Kusunoki
茂 楠
Yasuaki Inoue
靖朗 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18787785A priority Critical patent/JPS6247114A/en
Publication of JPS6247114A publication Critical patent/JPS6247114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To emit a half ring-like laser light without loss of energy by inserting a lens of noncircular shape so that a focal point is positioned before a semiconductor substrate between a laser light oscillator and a semiconductor film. CONSTITUTION:A doughnutlike beam of laser light 12 oscillated by a laser light oscillator 11 is bent by a mirror 13 to be incident on a condensing lens 14. A semicircular convex lens 24 inserted between the lens 14 and a semiconductor substrate 16 to coincide in optical axis is disposed so that the focal point position 25 of the light 12 is disposed before the substrate 16. When the position 25 is adjusted,the light 12 incident on the lens 24 is largely refracted to be superposed with the light 12 passing a region having no lens 24. Thus, a light image of half ringlike beam of laser light can be obtained without reducing power of the light 12. Therefore, sufficient power can be obtained in case of recrystallizing a polycrystalline or amorphous semiconductor film on an insulator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、絶縁体上に形成された多結晶または非晶質
の半導体膜を連続発振のレーザ光で走査しながら溶融す
ることにより単結晶化させる半導体単結晶膜の製造方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention produces a single crystal by melting a polycrystalline or amorphous semiconductor film formed on an insulator while scanning it with a continuous wave laser beam. The present invention relates to a method for manufacturing a semiconductor single crystal film that is made to have a chemical effect.

〔従来の技術〕[Conventional technology]

第3図は従来の半導体中結晶膜の製造方法を示す模式図
であり、図において、(11)はレーザ光発振器、(1
2)はレーザ光発振器(11)から発振されたレーザ光
、(13)はレーザ光(12)の光路を変更する鏡、(
14)はレーザ光(12)を集光するだめの集光レンズ
、(15)はレーザ光(]2)の半分を遮光する遮蔽板
、(16)は絶縁体−Lに形成された多結晶または41
品質の半導体膜を有する半導体基板、(]7)は半導体
基板(16)を支持し適当な温度に加熱する支持台、(
12a)は半導体基板(16)に照射されるレーザ光(
12)の光像・である。
FIG. 3 is a schematic diagram showing a conventional method for manufacturing a crystal film in a semiconductor. In the figure, (11) is a laser beam oscillator, (1
2) is a laser beam oscillated from a laser beam oscillator (11), (13) is a mirror that changes the optical path of the laser beam (12), (
14) is a condensing lens for condensing the laser beam (12), (15) is a shielding plate that blocks half of the laser beam (2), and (16) is a polycrystal formed on insulator-L. or 41
A semiconductor substrate having a high quality semiconductor film, (7) is a support stand that supports the semiconductor substrate (16) and heats it to an appropriate temperature;
12a) is a laser beam (
12) is the optical image.

次に動作について説明する。レーザ光発振器(11)か
ら発振されたドーナツ状のレーザ光(12)は鏡(13
)などを介して導かれ、集光レンズ(14)により直径
50〜100μmに集光され、支持台(17)によって
400 ’c程度に加熱された半導体基板(16) 、
、L: 4こ照射される。支持台(17)は第3図中の
矢印の方向に数cm〜数]Ocm/secの速度で走査
される。レーザ光(12)は、遮蔽板(15)によって
その走査方向の後半部分を照射されないような構造にな
っている。
Next, the operation will be explained. A donut-shaped laser beam (12) oscillated from a laser beam oscillator (11) is reflected by a mirror (13).
) etc., the semiconductor substrate (16) is focused by a condensing lens (14) to a diameter of 50 to 100 μm, and heated to about 400'c by a support base (17),
, L: 4 rays are irradiated. The support base (17) is scanned in the direction of the arrow in FIG. 3 at a speed of several cm to several]Ocm/sec. The structure is such that the latter half of the laser beam (12) in the scanning direction is not irradiated by the shielding plate (15).

したがって、レーザ光(12)は第4図に示した光像(
12a)のような半リング状に照射される。このような
レーザ光(12)が絶縁体−トに堆積された多結晶また
は非晶質の半導体膜に照射されると、レーザ光(12)
によって溶融された半導体膜の外側は中央部分に対して
温度が高く保たれるために固化再結晶化が中央部分から
連続的に起こり、半導体膜は大結晶粒の単結晶膜に成長
する。
Therefore, the laser beam (12) is transmitted to the optical image (
It is irradiated in a half-ring shape as shown in 12a). When such a laser beam (12) is irradiated onto a polycrystalline or amorphous semiconductor film deposited on an insulator, the laser beam (12)
Since the outside of the semiconductor film melted by is kept at a higher temperature than the central part, solidification and recrystallization occur continuously from the central part, and the semiconductor film grows into a single crystal film with large crystal grains.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の半導体単結晶膜の製造方法は、遮蔽板(15)に
よって半リング状のレーザ光(12)を得るように構成
されているので、遮蔽板(15)に照射したレーザ光(
12)が半導体基板(16)に到達せず、レーザ光(1
2)のパワーの大きなt置火になるという問題点があっ
た。
The conventional method for manufacturing a semiconductor single crystal film is configured to obtain a half-ring-shaped laser beam (12) using a shielding plate (15).
12) does not reach the semiconductor substrate (16), and the laser beam (1
There was a problem in 2) that it was a large power fire.

この発明は上記のような問題点を解消するためになされ
たもので、エネルギーのt置火なく半リング状のレーザ
光を照射することのできる半導体単結晶膜の製造方法を
得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a semiconductor single crystal film that can be irradiated with a semi-ring-shaped laser beam without the need for energy. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体単結晶膜の製造方法は、集光レン
ズと半導体基板との間にその焦点位置が半導体基板の手
前となるように半円状の凸レンズを挿入して半導体基板
−Fにレーザ光を照射するものである。
In the method for manufacturing a semiconductor single crystal film according to the present invention, a semicircular convex lens is inserted between a condenser lens and a semiconductor substrate so that its focal point is in front of the semiconductor substrate, and a laser beam is directed onto the semiconductor substrate -F. It irradiates light.

〔作用〕[Effect]

この発明における半円状の凸レンズは、これに照射され
たレーザ光を屈折させ、半円状の凸【・ンズのない領域
のレーザ光と重ね合わせる。
The semicircular convex lens of the present invention refracts the laser beam irradiated onto it and superimposes it on the laser beam in the area without the semicircular convex lens.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(11)はレーザ光発振器、(12)はレ
ーザ光、(13)は鏡、(14)はレーザ光(12)を
半導体基板(16)で数10μmに集光する集光レンズ
、(24)は集光レンズ(14)と半導体基+7N(1
6)との間にその光軸が一致するように挿入された半円
状の凸レンズ、(16)は半導体基板、(17)は半導
体基板(16)を支持し加熱する支持台である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (11) is a laser beam oscillator, (12) is a laser beam, (13) is a mirror, (14) is a condensing lens that condenses the laser beam (12) to several tens of μm with a semiconductor substrate (16), (24) is the condenser lens (14) and the semiconductor base +7N(1
(6) is a semicircular convex lens inserted so that its optical axis coincides with the semiconductor substrate, (16) is a semiconductor substrate, and (17) is a support base that supports and heats the semiconductor substrate (16).

次に動作について説明する。レーザ光発振器(11)か
ら発振されたドーナツ状のレーザ光(12)は、鏡(1
3)によって曲げられ集光レンズ(14)に入射する。
Next, the operation will be explained. A donut-shaped laser beam (12) oscillated from a laser beam oscillator (11) is transmitted through a mirror (1
3) and enters the condenser lens (14).

集光レンズ(14)の位置はレーザ光(12)の直径が
半導体基板(1G)上で数10μmになるように調整さ
れている。光軸が一致するように、集光レンズ(14)
と半導体基板(16)との間に挿入された半円状の凸レ
ンズ(24)は、挿入したことによってレーザ光(12
)の焦点位i!  (25)が半導体基板(16)の手
前にくるように調整されている。焦点位置(25)を調
節すると、半円状の凸レンズ(24)に入射したレーザ
光(I2)は大きく屈折して半円状の凸レンズ(24)
のない領域を通過したレーザ光(12)に重なる。した
がって、レーザ光(12)のパワーを低減することな(
、第2図に示すような半リング状のレーザ光(12)の
光像(22b)が得られる。よって、絶縁体上の多結晶
または非晶質の半導体膜を再結晶化する際に十分なパワ
ーが得られる。
The position of the condensing lens (14) is adjusted so that the diameter of the laser beam (12) becomes several tens of μm on the semiconductor substrate (1G). Condenser lens (14) so that the optical axes match
The semicircular convex lens (24) inserted between the semiconductor substrate (16) and the laser beam (12)
) focal position i! (25) is adjusted so that it is in front of the semiconductor substrate (16). When the focal point position (25) is adjusted, the laser beam (I2) incident on the semicircular convex lens (24) is largely refracted, and the laser beam (I2) enters the semicircular convex lens (24).
It overlaps with the laser beam (12) that has passed through the area without. Therefore, without reducing the power of the laser beam (12) (
, a half-ring-shaped optical image (22b) of the laser beam (12) as shown in FIG. 2 is obtained. Therefore, sufficient power can be obtained when recrystallizing a polycrystalline or amorphous semiconductor film on an insulator.

なお、上記実施例では、半円状の凸レンズ(24)の焦
点位置を調整しレーザ光(12)の位相差がないように
して干渉が起こらないようにしたが、レーザ光(12)
の強度分布が周辺部で大きく中央部で低ければ、干渉縞
を利用したパターンを利用することもできる。
In the above embodiment, the focal position of the semicircular convex lens (24) was adjusted so that there was no phase difference between the laser beams (12) to prevent interference.
If the intensity distribution is large at the periphery and low at the center, a pattern using interference fringes can also be used.

また、挿入する凸レンズ(24)の形状は半円状でなく
てもよく、例えば扇形であっても同様の効果を奏する。
Further, the shape of the inserted convex lens (24) does not have to be semicircular, and even if it is fan-shaped, for example, the same effect can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば集光レンズと半導体基
板との間に半円状の凸レンズを挿入したので、レーザパ
ワーの損失なく半リング状のレーザ光が得られ、大きな
出力によって単結晶化を行うことができる半導体単結晶
膜の製造方法が得られる効果がある。
As described above, according to the present invention, a semicircular convex lens is inserted between the condensing lens and the semiconductor substrate, so a semi-ring-shaped laser beam can be obtained without loss of laser power, and a large output power can be obtained from a single crystal. This has the effect of providing a method for manufacturing a semiconductor single crystal film that can perform chemical conversion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体単結晶膜の製
造方法の模式図、第2図は第1図に示した半導体単結晶
膜の製造方法におけるレーザ光の光像を示す図、第3図
は従来の半導体単結晶膜の製造方法の模式図、第4図は
第3図に示した半導体t11結晶膜の製造方法における
レーザ光の光像を示す図である。 (11)はレーザ光発振器、(12)はレーザ光、(1
3)は鏡、(14)は集光レンズ、(16)は半導体基
板、(17)は支持台、(24)は半円状の凸レンズ、
(25)はfμ点位置、(22b)は光像。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a schematic diagram of a method for manufacturing a semiconductor single crystal film according to an embodiment of the present invention, FIG. 2 is a diagram showing an optical image of a laser beam in the method for manufacturing a semiconductor single crystal film shown in FIG. 1, and FIG. FIG. 3 is a schematic diagram of a conventional method for manufacturing a semiconductor single crystal film, and FIG. 4 is a diagram showing an optical image of a laser beam in the method for manufacturing a semiconductor T11 crystal film shown in FIG. (11) is a laser beam oscillator, (12) is a laser beam, (1
3) is a mirror, (14) is a condensing lens, (16) is a semiconductor substrate, (17) is a support stand, (24) is a semicircular convex lens,
(25) is the fμ point position, and (22b) is the optical image. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁体上に形成された多結晶または非晶質の半導
体膜をレーザ光によって溶融し再結晶化する半導体単結
晶膜の製造方法において、上記レーザ光を発生するレー
ザ光発振器と上記レーザ光を照射すべき上記多結晶また
は非晶質の半導体膜との間に、その形状が円形でないレ
ンズを挿入したことを特徴とする半導体単結晶膜の製造
方法。
(1) A method for manufacturing a semiconductor single-crystal film in which a polycrystalline or amorphous semiconductor film formed on an insulator is melted and recrystallized by a laser beam, including a laser beam oscillator that generates the laser beam and the laser beam. A method for manufacturing a semiconductor single crystal film, characterized in that a lens whose shape is not circular is inserted between the polycrystalline or amorphous semiconductor film to be irradiated with light.
(2)上記レンズが半円形の凸レンズで、それによる上
記レーザ光の焦点位置が上記半導体膜の手前にあり、か
つその光軸が上記レーザ光の光軸に一致していることを
特徴とする特許請求の範囲第1項記載の半導体単結晶膜
の製造方法。
(2) The lens is a semicircular convex lens, and the focal position of the laser beam thereby is located in front of the semiconductor film, and the optical axis thereof coincides with the optical axis of the laser beam. A method for manufacturing a semiconductor single crystal film according to claim 1.
(3)上記レーザ光に連続発振のアルゴンレーザ光を使
用したことを特徴とする特許請求の範囲第1項または第
2項記載の半導体単結晶膜の製造方法。
(3) The method for manufacturing a semiconductor single crystal film according to claim 1 or 2, characterized in that a continuous wave argon laser beam is used as the laser beam.
JP18787785A 1985-08-26 1985-08-26 Manufacture of semiconductor single crystal film Pending JPS6247114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18787785A JPS6247114A (en) 1985-08-26 1985-08-26 Manufacture of semiconductor single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18787785A JPS6247114A (en) 1985-08-26 1985-08-26 Manufacture of semiconductor single crystal film

Publications (1)

Publication Number Publication Date
JPS6247114A true JPS6247114A (en) 1987-02-28

Family

ID=16213768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18787785A Pending JPS6247114A (en) 1985-08-26 1985-08-26 Manufacture of semiconductor single crystal film

Country Status (1)

Country Link
JP (1) JPS6247114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246826A (en) * 1988-03-28 1989-10-02 Tokyo Electron Ltd Beam annealing
JPH0432221A (en) * 1990-05-28 1992-02-04 Mitsubishi Electric Corp Manufacture of semiconductor single crystal film
CN108544092A (en) * 2018-04-25 2018-09-18 上海产业技术研究院 A kind of coaxial wire feed deposition head for laser metal printing
WO2021145176A1 (en) * 2020-01-14 2021-07-22 株式会社ブイ・テクノロジー Laser annealing device and laser annealing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246826A (en) * 1988-03-28 1989-10-02 Tokyo Electron Ltd Beam annealing
JPH0432221A (en) * 1990-05-28 1992-02-04 Mitsubishi Electric Corp Manufacture of semiconductor single crystal film
CN108544092A (en) * 2018-04-25 2018-09-18 上海产业技术研究院 A kind of coaxial wire feed deposition head for laser metal printing
WO2021145176A1 (en) * 2020-01-14 2021-07-22 株式会社ブイ・テクノロジー Laser annealing device and laser annealing method

Similar Documents

Publication Publication Date Title
JPS6247114A (en) Manufacture of semiconductor single crystal film
JP2683241B2 (en) Annealing device using energy beam
JPS6319809A (en) Laserr beam annealing equipment
JPS63233518A (en) Apparatus for forming single crystal thin film
JPS6247115A (en) Manufacture of semiconductor device
JP2555650B2 (en) Laser annealing method
JPH01261820A (en) Laser irradiation apparatus
JPS6124226A (en) Laser annealing device
JPS63233517A (en) Apparatus for forming single crystal thin film
JPS6233416A (en) Device for manufacturing optical fiber single crystal
JPH06120139A (en) Semiconductor material manufacturing equipment
JPS62194613A (en) Beam annealing method
JPS62216216A (en) Crescent beam homogenizer
JPS60261126A (en) Manufacture of single crystal semiconductor film
JPS59121913A (en) Manufacture of semiconductor device
JPH06291036A (en) Laser annealing
JPH03286519A (en) Manufacture of semiconductor device
JPS59151421A (en) Laser annealing device
JPH059095A (en) Single crystal growing device
JPS6185816A (en) Manufacture of single crystal thin film
JPS5952831A (en) Beam annealing method
JPS58105579A (en) Surface processing method
JPH0656834B2 (en) Single crystal thin film manufacturing equipment
JPS6266617A (en) Laser light emitting device
JPS63291899A (en) Production of oxide based superconducting element